TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    • Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

    Thumbnail
    View/Open
    1471-2164-10-219.pdf (388.4Kb)
    Date
    2009-05-12
    Author
    Meyer, Eli
    Aglyamova, Galina V.
    Wang, Shi
    Buchanan-Carter, Jade
    Abrego, David
    Colbourne, John K.
    Willis, Bette L.
    Matz, Mikhail V.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Background: New methods are needed for genomic-scale analysis of emerging model organisms that exemplify important biological questions but lack fully sequenced genomes. For example, there is an urgent need to understand the potential for corals to adapt to climate change, but few molecular resources are available for studying these processes in reef-building corals. To facilitate genomics studies in corals and other non-model systems, we describe methods for transcriptome sequencing using 454, as well as strategies for assembling a useful catalog of genes from the output. We have applied these methods to sequence the transcriptome of planulae larvae from the coral Acropora millepora. -- Results: More than 600,000 reads produced in a single 454 sequencing run were assembled into ~40,000 contigs with five-fold average sequencing coverage. Based on sequence similarity with known proteins, these analyses identified ~11,000 different genes expressed in a range of conditions including thermal stress and settlement induction. Assembled sequences were annotated with gene names, conserved domains, and Gene Ontology terms. Targeted searches using these annotations identified the majority of genes associated with essential metabolic pathways and conserved signaling pathways, as well as novel candidate genes for stress-related processes. Comparisons with the genome of the anemone Nematostella vectensis revealed ~8,500 pairs of orthologs and ~100 candidate coral-specific genes. More than 30,000 SNPs were detected in the coral sequences, and a subset of these validated by re-sequencing. -- Conclusion: The methods described here for deep sequencing of the transcriptome should be widely applicable to generate catalogs of genes and genetic markers in emerging model organisms. Our data provide the most comprehensive sequence resource currently available for reef-building corals, and include an extensive collection of potential genetic markers for association and population connectivity studies. The characterization of the larval transcriptome for this widely-studied coral will enable research into the biological processes underlying stress responses in corals and evolutionary adaptation to global climate change.
    Department
    Integrative Biology
    Description
    Eli Meyer, Galina V. Aglyamova, Shi Wang, and Mikhail V. Matz are with the University of Texas at Austin, 1 University Station C0930, Austin, TX, 78712, USA -- Jade Buchanan-Carter and John K. Colbourne are with The Center for Genomics and Bioinformatics, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA -- David Abrego and Bette L. Willis are with the ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia
    Subject
    coral larval transcriptome
    454 GSFlx
    Sequencing and de novo analysis
    URI
    http://hdl.handle.net/2152/27845
    xmlui.dri2xhtml.METS-1.0.item-citation
    Meyer, Eli, Galina V. Aglyamova, Shi Wang, Jade Buchanan-Carter, David Abrego, John K. Colbourne, Bette L. Willis, and Mikhail V. Matz. “Sequencing and de Novo Analysis of a Coral Larval Transcriptome Using 454 GSFlx.” BMC Genomics 10, no. 1 (May 12, 2009): 219. doi:10.1186/1471-2164-10-219.
    Collections
    • UT Faculty/Researcher Works

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin