Case studies on the aspects of molecular signaling : binding forces, signal generation, and a mature receptor
dc.contributor.advisor | Anslyn, Eric V., 1960- | en |
dc.creator | Houk, Ronald James Travis, 1979- | en |
dc.date.accessioned | 2011-08-23T14:44:59Z | en |
dc.date.available | 2011-08-23T14:44:59Z | en |
dc.date.issued | 2007-05 | en |
dc.description | text | en |
dc.description.abstract | The field of molecular and atomic sensing has seen a vast growth over the last few decades. Yet many advances still remain to be made. This dissertation takes an in depth look at the two major aspects in a molecular sensing or signaling scaffold—namely the binding of a target followed by the transduction of an observable signal. Chapter 1 will deal with intermolecular binding forces in the form of a case study on electrophilic coordination to carbonyl compounds. Computational studies are performed to determine the optimal geometry of an electrophile interacting with a carbon acid to affect the greatest enhancement in the acidity at the α-carbon. We find that partial interaction through the π-system of the carbonyl and the resulting enolate affords the greatest acidity enhancement. Chapter 2 then switches to studies on the development of a novel signaling method for a molecular signaling assay. Two novel elements—transition metal catalytic signal amplification and peroxyoxalate chemiluminescence—are utilized to generate a signaling motif incorporating two new methodologies for signal generation. The first uses of catalytic signal amplification for the detection of small organic analytes and peroxyoxalate chemiluminescence for signal generation in a molecular recognition event are described. Finally, both elements are brought together in Chapter 3, which describes a mature ionophoric chemodosimeter with both highly sensitive binding and strong signal output. The use of a squaraine dye as a signaling unit for the detection of palladium(II) salts is described in which an aliphatic thiol acts as the theoretical “host” in a covalent displacement type assay. Palladium(II) and other transition metal detection is of importance both industrially and environmentally, and the assay described is sensitive to levels desired in both arenas. | |
dc.description.department | Chemistry | en |
dc.format.medium | electronic | en |
dc.identifier.uri | http://hdl.handle.net/2152/13289 | en |
dc.language.iso | eng | en |
dc.rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. | en |
dc.subject | Cellular signal transduction | en |
dc.title | Case studies on the aspects of molecular signaling : binding forces, signal generation, and a mature receptor | en |
thesis.degree.department | Chemistry | en |
thesis.degree.discipline | Chemistry | en |
thesis.degree.grantor | The University of Texas at Austin | en |
thesis.degree.level | Doctoral | en |
thesis.degree.name | Doctor of Philosophy | en |