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The field of molecular and atomic sensing has seen a vast growth over the last 

few decades.  Yet many advances still remain to be made.  This dissertation takes an in 

depth look at the two major aspects in a molecular sensing or signaling scaffold—namely 

the binding of a target followed by the transduction of an observable signal.  Chapter 1 

will deal with intermolecular binding forces in the form of a case study on electrophilic 

coordination to carbonyl compounds.  Computational studies are performed to determine 

the optimal geometry of an electrophile interacting with a carbon acid to affect the 

greatest enhancement in the acidity at the α-carbon.  We find that partial interaction 

through the π-system of the carbonyl and the resulting enolate affords the greatest acidity 

enhancement.  Chapter 2 then switches to studies on the development of a novel signaling 

method for a molecular signaling assay.  Two novel elements—transition metal catalytic 

signal amplification and peroxyoxalate chemiluminescence—are utilized to generate a 

signaling motif incorporating two new methodologies for signal generation.  The first 

uses of catalytic signal amplification for the detection of small organic analytes and 
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peroxyoxalate chemiluminescence for signal generation in a molecular recognition event 

are described.  Finally, both elements are brought together in Chapter 3, which describes 

a mature ionophoric chemodosimeter with both highly sensitive binding and strong signal 

output.  The use of a squaraine dye as a signaling unit for the detection of palladium(II) 

salts is described in which an aliphatic thiol acts as the theoretical “host” in a covalent 

displacement type assay.  Palladium(II) and other transition metal detection is of 

importance both industrially and environmentally, and the assay described is sensitive to 

levels desired in both arenas. 
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Chapter 1: Carbonyl Coordination Chemistry from a New Angle 

 

1.0 INTRODUCTION 

 

Supramolecular chemistry is defined as the study of intermolecular noncovalent 

interactions.1  The range of science encompassed by this umbrella is undoubtedly huge; 

however, at its core there are truly only a small handful of building blocks that 

supramolecular chemists use to describe the wide array of interacting molecular systems.  

Van der Waals, coulombic, and hydrophobic forces account for all of the intermolecular 

and many of the intramolecular forces from which supramolecular chemistry is derived.  

From self-assembling polymers to molecular recognition to drug delivery dendrimers, 

they are all held together by these same basic forces.  Indeed, these same guidelines 

constrict even biological modes of interaction, and though we describe these forces as the 

fundamental building blocks to all the interactions we call supramolecular, there is a very 

great deal left unknown about them.   

Perhaps the most widely utilized yet least well understood class of noncovalent 

forces is the coulombic forces.  This class can be broken down into a number of subsets 

such as ion pairing, dipole-dipole, cation-π, hydrogen bonding, and metal-ligand 

interactions to name a few.2  While a strict adherence to Coulomb’s law results in a one 

dimensional dependence on distance, for the more complex subsets like dipole-dipole and 

ion dipole interactions, a second or third dimension is inherently added.  This chapter will 

focus on the idea of how these extra degrees of dependence affect not only the strength of 

the dipole interaction but also processes affected by the interaction.   
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In particular, this chapter will delve into the effect that directionality plays in the 

process of coordinatively assisted enolate formation.  The impetus for these studies arises 

from the study of enzymology in which enzymes are capable of facile transformation of 

carbon acids to their corresponding conjugate bases at pH’s several orders of magnitude 

lower than their pKa’s.  A brief discussion of these types of transformations will be 

followed by discussion of computational studies involving a simple system showing the 

effect of directionality of electrophilic coordination on the pKa of a carbon acid.  Finally, 

the design of a molecular scaffold incorporating a directionally constrained hydrogen 

bond along with synthetic efforts towards its completion will be discussed.   

1.1 BACKGROUND 

1.1.1 Enzymatic Enolization 

 
It has been known for quite some time that enzymatic transformations which 

involve the removal of an α-proton from a carbon acid are essential to many metabolic 

pathways.3  To enzymologists and physical organic chemists, these reactions present a 

singularly interesting dilemma.  How does an enzyme, working with a cadre of relatively 

weak acids and bases, facilitate the deprotonation of a carbon acid?  The pKa’s of typical 

α-hydrogens can range from as low as 12 to as high as 30 depending on the type of 

carbon acid.  Yet, enolases, racemases, aldolases, and various other enzyme classes 

readily perform α-carbon proton abstractions using acids and bases with pKas closer to 

the 6-10 range at physiological pH.  Here we will discuss a couple of examples of 

enzymes which undergo proton transfer catalysis of carbon acids and their elucidated 
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mechanisms to gain a better understanding of the methods by which enzymes stabilize 

these transformations. 

1.1.1.2 Triosephosphate Isomerase 

Triosephosphate isomerase or TIM, catalyzes the interconversion of 

dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P) (see below).  

DHAP and G3P are products of the cleavage of fructose 1,6-bisphosphate by fructose 

1,6-bisphosphate aldolase.  The further catabolism of G3P to pyruvate, acetyl-CoA, 

and/or carbon dioxide is a significant source of ATP and NADH.4  The mechanism 

associated with TIM can be superficially labeled a 1,2-proton shift, and the question of 

whether the transformation is a fully concerted process or a stepwise mechanism has been 

thoroughly investigated.5, 6  
 

 

Through a series of tritium labeling experiments, it was determined that the 

enzyme-catalyzed transformation of DHAP to G3P is stereospecific and must occur 

through a semi-stable intermediate that allows for solvent-catalyst proton-triton 

exchange.6  In other words, the mechanism of the 1,2-proton transfer is not concerted but 

goes through a two step process in which a transiently stable intermediate, presumably an 

enediolate, is formed.  A nearly complete free energy reaction coordinate diagram for this 

mechanism was derived through a series of further labeling experiments and represents 

the first free energy reaction coordinate ever developed for an enzyme-catalyzed 

process.5  It is interesting to note that the reaction coordinate shows the process to occur 
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under kinetic control from the two pathways available to the intermediate.  Starting from 

the common intermediate, on the pathway towards DHAP, the limiting step was 

determined to be the proton transfer, whereas going towards G3P, diffusion of the 

product from the active site was limiting.  Hence working under reversible conditions, the 

overall rate limiting step is diffusion of G3P in or out of the active site.  This observation 

has led some to claim that TIM is a perfect enzyme in that it has reached its catalytic 

limit. This observation is sensible because the role of TIM is to ensure that both DHAP 

and G3P are funneled into the glycolysis pathway, and it should naturally select for 

DHAP over G3P.7   
 

A) B)

Figure 1.1 Crystal structure elucidation of the active site TIM binding the transition 
state analogue PGH. A) Computer generated model from the 
crystallographic data reprinted from ref. 8. B) Schematic of the active site 
residues with potential hydrogen bonds as dotted lines with distances in Å 
reprinted from ref. 9. 

As useful as the reaction coordinate diagram was, it was not until the active site 

structure of TIM bound to an intermediate analogue was resolved that actual controversy 
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began.8, 9  It was determined by structural analysis that rather than simply general base 

catalysis from Glu165 (yellow in Figure 1.1A), the transformation actually proceeds via 

general base-general acid catalysis with electrophilic/acid catalytic help from the ε2N of a 

histidine residue, His95 (green in Figure 1.1A).  Crystal structures of TIM and the 

intermediate analogue/inhibitor phosphoglycolo-hydroxamate (PGH) (orange in Figure 

1.1A) were generated which showed distinct interactions between the oxygens of PGH 

and the imidazole of His95.  The crystal structure of the mutant H95Q showed several 

perturbations of the active residue positions, most notably a large shift in the general 

base, Glu165.  Though the mutant was still somewhat catalytically active, it was 

determined that by changing the imidazole to the amide of glutamine, the mechanism of 

the reaction completely changed.8, 10   

There was, and still is, uncertainty however, over how the crucial histidine goes 

about assisting this transformation.  It was shown well before His95 was known to be 

involved, that DHAP becomes polarized upon active site binding in TIM.11  It was 

postulated at the time that substrate binding was accompanied by an electrophilic 

coordination to the carbonyl oxygen which helped in the catalysis.  This coordination was 

reported as a direct extension of the idea of ground-state destabilization put forth by 

Jencks in the mid 1970’s.12  This topic is discussed in greater detail below.  In the case at 

hand, the first question to be answered was in what protonation state is the imidazole at 

the start of the reaction.  The pKa of the His95 imidazolium in the denatured protein has 

been estimated as roughly 6.5 and so it is not unreasonable to think that His95 would be 

fully protonated at the start of the reaction.13  However, preliminary crystallographic 

analysis shows a hydrogen bond possibility between the non-substrate interacting δ1N of 

His95 and the backbone amide NH of Glu97 (Figure 1.1B).9  This hydrogen bond would 
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preclude any true protonation at this site and suggest that the imidazole is a neutral 

catalyst.   

The next possibility is that the neutral imidazole gives up its proton to the 

intermediate to form the neutral enediol and an imidazolate anion.9  The pKa associated 

with this process is usually considered to be close to 14.5, however it has been postulated 

that the position of His95 at the N-terminus of an α-helix provides a great deal of 

shielding, which could significantly perturb its pKas.14, 15  Some impressive 13C and 15N-

NMR studies in the Knowles laboratory revealed that at least one pKa
 of His95 is greatly 

decreased such that it remains neutral in both unliganded and ligand bound TIM over a 

pH range of 4.3-9.5.16  Moreover, the studies showed that in the absence of substrate or 

intermediate analogue, both imidazole nitrogens are free of any hydrogen bonding 

interactions.  This result contrasted sharply with the crystallographic data, which showed 

the possibility for a backbone-δ1N interaction.  In the presence of PGH, the ε2N—

conclusively shown to bare the hydrogen—shows a strong 9 ppm downfield shift, 

indicating the formation of a rather strong hydrogen bond with the ligand.  Perhaps the 

most important study with respect to this discussion, these results illustrate several key 

points.  (1) By virtue of its surrounding environment, the pKas of His95 lie outside the 

working range of TIM, i.e. lower than 4 and higher than 10.  (2) The imidazole is 

completely shielded against coulombic interactions until the substrate is bound.  (3) The 

active site appears to be preferentially oriented to stabilize the enediol(ate) intermediate, 

not the substrate.  (4) If both pKas shift equally, as shown with other substituted 

imidazoles, the 2nd pKa of His95 could well be much more closely matched to the 

proposed pKa of an enediol-type intermediate of this reaction.  This matching could allow 

for rapid proton exchange from the imidazole to the intermediate.16-18  Knowles 
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assessment of this data was that the predominant intermediate in the conversion of DHAP 

to G3P was an enediol facilitated by rapid proton exchange from His95 (Scheme 1.1). 

Scheme 1.1 Proposed enediol route for TIM mechanism 

 

 

Reassessment of kinetic and thermodynamic data of the catalysis in conjunction 

with the structural and spectroscopic data has led to some controversy over the details of 

this intermediate.7, 19  Discussion of this debate will continue below in the context of all 

three case studies. 

1.1.1.2 Mandelate Racemase 

The enzyme mandelate racemase (MR) from Pseudomonas putida catalyzes the 

Mg2+-assisted interconversion of the stereoisomers of mandelate, the sole source of 

carbon and energy for these organisms (Scheme 1.2).  Only the S-enantiomer of 

mandelate can be converted into succinate and acetyl-CoA, which is essential in the 

generation of enzymatic cofactors and ATP.  The ultimate goal of MR is to convert the R-

enantiomer to the useful S-enantiomer.  Under reversible conditions, a true or very close 

to racemic mixture would result due to nearly equal affinity of MR for both enantiomers 

of mandelate.20  However, (S)-mandelate is normally oxidized quickly and removed from 
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the equilibrium.  Due to the apparently simplistic nature of the reaction catalyzed by this 

enzyme, the structure, function, and mechanism of MR have been and are still being 

widely studied.  MR represents the simplest example of an enzyme catalyzed carbon acid 

α-proton abstraction.   

Scheme 1.2 

 

The 1,1-proton transfer mechanism has been studied in great detail, and has been 

shown to be the result of a two-base general base mechanism.21  The active site structure 

was elucidated from crystal structures of inhibitor ((S)-atrolactone) and inactivator 

(alkylation of Lys166 by (R)-α-phenylgylcidate) bound enzyme and was found to contain 

five critical elements for binding and catalysis.22  Figure 1.2 shows a schematic of the 

active site of MR bound to (S)-mandelate extrapolated from the (R)-α-phenylgylcidate 

alkylated crystal structure.  Unlike TIM above and citrate synthase discussed below, MR 

requires the use of a doubly charged metal such as Mg2+, Co2+, Ni2+, or Mn2+.23, 24  The 

native form of MR utilizes Mg2+, which has been found to be essential to substrate and 

analogue binding.  The crystal structures show interaction of the metal with one 

carboxylate oxygen and the α-hydroxy group. 
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Figure 1.2 Active site of MR with (S)-mandelate shows five key elements: Mg2+, 
Lys164, Lys166, His297, and Glu317.  Reprinted from ref. 19 

A hydrogen bond from Lys164 to the same oxygen of the carboxylate bound to 

the metal, also appears to be present.  These two elements, apart from helping the 

substrate to bind, have also been suggested to allow the carboxylate to exist in an 

environment where it more closely resembles a carboxylic acid.7, 19  The pKa of the α-

proton of a carboxylate anion has been proposed to be 29-32 and carboxylic acids 22-

25.25  The reason for an environment in which mandelate more closely resembles 

mandelic acid then is immediately apparent.   

The two general bases mentioned above, have been determined to be Lys166 for 

the S-enantiomer and His297 for the R-enantiomer.  Likewise, solvent protonated Lys166 

acts to protonate the reaction intermediate generated from the R-enantiomer and vice 

versa for His297.  These residues were assigned by site-directed mutagenesis experiments 

using H297N and K166R mutants as well as the previously mentioned (R)-α-

phenylglycidate inactivation.21, 26  Using the H297N mutant, racemase activity was 
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completely turned off, however Lys166 was still able to abstract the α-proton as 

determined by conducting experiments in D2O.  The S-enantiomer, though not racemized, 

showed a steady decrease in the 1H-NMR resonance as H-D exchange occurred.  The R-

enantiomer showed no change. Similar experiments were conducted with the K166R 

mutant.26  It was found that this mutant catalyzed the elimination of bromide from (R)-p-

(bromomethyl)mandelate, but not S.  These experiments demonstrated both the 

assignments of the general base catalysts and that the same residues act as acids to 

transfer a solvent proton to the intermediate.  The H297N experiment also bolstered the 

evidence for a stepwise mechanism with a transiently stable intermediate through the 

incorporation of solvent deuterium into the stereochemically conserved (S)-mandelate. 

The synergistic roles of these two residues cannot be overstated, in that even though they 

have different apparent pKas, they each catalyze the proton transfer at the same or nearly 

the same rate.  The dependence of kcat on pH suggests that, in both directions, there are 

functionalities with pKas of 6.4 and 10, which is reasonable in the R→S direction with 

His297 as the base, but is fairly unusual when Lys acts as the base.3, 21    

The final element of the active site crucial to catalysis is the Glu317 residue.  The 

crystal structure analysis shows a likely hydrogen bond between the carbonyl oxygen of 

the mandelate carboxylate and a neutral glutamic acid carboxylic acid side chain.22  As in 

TIM, there seems to be a significant environmental effect of the enzyme active site which 

perturbs the pKas of several residues.  In this case, however, it is unclear what structural 

bias is present to generate this change in the pKa of Glu317.  It is clear however, that this 

coordination plays a large role in catalysis.27  It has been suggested once again, that 

Glu317 acts as an electrophilic (general acid) catalyst in this system.  This hypothesis is 

supported by experiments with an E317Q mutant.  It was found that the rate of 
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racemization in both directions was reduced by roughly 104-fold and that the enzyme 

could not catalyze the elimination of p-(bromomethyl)mandelate, which requires 

significant lowering of the pKa of the α-proton.  Also the pKa of the protonated 

intermediate (~6.6) and that of Glu317 is likely ~6 which allows for good matching in the 

intermediate structure.28  According the analysis by Knowles from the previous case 

study, this pKa matching should allow for rapid proton exchange between the acid residue 

and the intermediate structure to give the geminal enediol intermediate.  Again, the 

kinetic and thermodynamic data show some discrepancies with this neutralized 

intermediate, and similar solutions have been proposed, which will be discussed below. 

1.1.1.3 Citrate Synthase 

The tricarboxylic acid cycle, or the Krebs cycle, is chiefly responsible for 

converting the acetyl-CoA produced by the oxidation of pyruvate to three equivalents of 

the reductive cofactors NADH and one FADH2.4  These cofactors are then used to 

produce the energy storage molecule ATP.  The first step of the TCA cycle condenses 

acetyl-CoA with oxaloacetate using the enzyme citrate synthase (CS).4  A proposed 

condensation mechanism is shown in Scheme 1.3.  It begins with the deprotonation of the 

α-carbon of acetyl-CoA by Asp375 with concomitant coordination/protonation of the 

carbonyl oxygen by His274. Claisen condensation of the resulting enol(ate) with 

oxaloacetate with general base/general acid (electrophilic) catalysis provided by His274 

and His320 then follows.29, 30  This reaction produces the intermediate citryl-CoA which 

then adds water and loses HSCoA to form citrate.    

The residues involved in the mechanism were elucidated by the high-resolution 

crystal structures of ternary complexes of chicken heart CS, D- or L-malate and acetyl-
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CoA or the intermediate analogue carboxymethyl-CoA.31  The structures showed 

interactions of both acetyl-CoA and carboxymethyl-CoA with both Asp375 and His274 

and the δ1N-H of His274 was determined to be the general acid or electrophilic catalyst 

and the anionic carboxylate of Asp375 acts as the general base.  Figure 1.3 shows the 

binding of the ternary complex of D-malate, acetyl-CoA, and CS with the hydrogen bond 

from the His274 δ1N to the carbonyl of the thioester delineated.  The carboxylate from 

Asp375 is poised on the opposite side of the substrate in close proximity to the methyl 

group.  The specific orientation of this hydrogen bond will become more important later 

in this discussion. 

Scheme 1.3 Proposed route containing neutral intermediates for both general acid 
catalyzed steps 
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Figure 1.3 Active site binding of acetyl-CoA from a ternary complex of D-malate, 
acetyl-CoA, and CS. The hydrogen bond from the δ1N-H to the carbonyl 
oxygen is indicated.  Reprinted from ref. 31. 

As in the case with TIM, compelling evidence that the environmental positioning 

of these residues causes significant altering of their pKas was reported through several 

site-directed mutagenisis studies.29, 32, 33  It was found that any attempt to change the 

active site residues resulted in dramatically increased stability towards thermal 

denaturing.  The implication is that the active site of the wild-type enzyme is specifically 

organized to electronically or sterically destabilize these residues in such a way that it 

generates a shift in their acid/base catalyzing properties.3  In fact, crystallographic 

analysis shows similar environments for His274 and His320 in CS as for His95 of TIM.34  

Both residues are situated near the N-termini of helical portions of the protein, an 

observation used to argue for the decrease in histidine pKas in TIM.  Hence it is 
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reasonable to assume that both His274 and His320 are more than just proton donors and 

help to polarize their respective carbonyls such that deprotonation of acetyl-CoA is more 

feasible.  In fact, it was shown spectroscopically that such polarization of oxaloacetate 

occurs through similar imidazole hydrogen bonding from His320 prior to alkylation in 

the second step of Scheme 1.3.35   

Following the Knowles argument, the environmental perturbation of the histidine 

pKas causes a matching of acidity between the neutral δ1N-H and the neutral enol 

intermediate.16, 18  This pKa matching should result in a rapid proton exchange from the 

imidazole to generate the neutral enol and the imidazolate or the neutral tetrahedral 

intermediate and the imidazolate.  These rapid proton exchanges are indicated by the 

bracketed portions of Scheme 1.3.  As such, in a very analogous fashion to both TIM and 

MR, CS appears to conduct a general acid-general base catalysis for both the formation 

of an enol intermediate, and the nucleophilic addition to oxaloacetate.  Further 

electrophilic catalysis from His274 in the final hydrolytic cleavage has not been 

elucidated. 

1.1.2 Low Barrier Hydrogen Bonds 

A different theory for the specific role of these electrophilic general acid catalysts 

has been postulated by Gerlt and Gassman, as well as others.19, 36-38  This theory involves 

the formation of very short, strong hydrogen bonds between the electrophilic catalysts 

and the respective substrates in the transient intermediates.  These short strong hydrogen 

bonds have also been called low barrier hydrogen bonds or LBHBs, which stems from 

the idea shown in Figure 1.4.  As the heteroatom distance of a hydrogen bond shrinks, the 

potential energy barrier for proton exchange between the heteroatoms also shrinks.39  In 
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the gas phase, crystals, and nonaqueous solvents, LBHBs have been shown to be very 

strong on the order of ≥20 kcal/mol.  Contrast that with regular hydrogen bonding at ≤2 

kcal/mol, and the amount of stabilization to be obtained on the formation of an LBHB is 

considerable.39, 40  The consequence of a low barrier of exchange is the hydrogen bond 

becomes semi-covalent rather than simply electrostatic as in normal hydrogen bonding.  

Several requirements are usually outlined for the possible formation of LBHBs.  (1) The 

distance between the heteroatoms of the species must be less than 2.55Å.  A typical 

hydrogen bond length in water is 2.8Å, which classifies the classic water network as a set 

of weak hydrogen bonds.41  However, even these weak hydrogen bonds are sufficient to 

make water a liquid at room temperature where hydrogen sulfide is a gas.  (2) There must 

be a congruity of the pKas of the donor/accepter pair.  In order for a situation like Figure 

1.4B to occur, the zero point energies for the two heteroatom-H bonds must be similar or 

the energy difference will favor one covalency over the other and a scenario results in 

which the barrier for exchange to the disfavored covalency will be too large.  (3) It is has 

been shown that LBHBs will not form in competitive media such as water or other protic 

solvents.  It has been strongly argued that the formation of LBHBs in enzymatic 

transformations is not feasible due to this last caveat.42  However, calculations have 

shown that ordered water molecules, such as those found in enzyme active sites, will not 

interfere with low barrier hydrogen bonding.19   
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Figure 1.4 A) Normal hydrogen bond A-H-A ≥2.8Å; B) Low barrier hydrogen bond 
2.55Å≥A-H-A≥2.3Å; C) Single well hydrogen bond A-H-A ≤ 2.3Å.  
Reprinted from ref. 36 

Gerlt and Gassman argued for the formation of LBHBs through the use of the 

Marcus formalism, which breaks the activation energy of a reaction ΔG‡ into two parts: 

ΔG‡
int, the intrinsic kinetic barrier, and the contribution from thermodynamic barrier 

ΔGº.43, 44  ΔG‡
int is defined as the kinetic barrier of a reaction when ΔGº = 0.  In order for 

catalysis to occur, an enzyme must ultimately lower the composite ΔG‡ in some fashion.  

The dilemma with proton transfer catalysis such as the case studies above, is that the 

calculated relative ΔG‡ is usually 13-17 kcal/mol based on their kcats.  However, based on 

the pKas of the general bases involved in these reactions (~6-7), calculation of ΔG‡ in 

solution can be as high as 20 kcal/mol greater than the 13-17 kcal/mol seen with the 

enzyme.  And so the question becomes, how does the enzyme achieve this fantastic 

reduction in the activation energy for these carbon acid processes?  Gerlt and Gassman 

proposed that the data provided for such enzymes as those discussed above allows for the 

formation of an intermediate that is neither the anionic enolate (1.1) nor the neutral enol 

(1.3), but rather a structure in between stabilized by a low barrier hydrogen bond from the 

electrophilic catalyst residue (1.2)(Scheme 1.4).19 
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Scheme 1.4 

 

For all three cases studied above, the evidence is favorable for the formation of a 

low barrier hydrogen bond.  (1) The environmental perturbation of the pKas of His95 in 

TIM, Glu317 in MR, and His274 and His320 in CS, put all of these residues in close 

acidity matching with the proposed neutral enol intermediates.  (2) All of these enzymes 

contain only ordered solvent molecules which would not interfere with a LBHB.  (3) The 

neutral enol intermediates proposed are still too unstable to have the lifetimes suggested 

by empirical evidence.25  (4) The distance requirements are well within reach based on 

the crystallographic evidence.  The proposal was further broken down into how the 

interactions of the substrate/intermediate and general acid catalysts reduce both ΔGº and 

ΔG‡
int. 

The reduction in the free energy of the intermediate relies most heavily on the 

formation of the LBHB with the general acid catalyst.  The pKa matching of the would be 

neutral enol intermediates with the perturbed general acid catalysts help to facilitate much 

stronger hydrogen bonds with the intermediates than with the substrates (pKa ~ -4).  This 

observation may also be tied to the previously mentioned theory of ground state 
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destabilization in which the enzyme is designed to destabilize the initial substrate in favor 

of strong binding to the intermediate.12  By generating an intermediate with an 

intermolecular interaction, which can reduce its free energy by up to 20 kcal/mol versus a 

substrate with a stabilization of less than 2 kcal/mol, the enzyme facilitates a large 

reduction in the ΔGº of the reaction.  This lowering of ΔGº results in a lower contribution 

of the free energy of the intermediate to the ΔG‡.  Thus the formation of the LBHB in the 

intermediate can help account for the kcats observed for these enzymes.  The reduction of 

the intrinsic kinetic barrier, ΔG‡
int, was proposed to arise from solvation effects of the 

general acid catalyst based on the Principle of Non-perfect Synchronization (PNS). 

1.1.2.1 Principle of Non-perfect Synchronization 

It is fairly well known that the rate of deprotonation is much slower for carbon 

acids than acids of oxygen, sulfur, or other elements regardless of the pKa.  This 

observation has been attributed to the Principal of Non-perfect Synchronization (PNS), 

which is an extension of the Hammond Postulate.45  PNS effects are seen in reactions in 

which two or more events are occurring during the same mechanistic step, such as in the 

deprotonation of a carbon acid.  PNS is often described by Marcus formalism, which was 

originally based on electron/charge transfer reactions.  To that end, an acid-base reaction 

can be thought of as a transfer of negative charge from the base to the acid.  With a 

normal acid, such as H3O+, there is only one process occurring in the transition state, and 

the reaction can be thought of as completely symmetric.  Carbon acids such as 

acetaldehyde or nitromethane, however, not only have a transfer of charge from the base, 

but also a delocalization of that charge through resonance and a rehybridization of the 
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resulting carbanion.  The result is a situation in which one or more processes lag behind 

another during the reaction coordinate.    

Perhaps the most widely known study of PNS with respect to carbon acids was 

conducted on arylnitroalkanes and has been termed the nitroalkane anomaly.46, 47  

Hammet studies of the deprotonation of various arylnitroalkanes with hydroxide revealed 

that the kinetic ρ(k)-value for deprotonation (1.28) was greater than ρ(K)-value for 

equilibrium (0.83).  This result suggested that electron withdrawing groups have a greater 

stabilizing effect on the transition state than on the ionic product.  Even more perplexing, 

ρ(k) in the reverse direction, i.e. protonation of the nitronate anion, was also found to be 

positive, 0.45, suggesting that electron withdrawing groups speed up protonation as well.  

In other words, the less basic the anion, the faster the proton transfer.  When these values 

are normalized to Brønsted coefficients, the resulting values are highly irregular, α = 

1.54; β = -0.55.  Oddly, β values derived by changing the general base, are in the normal 

range between 0-1.  Since the Brønsted coefficients can be though of as a measure of the 

extent of proton transfer at the transition state, a 1.54 α-value suggests nearly complete 

depronotation at the TS in the forward direction, and the -0.55 β-value implies nearly no 

protonation in the reverse direction.  The ultimate conclusion is that during the 

deprotonation, the transfer of charge/proton happens first while the rehybridization and 

delocalization through resonance lags behind such that most of it occurs on the down 

slope of the reaction coordinate.  What this means, is that there is a localization of charge 

on the carbon, which raises the intrinsic kinetic barrier due to the high unfavorability of 

anionic carbon.  Figure 1.5 gives a qualitative look at the anomaly which holds true for 

nearly all carbon acids in which resonance delocalization occurs. 
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Figure 1.5 The PNS dependence of carbon acid deprotonation leads to the situation in 
which electron withdrawing effects (X > Z) have a greater affect on the 
transition state than the product. 

There have also been studies on the effects of solvation on the extent 

asynchronous proton transfer, which show that in disordered, hydrogen bonding solvents 

such as water and methanol, the PNS effect is much larger than in non-anion stabilizing 

solvents such as DMSO and acetonitrile.45  The reason for this solvent dependence is that 

solvent reorganization in hydrogen bonding solvents again lags behind charge transfer.  

Fortunately, however, this behavior is observed for all acids, not just carbon acids.  The 

lag time is thought to be entropic in nature, due to a greater ΔS‡ for solvent rotational 

changes than for vibrational mode changes.  Hence in a solvent which reorients itself 
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around a charge as compared to a dipole, such as water, there is an added contribution to 

the ΔG‡
int from the entropic cost of solvent reorientation that is not seen in less polar 

media.  Gerlt and Gassman used this resolvation effect to explain how the general acid 

catalysts in these enzyme mechanisms go about lowering the ΔG‡
int of the deprotonation 

event.19  They argued that the electrophilic general acid residue was preoriented to 

“solvate” the growing negative charge on the oxygen at the transition state whether it 

formed an LBHB or not.  The preorientation would eliminate the entropic cost of solvent 

reorientation and remove it from ΔG‡
int.   

It is the opinion of this author, as well as others, that this reasoning is flawed for 

several reasons.42, 48, 49  (1) If PNS is to be argued, the transition state of carbon acid 

deprotonation should show very little formation of negative charge on the oxygen.  In 

other words, the bulk of ΔG‡
int is determined by the fact that an excess of charge is 

growing on the carbon with very little progress towards rehybridization and 

delocalization.  Hence, the entropic cost from solvent orientation lag is an effect related 

to the carbanion formation, not the delocalized charge.  (2) As previously argued by Gerlt 

and Gassman themselves, there is very little disordered solvent present in the active site 

of the enzyme.  Since the ΔS‡ contribution arises from the reorientation of disordered 

solvent, it is unlikely that this effect would be very large in the ordered binding pocket.  

These criticisms, however, are not intended to say that the ultimate proposition that ΔG‡
int

 

is lowered by the general acid is incorrect.  However, the reasoning that the main 

contribution arises from the lessening of an entropic loss seems unlikely.  This discussion 

will be revisited in a later section below. 
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1.1.3 Beyond LBHBs 

The low barrier hydrogen bond theory has had several critics and articles continue 

to be published which claim to show evidence either for or against the formation of 

LBHBs in enzyme mechanisms.50-57   Several other theories have been proposed, either in 

lieu of or complimentary to the formation of LBHBs.  One of these is the theory that the 

metal coordination that is necessary for catalytic action in enzymes such as MR plays a 

much larger role in reducing the overall kinetic barrier by reducing the pKa of the α-

proton.  Enolases, racemases, and aldolases in particular all contain at least one vital 

metal center at their active sites.  Kimura et al. synthesized the 4-bromophenacyl-pendant 

cyclen system 1.4 to evaluate the mechanism of class II aldolases and the role of Zn(II) in 

the enolization step.58  In a very similar fashion to the α-proton transfer enzymes 

discussed above, class II aldolases from bacteria use a Zn2+ cation in their active sites to 

help stabilize the enolic intermediates generated in the reversible stereospecific aldol 

condensation which they catalyze.  It was found that the presence of the Zn(II) in close 

proximity of the carbonyl oxygen in 1.4 was able to reduce the pKa of the α-proton to 

8.41, nearly 10 orders of magnitude. The kinetic barrier towards deprotonation also 

appeared to be reduced with the half-life of H-D exchange reported at 25 minutes at 

298K by 1H-NMR.   
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Studies in the Anslyn group using a series of hosts 1.5-1.7, have shown that shifts 

of nearly 12 pKa units are observed for α-hydrogens of various β-diketones.59  The 

encapsulated host scaffolds, 1.5 and 1.6 showed slightly greater pKa reduction due to 

better solvent exclusion from the interior.  Yet in all cases, coordination to the Cu(II) 

affords a great deal of enolate stabilization. However, these findings do not account for 

enzymes such as TIM and CS in which no metals are present at the active site of enol(ate) 

formation.  Another method of electrophilic stabilization, which may or may not occur 

through a low barrier interaction, has recently been postulated by the Anslyn group. 
 

 

The active site of medium chain acyl-CoA dehydrogenase (MCADH) bound to 

the inhibitor 4-nitrophenyl-acetyl-CoA is shown in Figure 1.6A.  The acyl-CoA 

dehydrogenase class of enzymes catalyze the α,β-dehydrogenation of fatty acid acyl-CoA 

conjugates to the corresponding enoyl-CoA products.  The reaction proceeds via α-proton 

abstraction by Glu376 followed by β-hydride removal by the FAD cofactor.  The crystal 

structure of wild-type medium chain acyl-CoA dehydrogenase shows no metal 

coordination in the active site, yet the substrate, like those in TIM, MR, and CS, must be 

highly activated for deprotonation to occur.60  Looking at the active site in Figure 1.6A, 

there is a distortion in the hydrogen bonding geometry to the carbonyl oxygen from that 

which is generally accepted to be the most stable.  That is, the hydrogen bonds indicated 
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from the backbone amide of Glu376 and the 2′-OH of the flavin are not in the plane of 

the oxygen’s lone pairs.  Likewise, 4-chlorobenzoyl-CoA dehalogenase, whose active site 

is shown in Figure 1.6B, catalyzes the hydrolytic removal of chloride from 4-

chlorobenzoyl-CoA conjugates through a Meisenheimer complex intermediate.61  Though 

the reaction does not involve an α-proton abstraction, the Meisenheimer complex is 

enolic in form (Figure 1.6C)  Notice again that the backbone amide hydrogen bonds are 

not in the plane described by the carbonyl oxygen’s lone pairs.  Looking back at the 

crystal structure of citrate synthase in Figure 1.3, there also appears to be a good deal of 

hydrogen bonding from His274, not toward the lone pairs of the thioester oxygen but 

rather to the π-bond. 
 

A) B) C)

Figure 1.6 A) Model of 4-(nitrophenyl)acetyl-CoA bound to MCADH with π-directed 
hydrogen bonds to the substrate analogue. Reprinted from ref. 60.  B) 
Crystal structure of the active site of 4-Chlorobenzoyl-CoA dehalogenase 
with backbone amide hydrogen bonds to the π-face of the thioester. 
Reprinted from ref. 61.  C) Enolic structure of the Meisenheimer 
intermediate from the mechanism of 4-Chlorobenzoyl-CoA dehalogenase. 

In previous studies, our group has shown that placement of an electrophile in 

coordination with the π-system of a C=O bond can help to reduce the pKa’s of α-

hydrogens by over 2 pKa units more than similar coordination to the carbonyl oxygen 
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lone pair.62, 63  Receptor 1.8 was developed to model enolases and racemases.  The 

crescent shaped receptor utilizes four amide-like hydrogen bond donors in a cavity to 

emulate an enzyme active site.  1.8 was screened for β-diketones and 1,3-

cyclohexanedione was found to be most complementary with an association constant (Ka) 

of 1.35 x 104 M-1.  However, even with the cooperative binding of four hydrogen bonds, 

potentiometric titrations in acetonitrile revealed that 1.8 was only able to lower the pKa of 

the active methylene of 1,3-cyclohexanedione by about 1 unit.64  In a more competitive 

media, such as water, this stabilization would perhaps even be smaller.   
 

 
 

The bicyclic cyclophane 1.9 was used in a later study to test the effect of π-orbital 

hydrogen bond acceptance on pKa shifting.62  Because negative charge delocalization 

occurs mainly through the π-system, it was thought that greater stabilization could be 

gained by hydrogen bonding through the π-system rather than the lone pairs.  In this 

study, 2-acetylcyclopentanone had the greatest complementarity to 1.9 (Ka = 3.06 x 103 

M-1), and was chosen as the model carbon acid.  The binding cavity of 1.9 is small 

enough (7.0 Å high) to constrain the guest to an horizontal orientation, which also 

constrains the hydrogen bonds to π-donation.  It was found that, in acetonitrile, the pKa of 
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2-acetylcyclopentanone in the presence of 1.9 was 22.5, 2.9 units lower than the free 

dione.  These findings constitute a 300% increase in the stabilization of enolate formation 

based largely on the geometry of hydrogen bonding.  Again, while impressive, there are 

some caveats to consider when looking at these findings.  Though the electronics of the 

respective guests are fairly similar, those of the hosts are not.  Cyclophane 1.9 contains 

amide hydrogen bonds, whereas 1.8 contains one set of vinylagous amide hydrogen 

bonds and one set of pyrrolic hydrogen bonds.  The strengths of the inductions, which 

arise from these hydrogen bonds, are inherently different and are difficult to compare 

directly.  There are also two more potential hydrogen bonding sites in 1.9 which will 

statistically add their inductive effects to the guest. 

The previous two studies, while informative, are based solely on the 

thermodynamic advantages of hydrogen bond orientation, yet as seen in the nitroalkane 

anomaly, when it comes to carbon acids, kinetic effects are much more important.  To 

determine the effects of lone pair directed hydrogen bonding on the rate of α-proton 

abstraction, Anslyn and co-workers developed a series of 2-acylphenol probes 1.10 and 

1.11 for Brønsted analysis of the rate of H-D exchange at the active carbon.65  As a 

control, the phenol methyl ether versions of each compound in the 1.10 series were also 

synthesized and subjected to rate studies. 
 

 

The kinetics experiments were conducted via 1H-NMR in both 4:1 CD3OD/D2O 

(pD 5.83) and in acetonitrile.  Both were buffered in a large excess of 
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imidazole/imidazolium chloride.  These conditions ensured rapid and complete exchange 

of the phenolic proton for deuterium such that isotope effects could be dismissed.  Rate 

constant versus pD analysis showed a leveling at pD~7; rate constant versus imidazole 

concentration increased linearly with increasing base.  Both results are indicative of the 

desired general base catalysis.  For Brønsted analysis, the pKas of the phenols were 

determined in both the methanol/water mixture (potentiometrically) and in acetonitrile 

(by comparison with known indicators). The Brønsted plots of series 1.10 and the 

methyl-ether analogues showed rather interesting results.  The relative rate enhancement 

over the entire series was shown to be less than a single log unit, which is quite low for 

an intramolecular hydrogen bond.66  Also, the α-values in water determined from the 

slopes of the 1.10 series and the methyl ether controls are only 0.24 and 0.15 

respectively.  The difference of these two values gives a measure of the effect of 

hydrogen bond strength on the rate constant and only amounts to 0.09 in water.  

Strikingly, though the individual compounds showed rate enhancement, the same 

difference value arises for analysis in acetonitrile, in which one would by inspection 

expect larger contributions from the hydrogen bond in the stabilization of the enol(ate) 

intermediate.  The 1.11 series was used to determine if lowering the pKa of the enol 

intermediate would result in a greater effect due to better pKa matching for possible 

LBHB formation.  The results were similarly unimpressive, giving an α-value of 0.24 in 

acetonitrile based on pKas determined in water.   

These results were attributed once again to the Principle of Non-perfect 

Synchronization.  Since there is very little negative charge developing on the carbonyl 

oxygen at the transition state of deprotonation, the overall strength of a hydrogen bond 

attempting to reduce the activation barrier makes very little difference.  Though the 
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results of this study are based on intramolecular hydrogen bonds, some extrapolation to 

the intermolecular interactions found in enzymes can be made.  The chief observation 

being that the formation of a low barrier hydrogen bond to the lone pair electrons of the 

substrate carbonyl oxygen would have very little effect on ΔG‡.  However, it is the 

ultimate purpose of the research presented below to examine whether placing a strong 

electrophilic coordination—whether it be a metal, LBHB, or normal hydrogen bond—

directed toward the π-electron density could have a greater effect, not only on the 

thermodynamic stability of the resulting enol(ate), but also on the kinetics by perturbing 

the effects of the asynchronous nature of the transformation. 

1.2 EXPERIMENTAL DESIGN 

As mentioned above, Jencks proposed in the mid-70’s the idea of ground-state 

destabilization in enzyme binding and catalysis.12  In this case, the term “ground-state” 

refers to the initial form of the substrate rather than an electronic state of the molecule.  

The general premise is that an enzyme, or any catalyst for that matter, is primarily 

designed to lower the energy associated with ΔG‡ of the reaction it carries out.  To do 

that, it has been postulated and empirically determined, that the enzyme active site should 

have a much higher affinity for either the transition state or high energy intermediate than 

the “ground-state” substrate.  Mandelate racemase, for instance, has been shown to bind 

its mandelate substrates with Kas on the order of 103, yet determination of the Ka of MR 

to the common transition state of R and S-mandelate has been determined at close to 

1019.67, 68  Furthermore, the transition state binding thermodynamics have been broken 

down to show both favorable enthalpy and favorable entropy changes for the 

racemization reaction with enzyme assistance with respect to the non-enzymatic 
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reaction.67  The overall binding enhancement was determined to be 26 kcal/mol for the 

transition state of the MR-mandelate complex.68  This number will become significant in 

light of the findings described in the following sections.   

On a fundamental level, the concept of ground-state destabilization can be 

described through qualitative analysis of the thermodynamic cycle of an enzyme 

catalyzed transformation shown in Figure 1.7.  In this case, let us consider the enzyme 

assisted Brønsted acid dissociation of a carbon acid.  In essence, there are two routes by 

which the reaction could proceed.  The first, denoted by the K1-K2 route, involves 

deprotonation of the substrate before it binds to the enzyme or host.  The second path 

goes through the host/guest binding event before deprotonation.  Because the reactants 

and products of both routes are identical, the energies of both pathways must also be 

equivalent as shown in the first equation.  Corollaries to the kinetics can also be drawn if 

the equilibrium constants are assumed to be in agreement with the Michaelis constant KM.  

For a carbon acid, K1 is inherently small and the reaction is slow.  Since 

K1=[S-][H+]/[SH], there is no thermodynamic or kinetic dependence on the enzyme and 

the value can be assumed to be constant for the same carbon acid.  All of the other 

equilibria are dependent on the enzyme, and as such, changing the enzyme in any way 

will affect all of them.  K4 and K2 describe binding constants whereas K3 is the actual 

measure of the catalyzed deprotonation.  The idea of ground state destabilization says that 

K4 should be small while K2 is large.  In other words, the binding of the enzyme to the 

substrate should be weak—small K4—compared to the binding of the transition state or, 

in this case, the intermediate—large K2.  Hence, the ratio of K4/K2 on the right side of the 

second equation in Figure 1.7 should be less than 1.  Thus, as this ratio becomes smaller 
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and smaller with increased affinity for the intermediate over the substrate, K3, the rate or 

equilibrium of deprotonation, must increase in order to maintain a constant K1. 
 

 

Figure 1.7 Thermodynamic cycle of enzyme-assisted acid dissociation. 

It is well established that, for a neutral carbonyl, electrophilic coordination to the 

lone pair orbitals is a stabilizing effect.2  However, in light of the evidence presented 

above, lone pair coordination, at least from hydrogen bonding, has minimal effect on both 

the kinetics and thermodynamics of carbon acid deprotonation.62, 64, 65  It should follow 

then, that the traditional mode of hydrogen bonding and other semi-weak electrophilic 

coordination to the oxygen lone pairs does not fulfill this notion of ground state 

destabilization as it increases the affinity for the neutral substrate (K4) and has little effect 

on the binding of the transition state/intermediate (K2).  The results from the π-directed 

hydrogen bonding study are much more promising as they show better thermodynamic 

enhancement of the enol(ate) forming event.62, 63  From a qualitative standpoint, this 

enhanced pKa shift arises from two effects: (1) a destabilization of the neutral carbon acid 

through an induction of electron density away from a bonding orbital, hence reducing the 
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effective bond order and raising the energy of the bond, (2) stabilization of the resulting 

enolate by electrophilic induction of the π-delocalized negative charge.   In the case of a 

proton transfer from a general acid to form the enol, the second effect is altered such that 

the best electrons to use in the new O-H bond are those from the breaking π-orbital due to 

energy matching.  Following Jencks’ logic then, π-bond coordination could well behoove 

an enzyme attempting to destabilize the initial carbon acid in favor of strong binding to 

an enolic transition state or intermediate. To semi-quantitatively assess the extent of this 

effect, a series of computational studies was performed on a simple electrophile 

coordinating to a simple carbon acid.69 

1.3 THE LITHIUM-ACETALDEHYDE MODEL 

In effect, we chose the simplest non-proton electrophile, Li+, and the simplest 

carbon acid, acetaldehyde.  A lithium cation was chosen as the model electrophile instead 

of a proton in order to ensure a coordinative bond distance from the carbonyl oxygen as 

opposed to the covalent bond that a proton would likely generate.    Acetaldehyde was 

chosen to keep the CPU cost to a minimum while still allowing for α-proton abstraction.  

With these two components, two potential energy surfaces were generated at an MP2 

level with a 6-31G* basis set using the ACES II quantum chemical program package 

developed by Stanton and collaborators.70  The surfaces were generated by manually 

varying the Li-O-C bond angle against the Li-O-C-C dihedral angle in 5 degree 

increments as shown in Figure 1.8.   
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Figure 1.8 Surfaces were obtained by iteration in 5 degree increments along both the 
Li-O-C bond angle (left) from 45°-180° and the Li-O-C-C dihedral angle 
(right) from 0°-180°. 

Two surfaces were generated as composites of single-point energies for each 

combination of bond and dihedral angle listed in Figure 1.8, one for neutral acetaldehyde 

and the other for its enolate.  Potential energy surfaces were compiled as opposed to fully 

optimized single-point energies because the goal was to predict the best placement of the 

electrophile to increase the acidity of a carbon acid.  Such a geometry may not be a global 

energy minimum for either individual complex.  Figure 1.9A shows the surface generated 

for the lithium cation coordinating to neutral acetaldehyde.  As was expected, the global 

energy minimum geometry, Figure 1.9B, shows coordination of the lithium solely to the 

longitudinal lone pair of the carbonyl oxygen.  Note, that for the neutral carbon acid, any 

coordination which deviates from the linear geometry predicted, results in a 

destabilization of the molecule.  This observation is congruous with the theory of ground 

state destabilization in the enzymes discussed above for which there is evidence of π-

directed hydrogen bonding to the substrate. 
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A) B)

Figure 1.9 A) Li⊕ dihedral angle vs. Li-O-C bond angle enthalpy (kcal/mol) contour 
plot for the Li⊕-acetaldehyde complex generated at the MP2 level with a 6-
31G* basis set, and B) a graphical representation of the minimum energy 
structure. 

A) B)

Figure 1.10 A) Li⊕-dihedral angle vs. Li-O-C bond angle enthalpy (kcal/mol) contour 
plot for the Li⊕-enolate complex generated at the MP2 level with a 6-31G* 
basis set.  The global minimum structure (right) is shown with a dihedral 
angle of 45° and a Li-O-C bond angle of 85°. 
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Interestingly, the global energy minimum found from the enolate surface is quite 

different.  In this case, the minimum geometry occurs at a Li-O-C bond angle of 85° and 

a Li-O-C-C dihedral angle of 45° (Figure 1.10).  The first aspect to notice is the out-of-

plane dihedral angle. This geometry suggests a significant amount of π-system 

coordination in the enolate system.  The second important facet of this model is that 

based on rudimentary resonance analysis, the two centers of negative charge in an enolate 

reside at the oxygen and the α-carbon.  Hence, it is reasonable to assume this energy 

minimum arises due to coordination of the lithium ion to both the oxygen and the α-

carbon through the delocalized π-electrons.   

These two surfaces alone say very little about which geometry is best to generate 

a substantive shift in the acid dissociation constant, Ka.  As both of these surfaces were 

generated for gas phase systems, together they give an analysis of the relative gas phase 

acidity of this complex for all geometries, as well as the best geometry for enhancing the 

acidity of acetaldehyde by lithium coordination.  The contour plot shown in Figure 1.11 

arises from the difference of the enthalpies of lithium coordination to acetaldehyde and 

its corresponding enolate (see Figures 1.9 and 1.10).  This contour represents the energy 

gained or lost at each single-point geometry upon enolate formation.  Figure 1.11 does 

not technically represent a potential energy surface as with the two previous diagrams but 

should rather be thought of as a measure of the acid dissociation potential.  Whereas the 

lowest energy conformation derived by inspection of the enolate surface resides at a bond 

angle of 85°, the gas phase acidity analysis reveals a new minimum occurring at 70°, 

while the dihedral angle remains 45° (Figure 1.12).  The lithium now resides nearly 

perfectly anti-periplanar to the α-hydrogen that will be deprotonated to create the enolate.  

Hence, backside electrophilic coordination to the orbital of the cleaving C-H bond as well 
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as π-system coordination to the carbonyl creates a more labile proton.  Such a geometry 

does not exist as a global energy minimum for either individual complex. 
 

 

Figure 1.11 Contour plot of the gas phase acidity (kcal/mol) of the acetaldehyde-Li+ 
complex derived as the difference of the above acetaldehyde and enolate 
surfaces. 

 

Figure 1.12 (top) Front and side views of the optimum geometry for lithium 
coordination to enhance the acidity of acetaldehyde. (bottom) Analogous 
views of the enolate complex. 
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The calculated configuration for best enhancing acidity can be contrasted with the 

normally accepted geometry for enhancing acidity—coordination to the carbonyl lone 

pair.  The acidity enhancement of the minimum depicted in Figure 1.12 versus lone pair 

coordination is the energy difference of the two single point enthalpies of the respective 

geometries.  This difference amounts to 28.9 kcal/mol.  At 0 K, this value results in a 

roughly 20 unit greater shift in pKa with π-directed coordination of a Li cation as opposed 

to coordination to the lone pair.  Previously, work conducted by Squires using BF3-

carbonyl complexes showed roughly 30-40% attenuation of the extent of the acidity 

enhancement garnered from the electrophilic coordination upon solvation in water.71  

Though this work was conducted on the absolute enhancement from coordination, it is 

reasonable to assume there would also be some extent of attenuation in the relative 

stabilization associated with the different geometries studied in this research.  However, 

in an enzyme active site as discussed previously, the presence of solvent is generally in a 

highly ordered state with respect to bulk solvent.  As such, the attenuation seen in bulk 

solvent should be higher than in the active site.  Regardless of the actual value of the 

attenuation, this enhancement provides a clear understanding of the optimal geometry of 

coordination for maximum augmentation of acidity. 

In addition, the discovery of the maximum acidity enhancement occurring at a 

coordination geometry in which the electrophile is heavily coordinated to the α-carbon is 

of note in light of the Principle of Non-Perfect Synchronization.  The effect of this 

coordination appears to be two-fold.  First, a destabilizing interaction through backside 

C-H coordination increases the lability of the proton.  Notice that the C-H bond in 

question is elongated indicating a weaker bond.  Second, since the main contribution to 

the kinetic barrier of carbon acid deprotonation is the build up of negative charge on the 
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α-carbon resultant of a lag time in rehybridization and delocalization to the oxygen, 

coordination of an electrophile directly towards that building charge would help to 

significantly reduce ΔG‡
int which was suggested to be necessary by Gerlt and Gassman.19   

Since reaction coordinate and transition state modeling were not conducted, this 

analysis of the kinetic effects of this study is purely speculation.  However, it is fair to 

say that the enzymes for which this type of interaction has been noted above take 

advantage of this ground state destabilization and the acidity enhancement which is 

garnered from π-directed electrophilic coordination.   As discussed about, the reasoning 

put forth by Gerlt and Gassman for the reduction of ΔG‡
int via entropic gain through 

preorganized coordination to the carbonyl oxygen does not strictly follow the Principle of 

Non-Perfect Synchronization which they exploit.  As there is very little charge in the 

transition state on the oxygen, a preorganized coordination to the developing charge on 

the carbon or conformational change of the active site to facilitate this coordination 

would better fit a model for the reduction of ΔG‡
int.  From the study described above on 

the thermodynamics of MR transition state/intermediate binding and our findings, the 26 

kcal/mol reduction in ΔG‡ could be achieved almost entirely by coordination to the π-

system of the carboxylate of mandelate.  The addition further coordination from the 

essential Mg2+ and the other stabilizing residues would more than allow this type of 

directed general acid catalysis to achieve the stabilization required to fit the observed 

kinetics and thermodynamics. 

1.4 DESIGN AND SYNTHESIS OF SCAFFOLD 1.13 

In an effort to test the kinetic implications of these results with tangible 

experiments, we designed a molecular scaffold which would rigidly pre-orient an 
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intramolecular hydrogen bond towards the π-system of a carbon acid.  Though it would 

not be feasible to generate the type of interactions described by the computational 

modeling, some constraint of the coordination through the π-bond should be possible.  

Ultimately, the scaffold chosen was based off of reports of several metacyclophanes 

similar to 1.12 synthesized by Cao et al.72    
 

 

Cyclophane 1.13 incorporates all of the aspects desired for kinetic studies on the 

effect of π-directed hydrogen bonding on carbon acid deprotonation.  Crystal structures 

of 1.12 show that upon appending the cyclophane arms, the two phenyls will reorient 

from a coplanar geometry to an orthogonal one.72  Geometry minimizations using 

MacSpartan also indicate that in 1.13, the phenyl rings will also be perpendicular to each 

other, constraining the phenolic hydrogen bond donor to point directly towards the π-

system of the ketone acceptor.  Based on the modeling, our original plan was to 

incorporate a pyridine moiety instead of the phenol in 1.13.  However, upon further 

review of the models, we found that the phenolic system gave interatomic distances 

between the heteroatoms of the hydrogen bond donor and acceptor which were closer to 

the requirements for LBHB formation.  According to the models, the interatomic distance 

between the two oxygens is 2.65 Å for both the iterations of 1.13 (X = O or S).  

Similarly, using a pyridine moiety would have required a very strongly electron donating 
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group at the R position in order to achieve the proper pKa matching required if LBHB 

effects were to be observed.   Modeling of the enolate generated by deprotonation at the 

α-carbon also gives a suitable geometry and the difference between the minimization 

energies calculated by molecular mechanics is roughly 35 kcal/mol.  Since molecular 

mechanics does not take hydrogen bond stabilization, much less from LBHB or π-

directed hydrogen bonding, this value was not distressing and matches well with 

calculated and experimental energies of typical enol(ate) formations.18, 25  The structure 

of 1.13 is also convenient because its synthesis can be readily modified to give the free 

ketone 1.14, which allows for lone pair hydrogen bonding studies as a control. 

The synthesis of 1.13 was to be achieved by modifying the synthesis reported by 

Cao and coworkers as shown in Schemes 1 and 2.72  Since the major synthetic steps 

consisted of two Sonogashira-type couplings, it was possible to start with either the 

phenol or the xylyl moieties.  Our first route began with the anisole derivative shown in 

Scheme 1.5.  2-Iodoanisole and trimethylsilylacetylene were coupled under Sonogashira 

conditions with tetrakis(triphenylphosphine)palladium and copper(I)iodide in 

triethylamine at room temperature overnight to give trimethylsilyl-acetylene 1.15 in 65% 

yield.  The trimethylsilyl (TMS) group is removed with cesium carbonate in dry methanol 

to yield 70% of acetylene 1.16, which undergoes another palladium-catalyzed coupling 

with 2-iodo-m-xylene under the same conditions to give a disappointing 12% of diphenyl 

acetylene 1.17.   
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Scheme 1.5 

 

Because of the instability of 2-iodo-m-xylene, the bromoxylene was used instead.  

Unfortunately, under these Sonogashira conditions, 2-bromo-m-xylene gave no reaction.  

However, Detty et al. reported coupling 2-bromo-m-xylene with trimethylsilylacetylene 

in moderate yields, so we rearranged our synthesis to incorporate their procedure 

(Scheme 1.6).73  2-Bromo-m-xylene and trimethylsilylacetylene undergo a Sonogashira 

coupling with bis(triphenylphosphine)palladium(II)chloride, copper(I)iodide, and 

triphenylphosphine in piperidine at reflux for 6 hours to give TMS-phenylacetylene 1.18 

in 60% yield.  The trimethylsilyl protecting group is then cleaved with cesium carbonate 

in methanol over 15 min. to give acetylene 1.19 in 78% yield.  Under the same 

Sonogashira conditions (piperidine, Δx), 1.19 is coupled to 2-iodoanisole to give 1.17 in 

87% yield.  The methoxy group is then deprotected with boron tribromide in 

dichloromethane at -78 ºC warming to ambient temperature overnight to give phenol 1.20 
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in 71% yield.  When 1.20 was subjected to NBS radical bromination conditions, the 1H-

NMR of the products showed no allylic bromination products.   

Scheme 1.6 

 

The low resolution mass spectrum, however, gave a 100% peak with the typical 

bromine isotope pattern at 2 m/z units higher than 1.21.  The 1H-NMR and 13C-NMR 

were inconclusive but the low resolution mass spectral data suggested that the major 

product was most likely 1.22 or a the tetrabrominated analogue.*  Both light and heat 

initiation procedures gave only 1.22.  When 1.18 was also subjected to the bromination 

conditions, similar results were obtained.  This result sheds some doubt to the validity of 

                                                 
* LRMS-CI+ m/z 381 (100%, M+) which is two mass units higher than bromination at the two allyl positions would 
suggest; evidence for 1,1,2,2-tetrabromo-product: 541 (21.1%, M+), 461 (26.8%, M+-Br) 
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the findings of Cao et al. whose heat initiated conditions we used.72  Out of concern that 

the free phenolic group might have been playing a role in the side reaction, phenol 1.20 

was MOM-protected by reaction with MOMCl in dichloromethane in the presence of 

Hünig’s base to give MOM ether 1.23 in 87% yield.  Unfortunately, protection of the 

phenol did not help in functionalizing the xylyl positions.   

Scheme 1.7 

 

MOM ether 1.23 was subjected to the same bromination conditions as 1.20 with 

no better results (Scheme 1.7).  In an attempt to bypass the halogenation of the alkynyl 

substrate, 1.23 underwent benzylic oxidation in water or toluene with selenium dioxide 

and tert-butylhydroperoxide, however, neither conditions led to diol 1.25.  We were thus 

forced to return to the beginning of our synthesis and devise new routes (Scheme 1.8).   

Under light-initiated NBS bromination conditions, 2-bromo-m-xylene was 

bis(brominated) to give the tris(bromo)xylene 1.26 in 61% yield.  Xylene 1.26 was 

subjected to the conditions above for Sonogashira coupling with trimethylsilylacetylene 

in an attempt to produce TMS-acetylene 1.27, however, the desired product was not 

observed.  It is probable that Pd(0) more readily inserts into the allylic C-Br than the 
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aromatic C-Br bond.  The benzyl bromides were then subjected to substitution conditions 

to give both the bis-alcohol 1.28 and the bis-thiol 1.29 in 89% and 76% respectively.     

Scheme 1.8 

 

Unfortunately further progress proved difficult from this point.  Attempts to attach 

the cyclophane portion of scaffold 1.13 at this point proved unsuccessful and all attempts 

at Sonogashira couplings were fruitless due to steric or electronic hinderances.  

Ultimately, this synthesis was tabled, though it is our opinion that a similar scaffold 

should be pursued in the future in order to further develop our understanding of the 

kinetic effects of this mode of electrophilic coordination. 
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1.5 CONCLUSIONS 

We began this chapter with a series of case studies on three different classes of 

enzymes which all appear to have similar modes of operation.  We looked at triose 

phosphate isomerase, mandelate racemase, and citrate synthase, which are all essential to 

metabolism and all catalyze the abstraction of an α-proton of a carbon acid substrate.  

Studies on the mechanisms of these three enzymes revealed curious similarities in there 

catalytic mechanisms.  All three showed that a general acid or electrophilic residue was 

essential for efficient turnover.  Several of the main theories on how and why these 

general acid catalysts are so important in an apparent general base mechanism were 

given.  The prominent theory discussed was that the electrophilic catalysts aid in the 

stabilization of the transition state and intermediate structures through the formation of 

very short, strong hydrogen bonds called low barrier hydrogen bonds.  Whether or not 

these hydrogen bonds play a significant role is neither supported nor refuted, however, 

the use of the Principle of Non-Perfect Synchronization was used to dispute the reasoning 

put forth by Gerlt and Gassman—the main proponents of the LBHB theory—that the 

electrophilic residues help to reduce the intrinsic activation barrier for deprotonation 

through a decrease in negative entropy accumulation at the transition state.  

Computational studies on the effect of π-directed electrophilic coordination described in 

this chapter afford a different perspective on how an enzyme might thermodynamically 

stabilize α-proton abstraction with possible implications towards the kinetic enhancement 

effects.  It was shown that a coordination which took advantage of the growing negative 

charge on the α-carbon as well as that on the carbonyl oxygen could offer a much greater 

acidity enhancement, and the models suggest that such coordination could help reduce 

the effective activation energy by weakening the cleaving C-H bond and stabilizing the 
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localized carbanionic transition state though this is speculative.  Synthetic attempts to 

generate a scaffold containing a constrained, intramolecular, π-directed hydrogen bond 

were discussed in the hopes of creating a kinetic model to validate this speculation.  

However, this synthesis proved unsuccessful, and further evidence of the kinetic effects 

of π-directed electrophilic coordination needs to be accomplished. 

1.6 EXPERIMENTAL SECTION 

1.6.1 Computational Specifics 

All calculations were performed using the ACES II software noted above.  MP2 

level calculations using a 6-31G* basis set were preformed on an acetaldehyde-Li+ model 

system and the corresponding enolate system.  The Li-O-Ca bond angle was constrained 

to 5º intervals between 45º and 180º against constrained dihedral angles between the 

plane described by O-Ca-Cb and the Li+ at 5º intervals between 0º and 180º.  All other 

parameters in the z-matrix were allowed to optimize.  SCF energies were obtained from 

the individual single-point output files and plotted to give the energy surfaces shown in 

Figures 1.9 and 1.10 above.  The global minimum for the neutral acetaldehyde system 

(total charge = +1) lay at 180º for both the Li-O-Ca bond angle and the dihedral angle.  

The global minimum for the enolate system (total charge = 0) lay at an 85º Li-O-Ca bond 

angle and a 45º dihedral angle.  The surface representing the gas phase acidity of the 

system was generated from a blanket subtraction of the enolate surface (Figure 1.10A) 

from the neutral surface (Figure 1.9A).  This subtraction generated a set of positive 

enthalpies, which were plotted as a contour surface (Figure 1.11).  Sample z-matrices for 

the acetaldehyde-Li+ calculations (Figure 1.13A) and the enolate-Li+ calculations (Figure 

1.13B are shown below. 
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A) LI 

O 1 R1* 
C 2 R2* 1 A 
C 3 R4* 2 A2* 1 T 
H 3 R3* 2 A3* 1 MT* 
H 4 R5* 3 A4* 2 T2* 
H 4 R6* 3 A5* 2 T3* 
H 4 R7* 3 A6* 2 T4* 
 
R1=2.1 
R2=1.3 
R3=1.1 
R4=1.5 
R5=1.1 
R6=1.1 
R7=1.1 
A=90 
A2=120 
A3=120 
A4=109.5 
A5=109.5  
A6=109.5 
T=5 
MT=-90 
T2=0 
T3=120 
T4=-120 
 

*ACES2(BASIS=6-31G*,CALC=MBPT[2],CHARGE=1,SCF_MAXCYC=500,MEMORY=100000
00) 

B) LI 
O 1 R1* 
C 2 R2* 1 A 
C 3 R4* 2 A2* 1 T 
H 3 R3* 2 A3* 1 MT* 
H 4 R5* 3 A4* 2 T2* 
H 4 R6* 3 A5* 5 T3* 
 
R1=2.1 
R2=1.3 
R3=1.1 
R4=1.5 
R5=1.1 
R6=1.1 
A=90 
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A2=120 
A3=120 
A4=120 
A5=120  
T=5 
MT=-90 
T2=0 
T3=0 
 
*ACES2(BASIS=6-31G*,CALC=MBPT[2] ,SCF_MAXCYC=400,MEMORY=10000000) 

Figure 1.13 Z-Matrix inputs for A) the acetaldehyde-Li+ complex and B) the enolate-Li+ 
complex.  Parameter A is the Li-O-Ca bond angle and parameter T is the Li-
O-Ca-Cb dihedral angle All starred parameters were fully optimized with 
each run.  In the command line, BASIS sets the basis set for the calculation, 
CALC sets the calculation type/level, CHARGE sets the overall charge of 
the system, SCF_MAXCYC sets the limit on the number of self consistent 
field optimization cycles allowed before the job automatically cancels, and 
MEMORY sets the max number of memory words to be exploited for the 
calculation. 

Table 1.1 below give a list of the single-point optimization energies calculated 

using the above method.  The energies are given in Hartrees with the bond angle on the 

horizontal axis and the dihedral angle on the vertical.  For the generation of the individual 

surfaces, these energies were subtracted from the value of uncoordinated acetaldehyde 

(-153.348 H) or its enolate (-152.724 H) and converted to kcal/mol by the conversion 

factor 627.51 kcal·mol-1H-1.  For the gas phase acidity analysis, the energies were 

differenced directly without factoring in the unliganded species.   
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1.6.2 General Synthesis 

All reagents were obtained from Aldrich unless otherwise noted and were used 

without further purification.  N-Bromosuccinimide was recrystallized from water prior to 

use. Piperidine was distilled from potassium hydroxide and triethylamine and 

dichloromethane were distilled from calcium hydride when noted.  Analytical TLC was 

performed on precoated silica gel 60 F-254 plates.  Preparative flash chromatography was 

performed on EM Science silica gel 60 with 230-400 mesh.  Flash chromatography 

solvents are given in volume equivalents unless otherwise stated.  1H-NMR spectral data 

were obtained from a Varian Unity Plus 400 MHz spectrometer and are reported in parts 

per million (ppm) downfield from TMS.  13C-NMR were run at 75 MHz with C-H 

decoupling on a Varian Unity Plus spectrometer and reported in ppm referenced to the 

center of the chloroform triplet (77.0). A Finnigan VG analytical ZAB2-E spectrometer 

was used to obtain high-resolution mass spectra.  Low resolution mass spectra were 

obtained on a Finnigan MAT TSQ700 spectrometer.  All samples were placed under high 

vacuum for at least 12 hours before spectra were taken.   

 

(2-Methoxy-phenylethynyl)-trimethylsilane (1.15): To a well stirred suspension of 2-

iodoanisole (45.0g, 0.2 mol, 100 mol%), palladium(tetrakis)triphenylphosphine (2.3g, 

0.002 mol, 1 mol%), and copper(I)iodide (0.4g, 0.002 mol, 1 mol%) in 200mL 

triethylamine in flame dried, argon flushed glassware was added trimethylsilylacetylene 

(37.5g, 0.4 mol 130 mol %).  The solution was refluxed overnight after which time the 

solvent was evaporated under reduced pressure.  The residue was chromatographed on 

silica gel with hexanes/dichloromethane (2:1) as eluant to yield 23.8g (0.12 mol, 60%) 
1H-NMR (CDCl3): δ 7.44 (d, J = 3.2, 1H, Ar-H), 7.23 (t, J = 7.8, 1H, Ar-H), 6.86 (t, J = 
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7.4, 1H, Ar-H), 6.79 (d, J = 8.0, 1H, Ar-H), 3.79 (s, 3H, OCH3), 0.28 (s, 9H, Si-CH3). 
13C-NMR (CDCl3): δ 160.0 (Ar-H, C-OMe), 133.8, 129.8, 120.1, 112.0 (Ar-C), 110.3 

(Ar-C, C-C≡C), 101.2 (Ph-C≡C), 97.4 (Ph-C≡C-Si), 55.4 (OCH3), -0.1 (Si-CH3). LRMS-

CI+ m/z 205 (100%, M+). HRMS-CI+ m/z calcd for C12H17OSi: 205.104; obsd: 205.105. 

 

General Procedure for Trimethyl Silyl Deprotection: Using flame dried glassware 

purged with argon, cesium carbonate (2 eq.) was added to a stirred solution of the TMS 

protected alkyne in dry methanol.  The reaction was complete when the cloudy, opaque 

suspension became translucent.  The reaction mixture was partitioned between 

dichloromethane and water.  The aqueous layer was extracted again with 

dichloromethane.  The combined organic layers were washed sequentially with saturated 

aqueous ammonium chloride, water, and brine.  The organic layer was dried (Na2SO4) 

and the solvent was removed by rotary evaporation to yield 70-80% of the terminal 

alkyne. 

 

1-Ethynyl-2-methoxybenzene (1.16): Yield: 72%.  1H-NMR (CDCl3): δ 7.44 (m, 

1H, Ar-H), 7.30 (m, 1H, Ar-H), 6.90 (m, 1H, Ar-H), 6.86 (d, J = 7.6, 1H, Ar-H), 3.88 (s, 

6H, Ph(CH3)2), 3.29 (s, 1H, sp-CH).  13C-NMR (CDCl3): δ 160.5 (Ar-C, C-OMe), 134.1, 

130.3, 120.4, 111.1 (Ar-C), 110.5 (Ar-C, C-C≡C), 81.1 (Ph-C≡C), 80.0 (Ph-C≡C), 55.7 

(O-CH3).  LRMS-CI+ m/z 132 (100%, M+).  HRMS-CI+ m/z calcd for C9H7O: 131.050; 

obsd: 131.050. 

  

2-Ethynyl-1,3-dimethylbenzene (1.19): Yield: 78% 1H-NMR (CDCl3): δ 7.12 (m, 

1H, Ar-H), 7.03 (d, J = 7.6, 2H, Ar-H), 3.50 (s, 1H, sp-CH), 2.44 (s, 6H, Ph-CH3). 13C-
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NMR (CDCl3): δ 140.9 (Ar-C, C-CH3), 128.1 (Ar-C), 126.6 (Ar-C), 121.9 (Ar-C, C-

C≡C), 85.3 (Ph-C≡C), 81.1 (Ph-C≡C), 21.0 (Ph-CH3).  LRMS-CI+ m/z 131 (100%, M+). 

HRMS-CI+ m/z calcd for C10H11: 131.086; obsd: 131.086.  

 

2-(2-Methoxyphenylethynyl)-1,3-dimethylbenzene (1.17): 

From 1.16: Using flame dried glassware purged with N2, 1.16 (2.1g, 0.016 mol, 

100 mol%) was added to a well stirred suspension of 2-iodo-m-xylene (4.6g, 0.02 mol, 

130 mol%) obtained from Fluorochem, palladium(tetrakis)triphenylphosphine (216mg, 

0.2 mmol, 1 mol%), and copper(I)iodide (54mg, 0.3 mmol, 1.5 mol%) in 50mL 

triethylamine.  The solution was refluxed overnight.  After 16 hours, the solvent was 

removed via rotary evaporation, and the residue was chromatographed on silica gel with 

hexanes/dichloromethane (2:1) as eluant to yield 0.47g (2 mmol, 12%) of 1.17. Spectral 

data below. 

 

From 1.19: Using flame dried glassware purged with N2, 1.19 (0.984 g, 8 mmol, 

1.3 eq.) was added to a well stirred suspension of 2-iodoanisole (1.37 g, 6 mmol 1 eq.), 

(bis-triphenylphosphine)palladium(II)chloride (82 mg, 0.12 mmol, 0.02 eq.), 

copper(I)iodide (22 mg, 0.12 mmol, 0.02 eq.), and triphenylphosphine (153 mg, 0.6 

mmol, 0.1 eq.) in 50mL dry piperidine under nitrogen.  Upon addition of the alkyne, a 

rapid color change was observed from dark orange to light yellow.  The reaction mixture 

was stirred under reflux for 6 hours during which time the color changed to a dark 

orange-brown and a yellow-grey crystalline precipitate formed.  After completion, the 

resulting suspension was filtered through celite and partitioned between hexanes and 

water.  The aqueous layer was further extracted with hexanes.  The combined organic 
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layers were washed with brine, dried (Na2SO4), and the solvent was removed via rotary 

evaporation.  The resulting oil was chromatographed on silica gel with 

hexanes/dichloromethane (3:1) as the eluant to give 1.21g (5 mmol, 87%) of 1.17. 1H-

NMR (CDCl3): δ 7.50 (m, 1H, Ar-H), 7.31 (m, 1H, Ar-H), 7.11 (m, 1H, Ar-H), 7.06 (m, 

2H, Ar-H), 6.96 (d, J = 10.4, 1H, Ar-H), 6.92 (d, J = 11.2, 2H, Ar-H, PhMe2), 3.92 (s, 

3H, OCH3), 2.54 (s, 6H, sp3-CH, PhMe2).  13C-NMR (CDCl3): δ 159.6 (Ar-C, C-OCH3), 

139.8 (sp2-C-C), 132.7, 129.3, 127.4, 126.4 (Ar-C), 123.2 (Ar-C, MeOPh-C-C≡C), 120.1, 

112.9 (Ar-C), 110.4 (Ar-C, Me2Ph-C-C≡C), 94.1 (sp-C, PhOMe), 91.2 (sp-C, PhMe2), 

55.3 (OCH3), 20.9 (sp3-C).  LRMS-CI+ m/z 237 (100%, M+).  HRMS-CI+ m/z calcd for 

C17H17O: 237.127; obsd: 237.128. 

 

(2,6-Dimethylphenylethynyl)-trimethylsilane (1.18)73: Prepared as prescribed in the 

literature.  Spectral data is concurrent with that given. 

 

2-(2,6-Dimethyl-phenylethynyl)-phenol (1.20): Using flame dried glassware purged 

with N2, a solution of 1.17 (1.28g, 5.4 mmol, 1 eq.) in 20mL dry dichloromethane was 

prepared and cooled to -78 ºC.  15mL of a 1M boron tribromide in dichloromethane (3 

eq.) was added dropwise at -78 ºC.  The reaction was allowed to warm to room 

temperature overnight.  The completed reaction mixture was partitioned between ethyl 

acetate and 1M HCl and the aqueous layer was washed further with ethyl acetate.  The 

combined organic layers were washed with brine, collected, and dried (Na2SO4).  The 

solvent was removed via rotary evaporation.  The residue was chromatographed on silica 

gel with hexanes:dichloromethane (2:1) to give 0.61g (3 mmol 51%) of 1.20.  1H-NMR 

(CDCl3): δ 7.44 (m, 1H, Ar-H), 7.28 (m, 1H, Ar-H), 7.17 (m, 1H, Ar-H), 7.10 (d, J = 6.8, 
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2H, Ar-H, PhMe2), 7.00 (d, J = 8.4, 1H, Ar-H), 6.93 (m, 1H, Ar-H), 5.87 (s 1H, -OH), 

2.53 (s, 6H, Ph(CH3)2). 13C-NMR (CDCl3): δ 156.18 (Ar-C, C-OMe), 140.01 (Ar-C, 

PhC-CH3), 131.44,  130.34, 128.34, 126.92 (Ar-C), 122.22 (Ar-C, PhOMe-C-C≡C), 

120.43, 114.63 (Ar-C), 110.1 (Ar-C, Me2Ph-C-C≡C), 94.1 (sp-C, MeOPh-C≡C), 91.3 

(Me2Ph-C≡C), 21.3 (Ph(CH3)2). LRMS-CI+ m/z 223 (100%, M+) HRMS-CI+ m/z calcd 

for C16H15O: 223.113; obsd: 223.112. 

 

2-(2-Methoxymethoxy-phenylethynyl)-1,3-dimethyl-benzene (1.23): Using flame 

dried glassware purged with N2, (iPr)2EtN (0.2 mL, 0.8 mmol) and chloromethyl methyl 

ether (MOMCl) (0.1mL, 0.8 mmol) was added to a well stirred solution of 1.20 (98.4 mg, 

0.4 mmol) in 10mL dichloromethane at 0 ºC.  The solution was stirred at 0 ºC for 4-6 hrs.  

The reaction mixture was then quenched with water and washed with brine.  The organic 

layer was dried (Na2SO4) and the solvent is removed.  No further purification was 

required, and 103 mg (0.39 mmol, 87%) of 1.23 was isolated.  1H-NMR (CDCl3): δ 7.52 

(d, J = 7.2, 1H, Ar-H), 7.28 (m, 1H, Ar-H), 7.12 (t, J = 7.6, 2H, Ar-H), 7.07 (m, 2H, Ar-

H, PhMe2), 7.01 (m, 1H, Ar-H), 5.29 (d, J = 1.2, 2H, O-CH2-O), 3.53 (s, 3H, OCH3), 

2.55 (s, 6H, Ph(CH3)2).  13C-NMR (CDCl3): δ 157.3 (Ar-C, C-OMOM), 140.1, 132.9, 

129.3, 127.6, 126.6 (Ar-C, PhC-CH3), 123.2 (Ar-C, PhMe2-C-C≡C), 121.7, 114.7 (Ar-C), 

114.2 (Ar-C, MOMPh-C-C≡C), 94.5 (O-CH2-O), 94.0 (MOMPh-C≡C), 91.2 (PhMe2-

C≡C), 56.1 (O-CH3), 20.9 (Ph(CH3)2). 

 

2-Bromo-1,3-bis-bromomethyl-benzene (1.26): A stirred solution of 2-bromo-m-

xylene (2.778 g, 15 mmol) in 150 mL CHCl3 was illuminated with a 100W incandescent 

tungsten filament light source. To this solution N-bromosuccinimide (6.68 g, 38 mmol, 
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2.5 eq.) was added slowly over 16hrs.  Each addition was followed by the addition of a 

small amount of AIBN.  The reaction was allowed to continue under illumination for 

another 5hrs.  1-Hexene was added to sequester molecular bromine and the solvent was 

removed by rotary evaporation.  The resulting dark orange oil was cooled overnight at 4 

ºC and the product crystallizes.  The suspension was triturated from hexanes then 

dissolved in dichloromethane.  The solvent was removed by rotary evaporation to yield 

1.49g (4.4 mmol, 29%) of 18.  1H-NMR (CDCl3): δ 7.39 (d, J = 7.6, 2H, Ar-H), 7.27 (t, J 

= 7.6, 1H, Ar-H), 4.63 (s, 4H, CH2-Br). 13C-NMR (CDCl3): δ 138.4, 131.3, 128.0 (Ar-C), 

126.6 (Ar-C, C-Br), 33.8 (CH2-Br).  LRMS-CI+ m/z 343 (2.54%, M+), 263 (100%, M+-

Br). HRMS-CI+ m/z calcd for C8H7Br3: 339.809; obsd: 339.810. 

 

(2-Bromo-3-hydroxymethyl-phenyl)-methanol (1.28): A solution of 1.26 (100 mg, 

0.29 mmol, 1 eq.) and potassium hydroxide (33 mg, 5.9 mmol, 2 eq.) in 200 proof 

ethanol (10 mL) is stirred at ambient temperature for 2 hours.  The reaction was quenched 

with 2N HCl and partitioned into ether.  The aqueous layer was washed twice more with 

ether and the organic layers were combined, washed with water and brine, and 

concentrated to a viscous oil.  The residue was placed under high vacuum overnight to 

yield 56 mg (0.26 mmol, 88% yield) 1.28.  The spectral and mass analysis was 

concurrent with the literature.74 

 

(2-Bromo-3-mercaptomethyl-phenyl)-methanethiol (1.29): Hydrogen sulfide gas 

is bubbled through a flask containing solution of triethylamine (5 mL, 36 mmol, 12 eq.) 

obtained from J.T. Baker in methylene chloride/methanol 70/30 (100 mL) and equipped 

with an outlet into a 10% aqueous bleach trap until the basic solution is saturated.  This 
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solution is cooled to 0-5° C in an ice-water bath.  1.26 (1 g, 2.9 mmol, 1 eq.) is dissolved 

in a minimal amount of methylene chloride and added to the cold reaction flask.  The 

reaction is stirred at 0-5° C for 4 hours then quenched and partitioned with water.  The 

aqueous layer is extracted twice with methylene chloride and the organic layers are 

combined.  The combined organic layers are washed with saturated ammonium chloride, 

water and brine and the solvent is removed via rotary evaporation.  The solid residue was 

recrystallized from ethanol and water to yield 552 mg (2.2 mmol, 76% yield) 1.29.  The 

spectral and mass analysis are concurrent with the literature.75 
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Chapter 2: Luminescent Assays for Ketones and Aldehydes Employing 
Catalytic Signal Amplification  

 

2.0 INTRODUCTION 

 
Whereas Chapter 1 discussed in detail one of the types of interactions which 

supramolecular chemists can use to bind and/or modify a target, the current chapter looks 

mainly at the other half of a sensing or signal generating methodology.  Namely this 

chapter will discuss the development of a new signaling methodology for sensing in a 

molecular recognition assay.  A typical molecular signaling assay requires first a host or 

group of hosts that has some specific or generalized affinity for a target analyte, and 

second a method by which to detect the binding event of host and guest.1  The trend in 

molecular recognition, as with many other application driven fields, is to generate the 

greatest output with the minimum size or detection limit.  For example, when attempting 

to sense a disease marker, the earlier it can be discovered and hence, at lower 

concentration, the better.  When attempting to decrease the limit of detection for an assay, 

two main questions must be addressed.  The first is whether or not the recognition 

element has sufficient affinity for the target to attain favorable association at the desired 

detection level.  To this end, supramolecular chemists turn to nature and attempt to mimic 

the interactions of strongly binding enzymes and antibodies.  Though nowhere near to 

achieving the success of Mother Nature, chemists have become very proficient at 
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generating exceptional intermolecular interactions, and most assays today do not suffer 

from a lack of binding affinity.2, 3  The second question that must be answered is whether 

one will be able to observe the desired recognition event.  Reconciling low analyte 

concentration with detectable signal output has received a good deal of attention in recent 

years,4 and the following chapter will discuss some of the traditional methods of signal 

generation and the development of a new methodolgy by which this dilemma is being 

overcome. 

2.1 BACKGROUND 

2.1.1 Supramolecular Chemistry and Molecular Recognition 

The term “supramolecular chemistry” was coined by Jean-Marie Lehn in the early 

1990’s and was meant to encompass the vast field science associated with intermolecular 

noncovalent interactions.5  Needless to say, this term is extremely broad in scope and 

comprises several other large fields, one of which is host-guest molecular recognition.  

As the name implies, in host-guest molecular recognition, a specific host or set of 

differential hosts is employed to bind and recognize a target guest molecule of interest 

through a noncovalent set of interactions.  In more recent years, recognition events 

utilizing certain reversible covalent attachments, such as boronic esters, have also begun 

to appear and are assumed to fall under the supramolecular umbrella.6  One of the most 

well known molecular recognition events is the binding of a metal cation into the center 

of a crown ether as shown in Scheme 2.1.7 
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Scheme 2.1 Sequestration of a potassium cation by 18-crown-6 

 

 

For many years, molecular recognition was a one step process involving only the 

recognition event as in the crown ether example.  However, the field of abiotic molecular 

recognition has advanced considerably in the last few years with the advent of the 

chemosensor.  A chemosensor derives its name from the biological system also known as 

a chemoreceptor in which sugars, proteins, enzymes, cells, and/or group of cells work in 

concert to detect a molecular signal which triggers a sensory response.8  The best 

example of a biological chemosensor is the neuron.  Receptors on the neuron receive 

chemical signals in the form of hormones and neurotransmitters, which upon binding, 

induce a signal transduction which passes on the signal to the next neuron.  Similarly, an 

abiotic chemosensor describes a system in which the molecular recognition event or 

binding is transduced into a detectable signal.9 
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Figure 2.1 A) Chemosensor design in which the binding unit and the signaling unit are 
covalently linked. B) The displacement design in which the analyte and 
indicator compete for the binding site.  C) Two types of chemodosimeter in 
which an irreversible reaction occurs upon binding to generate a signal. 

The vast majority of chemosensors produce fluorometric or colorimetric 

responses, though many instances of electrochemical chemosensors also exist.10  There 

are three major types of chemosensor design which are shown in Figure 2.1.  The first 

design incorporates a signaling unit and an analyte binding unit into the same molecule.  



 66

When an analyte binds, the signal is transduced through the molecule such that a 

recognizable signal is expelled from the signaling unit.  This model will be called the 

attached approach.  The second possibility is that of a displacement model, in which the 

analyte and an indicator are in a competitive equilibrium for the host receptor.  In these 

cases there must be a significant change in the state of the indicator between its bound 

state and its free state.  The third type of sensor described in Figure 2.1 is a 

chemodosimeter and cannot technically be called a chemosensor because analyte binding 

is not a reversible process.  However, the general concept remains the same in that a 

reaction with an analyte occurs and a signal is generated.  There are two main types of 

chemodosimeters, one in which the analyte covalently attaches to the chemodosimeter 

and the signal is generated directly, and the other in which the analyte catalyzes or 

promotes a transformation of the chemodosimeter into the active signal generator.11 

The research discussed in this chapter and that in the next deals with 

chemodosimetric assays.  However, for the purpose of discussion on signaling motifs, 

chemosensors will be discussed here.  For a more in depth discussion on 

chemodosimeters and their use, please refer to the following chapter.   

2.1.2 Chromogenic Sensing Motifs 

There are two main types of chromogenic signaling units in common use, organic 

dyes and metal complexes.  Aggregation effects are also used to a slightly lesser and 

more specific degree with porphyrin and sapphyrin type systems.12   

2.1.2.1 Organic Dyes 

Organic dyes gain their color by absorbing electromagnetic radiation in the visible 

region of the spectrum from roughly 400-700 nm wavelengths.  The extended π-
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conjugation found in all organic dyes serves to reduce the HOMO-LUMO gap to within 

the relatively low energy range spanned by the visible region.  There is a correlation 

between the length of the conjugation and the size of the HOMO-LUMO gap, with 

greater conjugation giving lower energy transitions.  For instance anthracene absorbs 

light just outside the visible spectrum around 390 nm, whereas 9,10-

bis(phenylethynyl)anthracene (BPEA) has a lower energy λmaxabs near 470 nm (Figure 

2.2).  The difference arises solely from the extension of the conjugated π-system.   

 

Figure 2.2 The extension of the conjugated system in BPEA lowers the energy of the 
HOMO-LUMO gap to give a longer wavelength absorbance than 
anthracene. 

The addition of an electron donating (-NH2, -OH, -OMe, -X, etc.) or withdrawing 

(-NO2, -SO3H, -CO2H, etc.) substituent to the conjugated portion of an organic dye 

results in a modification of dye’s absorbance.  The extent and direction (batho or 

hypsochromic) of the modification depends on the dye in question and the group.  In 

general, an electron donating group will raise the HOMO of the dye and should lead to a 

bathochromic shift, however, this is not always the case.  The introduction of both an 

electron donor and acceptor connected through the conjugation can result in the 

formation of a charge transfer (CT) band.  CT occurs more frequently as an 

intermolecular interaction when there is a donation of electron charge from a donor 
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molecule, such as tetrathiafulvalene, to an acceptor like tetracyanoethylene by a 

excitation from the donor HOMO to the acceptor LUMO.1  The absorbance generated by 

this action is called a charge transfer band or CT band.  Single dyes which contain both 

donating and accepting groups can undergo an intramolecular process that closely 

resembles traditional CT though the electronic transition is still technically a π-π* 

transition.  Dyes such as squaraines and azobenzenes show distinct CT bands (Figure 

2.3).  Sensing with organic dyes is often accomplished through an interaction with a 

donating or withdrawing group which causes a modification in the absorbance based on 

how interaction with the guest or host alters the ability of the substituent to augment or 

shrink the HOMO-LUMO gap.11   
 

 

Figure 2.3 Organic dyes such as azobenzenes and squaraines exhibit CT interaction 
between the donating and withdrawing groups attached to the conjugated 
π-system. 

The anthraquinone based receptors 2.1 and 2.2 are examples of chromogenic 

chemosensors using the attached approach.13  Anthraquinones are well established CT 

acceptor moieties, and the urea and thiourea groups are weakly donating substituents.  In 

the presence of excess fluoride anion in acetonitrile, the thiourea version 2.1 showed a 

marked shift from orange to a deep brownish blue (490 nm to 670 nm) indicating an 
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increase in the charge donation from the fluoride bound substituents to the anthraquinone 

core.  2.1 was found to be very selective for fluoride, though 2.2 exhibited a wide range 

of different color changes in the presence of fluoride, dihydrogen phosphate, cyanide, 

acetate and benzoate.   
 

 

Though the term is rarely used in anion binding studies, the above anthraquinone 

receptors can be referred to as chromoionophores.  Chromoionophores are described as 

chemosensors which contain a specific ionophilic subunit or ionophore which binds an 

ion and transduces a signal to the chromophore.14  Stilbene dye 2.3 is a cation binding 

chromoionophore.15, 16  Whereas the anion binding in the previous example resulted in 

better charge transfer from the donor to the acceptor, cation binding in this case reduces 

the ability of the nitrogen donor of the azacrown moiety to transfer electron charge to the 

nitro acceptors.  This effect leads to a hypsochromic shift for cation binding whereas the 

anions caused a bathochromic shift in 2.1 and 2.2.  Chromoionophore 2.3 was used to 

study the effects of alkali and alkaline earth metal binding.  In its native form, 2.3  

absorbs at 476 nm.  It was found, as expected, that alkaline earth metals with a +2 charge 

gave much greater shift in the absorbance maximum than the singly charged alkali 

metals.  For instance, when sodium ions were bound to the crown receptor, only a modest 
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shift to 463 nm was observed.  However, when barium was introduced, the hypsochromic 

shift was much more pronounced at 370 nm.   
 

 

Two receptors reported by the Anslyn group (2.4 and 2.5) are used in the 

displacement model of chemosensor design and were used to target carboxylates 

containing vicinal diol functionalities such as tartrate, malate, and gallate.  These 

carboxylates are present in all aged alcoholic beverages.  Tartrate and malate are essential 

compounds for wine production since their concentrations over time can be traced to the 

proper aging of the wine.  Gallate and similar cyclic carboxylates are found in the oak 

used in the aging barrels in scotch whiskey production and are extracted into the scotch 

during the aging process.  Two receptors reported by Anslyn and coworkers were 

specifically designed to bind to vicinal diols which contain carboxylates.  The 

triethylbenzene based receptor 2.4 consists of two aminodihydroimidazolium groups for 

carboxylate binding and a phenyl boronic acid which can form reversible boronic esters 

with a vicinal diol.17   
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Tartrate, with two carboxylate functionalities as well as a vicinal diol, was chosen 

as the target for 2.4.  This host was studied using an indicator-displacement assay with 

alizarin complexone because this indicator contains the same complimentary 

functionalities as tartrate.  When the dye binds to the host through the formation of a 

boronic ester, the effect is similar to deprotonation of the hydroxyl groups which 

enhances the electron donation.  This results in a bathochromic shift from yellow-orange 

(λmax=450 nm) to a deep red (λmax=525 nm).  Upon release of the indicator by 

competition with tartrate, the donating ability is restored and the dye reverts to its native 

absorbance.  Qualitative naked-eye experiments showed distinct color changes upon 

introduction of tartrate to a 2.4-indicator solution.  Quantitative analyses revealed that 

binding of tartrate (Ka = 5.5 × 105 M-1) in 25% water/methanol was selective over all 

other analytes except malate (Ka = 4.8 × 105 M-1).  The host was successfully used to 

quantify the concentration of tartrate-malate in grape-based beverages such as wine.  In a 

later study, the bis(boronic acid) analog 2.5 was studied for binding with gallate and 

similar structures.18  Indicator displacement assays with pyrocatechol violet, which turned 

from yellow to maroon upon indicator binding and back to yellow with displacement, 

found binding constants between 100 (4-hydroxycinnamic acid) and 10,000 (gallic acid) 

for these targets.  Interestingly, when the assay was applied to determination of the ages 
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of scotch whiskeys, only the complex binding profile of all the analytes gave an accurate 

age to concentration ratio.   

2.1.2.2 Metal Complexes 

The second widely used chromogenic sensing motif utilizes transition metal 

complexation to bring about a color change.  Transition metals have several ways of 

generating color.  In metals with unfilled d-shells, d-d* transitions are possible, however, 

these are usually either symmetry or spin forbidden transitions and give rather weak 

absorption bands.  Complex formation with an analyte can lead to change in the 

symmetry which then makes d-d* transition symmetry allowed.  This type of interaction 

is often the reason for the presence or lack of color associated with copper(II).  Another 

mode of color generation used in sensing applications with metals is the formation of CT 

complexes with the target analyte or indicator.11  With low valent, high oxidation state 

metals bound to electron rich ligands, a charge transfer effect from the ligand to the 

unoccupied d-orbitals of the metal can occur, called ligand-to-metal charge transfer 

(LMCT).  Charge transfer can also happen in the opposite direction if the metal has a 

relatively full d-shell, called metal-to-ligand charge transfer (MLCT).  Since neither of 

these CT modes is spin or symmetry forbidden, the absorption arising from them is 

usually quite intense and in the visible spectrum.  In the case of displacement type assays 

which use metal complexes, CT phenomena are generally undesirable as the color change 

of interest is derived from the organic dye rather than the metal complex so this 

discussion will focus on attached binding unit-signaling unit type scaffolds.   

As most metals are somewhat electropositive, the vast majority of receptors built 

around metal complexation deal with anion binding.11  Metal coordination presents an 
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interesting case in which the binding unit also serves directly as the signaling unit.  The 

dicopper(II) complex of receptor 2.6 was used to select for the imidazolate anion.19  Upon 

initial introduction of 2 equivalents of copper(II) at pH 9 in buffered water, the dimetalic 

complex shows a weak d-d* band at 640 nm.  Titration of imidazole generates a 1:1 

complex with the imidazolate bridging the two Cu(II) centers.  Accompanying the 

receptor-anion complex formation is a strong hyperchromic and bathochromic shift to 

690 nm.  The new absorbance at 690 nm corresponds to a perturbation in the d-orbital 

symmetry which makes the d-d* transition allowed.   
 

 

2.1.3 Fluorogenic Sensing Motifs 

 Even more widely used than chromogenic chemosensors, fluorescent assays have 

seen a wide array of uses in the past few decades.11  Fluorescence has several advantages 

over absorbance, the most telling being a much higher level of sensitivity.  In 

fluorescence, the emission signal is dependent on the concentration of the fluorophore 

and intensity of the incident light, whereas in absorbance, the signal is only dependent on 

the concentration.  This is because absorbance is measured as a ratio of light in versus 

light out.  If the intensity of the light is increased, more light is absorbed and the ratio 

remains the same for the same concentration.  Fluorescence has a clear dependency on 

the excitation intensity as evidenced by the Beer-Lambert law for fluorescence shown 
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below in Equation 2.4.  Hence, to a degree, the limit of detection for fluorescence can be 

decreased merely by turning up the power of the lamp.   

2.1.3.1 Fluorescence Phenomena 

There are several ways of exploiting the properties of fluorophores for the 

development of chemosensors.  Electron or energy transfer effects have been commonly 

used in both biological and abiotic sensing.11, 20-22  The first type of energy transfer 

mechanism is a photoinduced electron transfer or PET (Figure 2.4A-B).  PET is a 

fluorescence quenching process and can occur it two different ways.  The first is by 

interaction of the HOMO and LUMO of the fluorophore with the HOMO of a nearby 

molecule or of another part of the same molecule.  Assuming the electron energy of the 

participating quencher lies between the HOMO-LUMO gap of the fluorophore, when the 

fluorescer is excited, an electron from the quencher transfers to the lower SOMO of the 

fluorophore.  This transfer blocks the light-emitting relaxation pathway, and the electron 

from the upper, and now only, SOMO of the fluorophore transfers to the SOMO of the 

quencher to fill its HOMO.  The other way PET can occur is through the interaction of 

the excited electron of the fluorophore with an empty orbital of a quencher (Figure 2.4B).  

Here the electron transfer is somewhat reversed in that the quencher is now an accepter 

rather than a donor.  The excited electron is transferred to the lower energy accepter 

orbital and then relaxes non-radiatively down to the HOMO of the fluorophore.  Again 

this interruption of the light emitting pathway causes either a decrease or complete 

quenching of fluorescence.11  
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Figure 2.4 A) PET quenching from a donor. B) PET quenching from an acceptor. C) 
EET mechanism that can result in quenching or sensitization 

The third energy transfer mechanism, electronic energy transfer, is usually 

considered to be an intermolecular phenomenon and usually only happens in the solid 

state or in very rigid intramolecular systems.  When a molecule with favorable orbital 

overlap as shown in Figure 2.4C comes into contact with an excited fluorophore, a double 

electron transfer occurs resulting in a ground state fluorophore and an excited state of the 

interfering molecule.  This is known as the Dexter mechanism of electron exchange and 

has an exponential dependence on the distance between the interacting molecules.1  If the 

initially excited molecule induces a triplet state in the acceptor molecule, the process is 

known as sensitization and is useful in phosphorescence based detection systems, 
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however, the strict intermolecular distance requirements have limited this mechanism’s 

usefulness. 

 

Figure 2.5 Schematic of the Förster energy exchange mechanism 

The last type of energy transfer mechanism is perhaps one of the most important 

and useful and is also the only one that is strictly an energy transfer.  Figure 2.5 illustrates 

the Förster energy exchange mechanism which acts as a through space, non-radiative, 

energy transfer.  Whereas the Dexter mechanism requires collisional distances and an 

overlap of the wavefunctions of the donor excited state and the acceptor ground state, the 

Förster process merely requires a coupling of the transition dipoles of the two molecules.  

Since, like any other dipole-dipole interaction, the strength of the interaction falls off as a 

function of 1/r3, the distance requirements for the energy transfer are much less restrictive 

than Dexter energy exchange.  Though overlap of the wavefunctions is not required, there 

is a resonance condition applied to the donor and acceptor which stipulates that the 

acceptor will become excited at an energy that corresponds to the relaxation of the donor.   

In other words, the emission spectrum of the donor and the absorption spectrum of the 

acceptor must have some overlap.1  The most powerful use of this type of energy transfer 
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is fluorescence resonance energy transfer or FRET.  See Scheme 2.4 and its discussion 

for use of FRET in a signaling assay.   

Another phenomenon associated with fluorescence is that of exciplex or excimer 

formation.  Much like an intermolecular CT absorption complex, which acts as a whole to 

absorb a photon, an exciplex is an intermolecular complex which acts as one to emit a 

photon.  When the members of the exciplex are two of the same molecule, it is called an 

excimer.  Excimers and exciplexs consist of one molecule in the excited state and one in 

the ground state and the complex as a whole emits a photon at a longer wavelength than 

the monomeric fluorophore.  Polyaromatic hydrocarbons such as pyrene show strong 

tendencies toward excimer formation, and their use will be discussed below. 
 

 
Pyrene 

2.1.3.2 Fluorgenic Chemosensors 

Anthracene based chemosensors such as 2.7 and 2.8 have been widely studied due 

to the wide range of commercially available derivatives and well defined photophysical 

properties.  Both receptors were studied for their cation binding properties and were 

found to undergo a turn on of fluorescence in the presence of analyte.23, 24  Both studies 

are instrumental in demonstrating one of the most widely used devices in fluorogenic 

chemosensing.  The lone pair electrons of amines are excellent donors for PET quenching 

of fluorescence.  When those lone pairs are tied up in binding or if the amine becomes 
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protonated, the PET mechanism is interrupted and a turn on of the fluorescence is 

observed.   
 

 

Also noteworthy is the fact that, unlike organic chromophores, it is generally 

undesirable to place heavily electron donating or withdrawing groups in direct 

conjugation with a fluorophore as it can lead to drastic changes in the fluorescence 

properties.  Therefore, as in 2.7 and 2.8, almost every instance of an attached motif 

fluorogenic chemosensor will have at least a methylene spacer between the signaling unit 

and the binding unit. 
 

 

Inducing PET quenching can also be an effective means of generating a viable 

signal.  The bis-thiourea receptors 2.9 and 2.10 were reported to show fluorescence 

quenching upon the binding of both mono and bisanions.25    The receptors were 

specifically designed to bind bisanions through the use of neutral binding sites.  It was 
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postulated that the binding of various carboxylate and phosphate anions and bisanions 

such as acetate, malonate, and pyrophosphate resulted in increasing the efficiency of 

electron transfer from the thiourea moieties by increasing their reduction potential.  

Though they were unable to prove this theory electrochemically, quenching only 

occurred upon binding complimentary guests and showed very little activity in the 

presence of spherical anions such as chloride and bromide.   
 

 

As mentioned above, pyrene is often used in chemosensing assays for its ability to 

form strong excimers.  A simple yet powerful receptor using pyrene is the guanidinium 

appended structure 2.11.26  In dilute methanolic solutions, monomer emission centered at 

400 nm was observed.  Upon addition of the bisanionic pyrophosphate, a broad band at 

476 nm appeared associated with the pyrene-pyrene excimer.  A 2:1 self-assembled 

complex with π-stacked pyrenes held together by interactions of the guanidinum binding 

units and the pyrophosphate anions was shown to form by 1H-NMR titrations, and a clear 

isoemissive point was observed in fluorescence titrations.   

A small number of displacement type assays have been reported with 

fluorescence as the signaling mechanism.  The azacalixarene receptor 2.12 was reported 

by the Anslyn group in a competition assay with fluorophore 2.13 for the detection of the 

short lived inositol-triphosphate (IP3).27  Complexation of 2.12 with 2.13 showed a 

decrease in the fluorescence emission.  Introduction of IP3 ejected 2.13 from the 
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azacalixarene and restored the full fluorescence intensity.  2.12 was studied with other 

anion guests such as fructose-1,6-diphosphate, gluconic acid, and adamantine-1,3-

dicarboxylic acid, yet IP3 was shown to have the greatest binding affinity.   
 

 

Another final type of fluorogenic chemosensor employs the use of luminescent 

metal complexes of transition metals such as Ru, Re, Ir and Os and lanthanide metals like 

Eu and Tb.11  These systems have a nice advantage that emission occurs at longer 

wavelengths that can be seen by the naked eye if necessary.  Unfortunately, many of the 

assays designed around these complexes must be run in non-aqueous media due to water 

sensitivity of the metal complexes.   

2.1.4 Peroxyoxalate Chemiluminescence 

In general, fluorogenic chemosensing and chemodosimetric assays are extremely 

powerful in the fact that a large number of different assays can be conceived using only a 

small number of different fluorescent cores and luminescence modification mechanisms.  
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There is one type of fluorescence generating mechanism, however, which has never been 

used in a supramolecular sensing application.  That mechanism is to use chemical means 

rather than optical to generate the fluorescence emission.  Chemiluminescence, though 

often used in analytical chemistry, has yet to be linked to a molecular recognition 

process.  For the research described below, the generation of a chemiluminescent 

signaling motif was studied and we have reported the first successful coupling of 

peroxyoxalate chemiluminescence to a molecular recognition event.28 

2.1.4.1 The Mechanism 

Peroxyoxalate chemiluminescence (POCL) was first reported in 1963 by Edwin 

Chandross of Bell Telephone Laboratories.29  When oxalyl chloride was allowed to react 

in solution with hydrogen peroxide, a vigorous gas-emitting reaction occurred, which 

gave off a faint blue-white glow.  If a fluorescent sensitizer such as N-methyl acridone or 

anthracene was exposed to the vapors from the reaction, a much brighter luminescence 

was observed which corresponded to the fluorescence of the sensitizer.  The technique 

and the name were later refined by Rauhut and coworkers in 1967 to the methods 

generally used today.30, 31  It was reported that similar chemiluminescence could be 

achieved using both oxalyl anhydrides and electron deficient bis-aryl oxalate esters.  Due 

to their stability and generation of good POCL quantum yields, the oxalate ester 

generated POCL mechanism is most often used today for a number of different 

applications ranging from highly sensitive HPLC and electrophoresis eluant detection32 to 

commercially available glow sticks. 
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Scheme 2.2 Generally accepted POCL mechanism involving an electron exchange 
step to generate the first singlet excited state of the fluorophore. 

 

 
 

The mechanism first proposed by Rauhut is still generally accepted with a few 

slight modifications.  Scheme 2.2 describes the mechanism for the formation of the key 

exciting intermediate in a basic medium.  The reaction will proceed in neutral media as 

well, however, analytical results in neutral media tend to be erratic.33  The peroxide anion 

generated by interaction between hydrogen peroxide and the exogenous base 

nucleophilically attacks the electron deficient oxalate ester 2.14 and displaces the phenol 

to give the monoperoxyoxalic ester 2.16.  Debate generally arises over the generation of 

the key metastable intermediate in the following step.  The most widely accepted theory 

is that the 1,2-dioxetanedione 2.18 is the exciting intermediate,30, 34-40 however there is 

debate that the excitation of the fluorescent activator is achieved by a structure in which 

the aryl leaving group is still attached as in 2.17.33, 41-44 
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The most important, and unfortunately least well understood portion of the POCL 

mechanism is the chemiexcitation step in which the fluorophore is excited into its singlet 

ground state.  Regardless of the key intermediate, 2.17(H) or 2.18, it is widely accepted 

that the chemiexcitation occurs through the chemically initiated electron exchange 

luminescence mechanism (CIEEL) proposed by Schuster.45  The mechanism is based on 

the idea that oppositely charged radical ions can luminesce upon annihilation.46-48  First 

discovered electrochemically, two molecules of a potential lumophore can be ionized 

oppositely at a cathode and an anode, and the radical ions produced will annihilate each 

other to produce a ground state and an excited state fluorophore.  When the excited state 

relaxes, luminescence is observed.  The electroluminescence quantum yields can be 

easily determined by the redox potential of the lumophore.  CIEEL adheres to the 

annihilation of oppositely charged radical ions theory, however the generation of the 

radial species is thought to occur through chemical means rather than electronically. 

Scheme 2.3 shows the mechanism thought to occur in the CIEEL step in POCL 

for the intermediates proposed by the two major schools of thought.  In both cases, the 

initial step is a single electron transfer from the fluorophore, F, to the peroxy structure, 

2.17H or 2.18.  Hence, the rate of this electron transfer should be proportional to the 

oxidation potential of the fluorophore.  Several studies have shown that this 

proportionality is linear, which is perhaps the most telling argument that POCL and other 

peroxide-based chemiluminescent systems proceed through the CIEEL mechanism.37, 45  

The next few steps proceed in a stepwise homolytic fashion rather than through a 

concerted and electronically forbidden pericyclic ring opening.49  This ring opening and 

the entropic favorability of the loss of carbon dioxide serve to raise the energy of the 

resulting radical anion, 2.21 or 2.24.  The true chemiexcitation step then occurs from the 
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back electron transfer of the now high energy radical anion into the LUMO of the 

fluorophore to produce the first singlet excited state.  In a successful luminescing 

pathway, the relaxation of this excited state results in the emission of a photon. 

Scheme 2.3 CIEEL mechanism applied to two of the major intermediates thought to 
be responsible for chemiexcitation in POCL 
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2.1.4.2 Detection using POCL 

Though the debate continues on the mechanistic basis for chemiexcitation in 

POCL, the usefulness of the process as a whole has gone far from unnoticed.  Since the 

latter 1970’s, chemiluminescence has been exploited as a highly sensitive detection 

method in the analysis of liquid and gel chromatography as well as a direct sensor for 

hydrogen peroxide and native fluorescent compounds.32  Use in direct analysis of 

hydrogen peroxide is perhaps the most easily understood application.  Direct 

measurement of hydrogen peroxide in sodas using pyrimido[5,4-d]pyrimidines as the 

fluorescent activators in a flow injection system was reported to show extremely high 

luminescence intensities.50  Using solid supported fluorophores such as 3-

aminofluoranthene51 and perylene52 on glass beads, hydrogen peroxide in rain water was 

detected as low as 10 nM.53  Several other direct hydrogen peroxide determinations have 

also been reported.32  

The first use of POCL for the indirect detection of enzymatic substrates by 

hydrogen peroxide evolution was reported by Williams et al. in 1976.54  They used the 

reaction of immobilized glucose oxidase to detect the conversion of glucose into 

hydrogen peroxide in a flow injection analysis (FIA).  Since then, many other substrates 

and enzymes have been probed using the indirect detection of hydrogen peroxide such as 

D and L-amino acids, cholesterol, uric acid, acetylcholine, and choline.32  

HPLC coupled with automated post column POCL analysis of natively 

fluorescent compounds such as polyaromatic hydrocarbons (PAH) in coal tar extract was 

first reported in 1983 and was found to have higher sensitivity that UV-Vis or 

fluorescence spectroscopic analysis.55  This analysis was then used in the determination 

of amino-PAH in shale oil, coal oil and coal gasifier.56  Introducing a short column 
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packed with zinc allowed for detection of nitro-PAH by reducing the nitro groups to 

amines to allow for sufficient activation of the POCL pathway.57  Similar systems have 

been used to detect nitro and amino-PAH in fossil fuels and fossil fuel by-products such 

as car exhaust and precipitation.32 

In addition to these direct and semi-direct detection methods using 

chemiluminescence, many reports using fluorescently labeled compounds have been 

reported using HPLC and capillary electrophoresis.32  Usually POCL-coupled methods 

generate 10-100 fold more sensitive detection than traditional fluorescence detection.  

The main reason for the increased sensitivity is that, unlike fluorescence or UV-Vis 

spectroscopy, chemiluminescence does not require an external light source.58  The lack of 

a source eliminates errors from excitation light scattering, background absorbance or 

fluorescence, and fluctuations in source intensity.  This allows for a much darker baseline 

than sourced spectroscopy resulting in very high signal to noise ratio.  As an example, 

catecholamines, which play important roles as neurotransmitters and hormones, are 

routinely monitored in urine or plasma as a marker for diseases such as hypertension.  

Highly sensitive detection is required, since normal concentrations of catecholamines are 

on the pmol/mL order in plasma.  HPLC coupled with POCL detection of on-line labeled 

catecholamines was found to be as sensitive as 1 fmol/mL.59   

To date, very little work has been completed on coupling this extremely powerful 

signaling motif to chemosensing or chemodosimetric assays.  Because of the high level of 

sensitivity and the selectivity for low oxidation potential fluorophores, the use of a POCL 

reaction as a signal auxiliary to a binding event could be very advantageous.  Hence, we 

chose to couple peroxyoxalate chemiluminescence into an assay using another relatively 

unexplored signal augmenting technique, transition metal catalyzed signal amplification. 
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2.1.5 Enzymatic Signal Amplification 

 
To deal with low signal output in recognition assays, organic chemists have begun 

to incorporate catalytic processes to generate a greater yield of the signaling indicator.  In 

this arena, biochemists and microbiologists have been exploiting enzymatic processes for 

a number of years.  Perhaps the most famous use of this paradigm is the enzyme-linked 

immunosorbent assay or ELISA depicted in cartoon form in Figure 2.6.60-67  In this type 

of assay, an antibody, which is specific to the desired analyte, is bound to a solid phase 

resin or other solid phase substrate.  The solid phase antibody is subjected to a sample 

containing the specific antigen.  After a washing step the resin bound antibody/antigen 

complex is hybridized with a solution phase enzyme-linked antibody which binds to a 

separate epitope of the now resin bound antigen.  The entire solid phase complex is then 

allowed access to a chromogenic or fluorogenic substrate, which upon contact with the 

linked enzyme, produces respectively a colorimetric or fluorometric response. Many 

standard disease screenings, such as HIV, utilize this powerful method.   

 

 

Figure 2.6 A cartoon of an ELISA assay.  HIV is routinely detected via this method. 
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More recently, other enzyme linked assays have begun to surface.  Ghadiri and 

coworkers described the allosteric ssDNA sensor described in Figure 2.7 in which an 

inhibitor is covalently linked to an enzyme via a flexible ssDNA linker.68  In the absence 

of the complimentary strand of DNA, the inhibitor is able to wrap around and block the 

active site.  Upon integration of the ssDNA target, the inhibitor is removed from the 

active site and the fluorogenic substrate is catalytically transformed into the fluorescent 

product.  Using this method, the authors were able to detect the target ssDNA at 

concentrations as low as 10 pM.  Due to the high fidelity of DNA base pairing, non-

complimentary strands were found to have no effect on the rate of enzyme throughput.  

The clear advantage of high tunability with near complete selectivity makes an assay of 

this type extremely attractive to molecular biologists.  However, like the ELISA assay, it 

is limited in scope to large biomolecules. 

 

 

Figure 2.7 A selective sensor for ssDNA incorporating enzymatic signal amplification. 
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2.1.6 Transition Metal Signal Amplification 

 
Recently, however, chemists have begun to exploit the vast wealth of transition 

metal catalysts for sensing purposes.  The first instance of a transition metal catalyst used 

in a recognition assay was reported by the Anslyn group.69  Scheme 2.4 describes a 

competition assay for the detection of heavy transition metal analytes using EDTA as a 

universal host developed by Dr. Lei Zhu.  Initially bound to copper(II), the addition of an 

analyte metal with a higher binding affinity, such as lead(II), forces the equilibrium 

towards the right.  In the presence of ascorbate, the newly freed Cu(II) is reduced in situ 

to catalytically active Cu(I).  When the assay is conducted in the presence of an azide and 

an alkyne, each respectively labeled with one member of a fluorescence resonance energy 

transfer (FRET) pair, the reduced Cu(I) catalyzes a Huisgen cycloaddition, which brings 

the FRET pair into close contact.70, 71  The rate of FRET emission increase can be 

monitored and used to quantify the amount of initial heavy metal analyte present.  In the 

case of lead detection, this assay was found to be sensitive to millimolar concentrations.  

Though not terribly sensitive, the assay demonstrated the first use of a transition metal-

catalyzed reaction being exploited to amplify signal output upon analyte recognition.   
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Scheme 2.4 Competition assay for detection of heavy transition metals based on 
FRET signal amplification from Cu(I) catalyze Huisgen cyclization. 

 

Further studies in our group by Ms. Joy Wu for the detection of copper and 

cadmium using a Heck cross-coupling reaction were later reported.72, 73  Scheme 2.5 

shows two similar methods designed as competition assays between the respective metal 

analytes and a palladium(II) catalyst.  Both assays utilize cyclic polyamines as 

hosts/inhibitors, which were shown to completely turn of the catalytic activity of 

palladium (II) acetate in the absence of analyte.  In both methods, the analyte metal is 

added prior to the addition of the palladium catalyst due to the slow kinetic exchange of 

palladium out of the azamacrocycles.  In the first assay, Cu(II) is added and allowed to 
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chelate with the tetracyclam host/inhibitor.  Upon the addition of Pd(II), any remaining 

tetracyclam chelates a portion of the catalyst while the remainder is left uninhibited to 

facilitate the intramolecular Heck cross-coupling reaction, which forms the fluorescent 

indole product.  The rate of increase of indole emission is monitored and can be used to 

analyze the amount of Cu(II) initially added.  Due to the size of the tetracyclam, the assay 

was selective for Cu(II) by 3-fold over Co(II) and 6-fold over Ni(II) and Cd(II).  The 

sensitivity of the assay was also a vast improvement over the Huisgen cyclization 

methodology giving detectable results as low as 30 nM Cu(II). 

The second assay employs much the same methodology, however the 

pentacyclam host is used to select for the larger Cd(II) species and the fluorescent marker 

was changed to coumarin to increase both the efficiency of the cross-coupling and the 

overall quantum yield.  In this case, Cd(II) was detectable to as low as µM concentrations 

which suggests a higher binding affinity of the pentacyclam for the palladium catalyst 

than in the previous assay or perhaps a lower binding affinity of the cadmium guest.  

Regardless, both assays represented significant steps forward in the development of 

transition metal catalytic signal amplification.  The technique has begun to garner interest 

from other research groups as well. 
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Scheme 2.5 Two assays which utilize the Heck cross-coupling reaction to enhance 
signal output in the detection of (A) Copper(II) at nM concentrations and 
(B) Cadmium(II) at µM concentrations. 

 

 

Mirkin and coworkers have reported an assay for chloride anions through the 

clever use of their signature “weak-link” approach to allosteric macrocyclic ring 

expansion/constriction.74   In this assay, shown in Scheme 2.6, a heterometallic 

macrocycle containing two zinc(II) and two rhodium(I) centers was created.  In its 

synthesized state, each rhodium center is coordinated by the two appended sulfide 

linkages.  In this conformation, the macrocyclic cavity is closed, and the rate of 
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acetylation of 4-hydroxymethylpyridine is essentially zero.  However, in the presence of 

chloride under a carbon monoxide atmosphere, the sulfide “weak-links” are broken and 

replaced by one carbonyl and one chloride per rhodium center.   

Scheme 2.6 An allosteric catalyst scaffold reported by Mirkin et al. used as a 
chloride anion sensor at concentrations as low as .8 µM by “naked-eye” 
detection 

 

The macrocycle then adopts an open conformation, which fosters much more 

facile conversion of acetic anhydride and 4-hydroxymethylpyridine to 4-

acetylmethylpyridine and acetic acid via the catalytic zinc centers.  Interestingly, this 
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assay relies on a doubly indirect signaling motif.  Rather than directly measuring the 

production of acetic acid potentiometrically, the assay is conducted in the presence of 9-

(aminomethyl)anthracene, which is self-PET quenched in the absence of acid.  The 

creation of acetic acid protonates the appended amine and disrupts the PET quenching 

mechanism, thus leading to a turn on of the anthracene fluorescence.   It was found that 

chloride anion was detectable by the “naked-eye” under a handheld UV lamp as low as 

0.8 µM.  One slight disadvantage was the need for two different turn on species rather 

than the single analyte.  No efforts have been reported to use this scaffold as a carbon 

monoxide sensor. 

Another recent report has been published for the detection of ssDNA using 

transition metal based catalytic signal amplification as well.68, 75  The assay is similar to 

the inhibitor-linked enzyme based detector discussed above, however, Cu(II) is used as a 

the signal amplifying catalyst here.  Cu(II) is sequestered by two terpyridine ligands 

attached at opposite ends of a ssDNA probe.  Integration of the target strand in this case, 

frees the copper(II) an allows for the catalytic oxidation of 2,7-dichlorohydrofluorescein 

to 2,7-dichlorofluorescein which turns on a fluorescent signal.  Sensitivities were 

reported in the nanomolar range for this system. 

All of these assays are each quite powerful and groundbreaking in their own way.  

As yet, however, no instances of any type of catalytic signal amplification have been 

reported to detect small organic analytes.  The remainder of this chapter will discuss the 

first such assays to utilize chemical catalysis methods in the analysis of ketones and 
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aldehydes.   In the process, the first use of  peroxyoxalate initiated chemiluminescence as 

a signaling motif in a molecular signaling assay is discussed.28, 40, 76  

2.2 TARGET CHOICE AND ASSAY DESIGN 

All previously reported attempts to use transition metal catalysis for signal 

enhancement describe analyses of inorganic or large biological substrates.69  The 

quandary which arises when dealing with a small organic analyte is that the strength of 

organic intermolecular noncovalent binding forces is generally much weaker than those 

associated with metal interactions.1   As such, a competitive equilibrium between a metal 

and an organic molecule for a common ligand will generally be strongly skewed in favor 

of metal coordination.  This disparity leads to the major difficulty in designing this type 

of assay for small organic substrates.  It then becomes apparent that using a purely 

supramolecular approach entailing noncovalent interactions would not be sufficient to 

achieve satisfactory results.  The goal became to discover a system in which the 

inhibiting ligand would have a strong covalent interaction with the target analyte and a 

strong but not scavenging interaction with the metal catalyst. 

Based on previous research discussed in Chapter 1, it was determined to continue 

work on palladium catalyzed cross-couplings as the signal amplifying step.  The 

previously described cyclam ligands would not be sufficient for use in the detection of 

organics, so a new class of inhibitor had to be found.  The poisoning interaction between 

thiols and palladium catalysts is well known.77  In heterogeneous catalyst systems, sulfur 
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is often used as an additive to control the exothermicity of hydrogenations.  The porous 

palladium surface acts as a sponge for the soft sulfur nucleophiles, which form very 

strong metal-sulfide bonds.  Thiols, and especially dithiols, have also long been known to 

organic chemists.  The interaction of dithiols with carbonyls represents one of the first 

protecting groups a student learns in introductory organic chemistry.78  When 1,3-

propanedithiol is condensed with aldehydes to form 1,3-dithiolanes, so called 

“umpolung” reactions can be performed by deprotonation of the otherwise intractable 

aldehyde proton.79   

2.3 SONOGASHIRA ASSAY 

With both processes well established, the assay was designed for ketones and 

aldehydes based on the thioacetal condensation with a palladium-catalyzed Sonogashira 

cross-coupling reaction as a signal amplification method.   

2.3.1 Design 

Scheme 2.7 describes the assay.  In a procedure adapted from the literature, 1,3-

propanedithiol is condensed with an analytical amount of a representative ketone, 2-

butanone, in acidic methylene chloride with the Lewis acid catalyst zinc(II)chloride to 

give a mixture of the dithiolane and a remainder of free dithiol.80  As mentioned briefly 

above, because the interaction between the host and the analyte is irreversible, this assay 

would technically be described as a chemodosimeter.  The standard conditions for this 

condensation with boron trifluoride diethyletherate were unacceptable due to by-products 
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which prevent the subsequent Sonogashira coupling.  After quenching the condensation 

with triethylamine, bis(acetonitrile)palladium(II)chloride is added such that an equimolar 

amount of palladium with respect to original dithiol is present.  The residual dithiol 

chelates and poisons some of the palladium precatalyst while the rest remains unspoiled.  

Hence, the unpoisoned amount of palladium catalyst is the same or proportional to the 

initial amount of 2-butanone.  To this mixture, triphenylphosphine is added to displace 

the acetonitrile ligands for more effective catalysis.  To commence the Sonogashira 

cross-coupling reaction, 9-bromo-10-(phenylethynyl)anthracene, copper(I) iodide, and an 

internal standard 2,5-diphenyloxazole (PPO) are added and the mother liquor is brought 

to a gentle reflux.  Phenylacetylene is added as a final step and the reaction is monitored 

over a 2 hour period. 
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Scheme 2.7 Schematic of the assay for ketones based on a Sonogashira cross-
coupling reaction as the signal amplification process.  Reactions were 
conducted at millimolar concentrations for tenable reaction kinetics. 

 

2.3.2 Choice of Fluorophores 

 
The Sonogashira coupling described in the final step of Scheme 2.7 produces the 

well known fluorophore 9,10-bis(phenylethynyl)anthracene (BPEA).  It has been 

reported to have ΦF = 1.0.81  At concentrations lower than 10-6 M, monomer λmaxem 

occurs near 470 nm in most common organic solvents and shows very little solvatofluoric 

effect.  At higher concentrations, BPEA shows a strong tendency towards excimer 

formation with a λmaxem near 500 nm.  The excimer emits the characteristic lime green 
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color found in many commercially available glowsticks.  Excitation and emission spectra 

of all fluorophores used in this assay are shown in Figure 2.8. 

Initial work with this system utilized the Sonogashira starting material 9,10-

dibromoanthracene (2.35).  It was attractive as a starting point due to the lower observed 

quantum yield than the monocoulped 2.28 and an even further blue shifted initial 

emission near 410 nm.  The absorbance λmax for 2.35 at 403 nm also made solutions of 

starting material nearly colorless to the naked eye.  Initially the assay did work with the 

2.35 starting material for the cross-coupling, however, since we were monitoring the 

kinetics of BPEA formation, we could not discount the formation of the 2.28 

intermediate.  The derivation of the rate law was much more complicated, and the effort 

was found to be unnecessary if the assay was conducted using the monocoupled 2.28 as 

the starting material. 
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A) 

 

B) 

C) D)

Figure 2.8 Excitation and emission spectra in ethyl acetate of 
A) 9,10-dibromoanthracene 2.10 at 2 x 10-6 M, 
B) 9-bromo-10-(phenylethynyl)anthracene 2.4 at 2 x 10-6 M, 
C) 9,10-bis(phenylethynyl)anthracene (BPEA) at 8 x 10-7 M, and 
D) 2,5-diphenyloxazol (PPO) at 8 x 10-7 M. 

2.3.3 Measurement 

Due to PET quenching from the large amount of triethylamine present in the 

reaction, direct fluorescence and chemiluminescence measurements on the system were 

impossible.  Thus, the assay was conducted on a semi-preparative scale with aliquots 

taken at precise timed intervals over a two hour period.  The aliquots were partitioned 

between ethyl acetate and 2N HCl to remove the offending amine base, and samples for 
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fluorescence were diluted in ethyl acetate to less than 10-6 M of fluorophore assuring a 

safe range of emission even at full conversion to BPEA.  Samples to be used for 

chemiluminescence measurements were taken without dilution from the acid wash and 

washed with 2M NaOH to remove the acid.  The chemiluminescent reaction does not 

proceed under acidic conditions; hence, the extra washing step was necessary.  Due to 

potential imprecision in aliquot acquisition and solvent evaporation over the two hour 

reaction time at reflux, we added the soluble internal standard 2,5-diphenyloxazole 

(PPO).  PPO has been shown to have extremely high quantum efficiency and was an 

attractive choice as its excitation λmax overlays well with the troughs in the anthracene-

dye excitation profiles.  The use of this non-reactive internal standard negates the need 

for rigorous attention to volumetrics concerning aliquot acquisition(see derivation 

below).  The following discussion of the fluorescence based kinetics relies heavily on the 

use of PPO in this assay. 

 

Figure 2.9 Overlaid comparison of the normalized excitation spectra of the anthracene 
dyes versus the internal standard 2,5-diphenyloxazole (PPO). 
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2.3.4 Derivation of Kinetics 

Determination of the sensitivity of this detection method depends upon a good 

understanding of the kinetics of the Sonogashira coupling.  The generally accepted 

mechanism is shown in Scheme 2.8.82  When using a Pd(II) precatalyst, there are two 

theories as to how the reduction to the active Pd(0) occurs.  There is stronger evidence for 

the first method proposed in that the diacetylene by-product is usually isolable from the 

reaction.  Because the diacetylene is also produced when using a Pd(0) catalyst, the 

alternate mode of reduction has been proposed as well.82  

Scheme 2.8 The generally accepted mechanism for the Sonogashira cross-coupling 
reaction.  Two proposed methods of reducing a Pd(II) precatalyst to the 
active Pd(0) species have been proposed. 
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Regardless of which reduction mechanism occurs, the process is fast on the 

timescale of this assay and can be ignored in the rate law.  The formation of the Cu-

acetylene complex is also quite rapid and does not limit the rate of reaction.  In essence, 

this reaction is a trimolecular process with dependencies on the catalyst, aryl halide, and 

the acetylene, where for the majority of the reaction time, the catalyst is the rate 

determining reagent. A proposed rate law is given by equation 2.1, where A is 

phenylacetylene, B is 2.28, P is BPEA, and “cat” represents the Pd-catalyst or 

alternatively the ketone/aldehyde concentration. 

 
(2.1) 

 

(2.2) 

If we assume initial rate kinetics we can make the simplification given in equation 

2.2, where [A]0 and [B]0 represent the initial concentrations of A and B.  As mentioned 

above, a work up step prior to fluorescence measurement results in an unknown amount 

of fluorophore loss.  To solve this problem and eliminate the need for any volumetric 

congruity between aliquots, an internal standard (PPO) was added to the reaction, 

represented here as S.  If we divide both sides of equation 2.2 by the concentration of the 

internal standard we arrive at a rate law based on the change in the ratio of P to S, 

equation 2.3. 
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(2.3) 

However, since neither concentration is absolutely known, the rate law needs to 

be expressed in terms of fluorescence intensity.  Equation 2.4 represents the Beer-

Lambert Law for fluorescence where I0 is the intensity of the incident light, φ is the 

quantum yield of the fluorophore, ε is the molar absorptivity, c is the concentration, and b 

is the path length. 

 (2.4) 

 (2.5) 

At low concentrations, only the first term of the expanded Taylor series for 

equation 2.4 remains important, and the Law can be simplified to equation 2.5.  A ratio of 

the fluorescence of P to S is given by equation 2.6.  Equation 2.6 can then be reduced to 

equation 2.7 where κ is a constant representing the ratio of I0φε. 

 
(2.6) 

 
(2.7) 

Substituting equation 2.7 into equation 2.3 gives equation 2.8. 
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(2.8) 

We now have a rate law expressed in terms of fluorescence instead of 

concentration.  Separating the derivative and combining the constants sets up the 

integrated rate law given in equation 2.9 with the new apparent rate constant, k″, given by 

equation 2.10. 

 
(2.9) 

 

(2.10) 

The integrated rate law, equation 2.11, shows that the rate can be sufficiently 

described by a plot of the ratio of fluorescence intensities of P to S vs. time. 

 
(2.11) 

Finally, a plot of the rates vs. catalyst/ketone concentration will elucidate the 

order in catalyst and the apparent rate constant, k″. 



 106

2.3.4 Rate Studies 

A) 

 

B) 

 

Figure 2.10 A) Plot of the ratio of BPEA emission to PPO emission vs. time for 
1-10mM 2-butanone. For all: 1,3-propanedithiol: initial 8.60 x 10-3 M; after 
dilution 7.17 x 10-4 M; Pd(MeCN)2Cl2 7.17 x 10-4 M; 
9-bromo-10-(phenylethynyl)anthracene 4.00 x 10-3 M; phenylacetylene 1.49 
x 10-2 M; copper(I) iodide 8.75 x 10-4 M; 2,5-diphenyloxazole 6.33 x 10-3 
M.  B) Plot of the rates from (A) vs. %catalyst/ketone 
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Rate studies were conducted by varying the amount of 2-butanone from 0% to 

100% versus 1,3-propanedithiol.  This represents a concentration range of roughly 1-10 

mM of 2-butanone.  Theoretically, a 0% assay should show no formation of BPEA 

whereas a 100% assay should give very fast conversion.  A plot of the rate determinations 

for representative concentrations as a function of the ratio of product fluorescence to PPO 

emission versus time is shown in Figure 2.10(A).  PPO is excited at 316 nm and read at 

357 nm and BPEA is excited at 451 nm and read at 472 nm.  As expected with no ketone 

present, no increase in product emission is observed over the 2 hour reaction time.  As the 

amount of analyte increases so too does the rate of conversion to BPEA.  At 85% ketone 

loading and above, the rates begin to plateau, indicating a departure from initial rate 

kinetics at a time dependent on the amount of catalyst present. 

The rate profile is shown in Figure 2.10(B).  The plot of rate versus 

catalyst/ketone concentration shows a marked nonlinearity.  This deviation from linearity 

can be explained by the complex equilibrium proposed in Scheme 2.9, which can occur 

for the palladium-dithiol interaction.  It can be assumed that the equilibrium constant of 

the initial strong Pd-S bond, K1, will be very large due to the electron deficiency of the 

Pd(II)Cl2 center.  Upon binding the first sulfur, however, the palladium center becomes 

much less electrophilic and the second bond formation occurs less readily, allowing a 

more balanced equilibrium described by K2.  It is proposed that K2 still favors the 

bidentate chelation such that at the high concentrations of residual dithiol brought about 

by low ketone equivalency, the equilibrium is driven towards 2.29.  As the concentration 
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of dithiol drops relative to palladium, a second equilibrium begins to build up in which 

the Pd:dithiol binding becomes 2:1 as with 2.30.  It is proposed that 2.30 still retains a 

modest amount of catalytic activity. 

Scheme 2.9 The complex equilibrium is proposed to account for the nonlinear 
increase in reaction rate at high catalyst concentrations. 

 

Since this phenomenon occurred for both the Sonogashira assay above and the 

Suzuki assay described below, this theory was tested with a Suzuki reaction using 1 

mmol of 9-bromoanthracene, 1.5 mmol phenylboronic acid, 2 mmol sodium carbonate, 

and 4.5 x 10-3 mmol each of Pd(OAc)2 and 1-propanethiol, which can only monothiolate 

one palladium.  The reaction was run in a 3:3.5 acetone-water mix.  The reaction shows 

moderate conversion to 9-phenylanthracene over a 2 hour period based on TLC and CI-

MS analysis.  Thus, as the concentration of 2.30 increases due to decreasing dithiol 

concentration, the fraction of active palladium increases non-stoichiometrically. 

2.3.5 Chemiluminescence Measurements 

Due to the inherent drop in quantum efficiency, chemiluminescence 

measurements were conducted at a higher concentration than fluorescence.  And, as 
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mentioned earlier, a second basic wash of the aliquot from the reaction was necessary to 

remove any acid from the organic layer.  The oxalic ester used to produce 

chemiluminescence was bis(2-carbopentyloxy-3,5,6-trichlorophenyl)oxalate, 2.31. 
 

 

Figure 2.11 shows a side by side comparison of the rate of BPEA formation 

determined from fluorescence and chemiluminescence.  The data were recorded on the 

same fluorometer in the absence of an excitation source.  Chemiluminescence data were 

treated in the same fashion as that from fluorescence and the plot in Figure 2.11B is of 

the ratio BPEA luminescence to PPO luminescence.  Unfortunately, the 

chemiluminescence data for this assay was inconsistent and showed no fidelity of rate 

versus catalyst/ketone concentration.  This failure along with several practical issues led 

us to pursue the Suzuki cross-coupling based assay discussed below. 
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A) B)

Figure 2.11 A) Fluorescence measurement an assay with 70% analyte loading. B) 
Chemiluminescence measurement for an assay with 70% analyte loading.  
All reaction conditions are as given in Figure 2.10.  For B) 2 mL of aliquot 
solution, 50 mg (.074 mmol) 2.31, 10 µL 0.1 M NaOH, 50 µL 30% H2O2. 

2.4 SUZUKI BASED ASSAY 

As a proof of concept, the Sonogashira assay worked well, however, several 

pragmatic issues arise from the use of this particular catalytic process.  The first problem 

is the reaction’s intolerance to water, which makes the assay rather impractical to apply.  

Another issue is the necessity of an amine base to facilitate reduction of the Pd(II) salt to 

the active Pd(0) species.  The side effect of PET quenching prohibits the direct 

monitoring of the Sonogashira by fluorescence again making the assay less applicable.  

Collisional quenching also occurs from the chloride anions released upon reduction of the 

palladium catalyst.  The catalyst itself is also less stable than some other non-chloride 

palladium salts, introducing an unpredictable source of error.  Also, the ultimate goal of 

generating a chemiluminescent sensing motif is impaired by the need for an extended 

work up of the aliquots.  All of these concerns led us to ponder a new potential catalytic 

system. 
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2.4.1 Design 

The Suzuki cross-coupling reaction appeared to solve many of the problems 

associated with the previous assay.  Suzuki’s are often run in water, they require only a 

carbonate base, and the catalyst, Pd(OAc)2 is comparatively cheap and very stable. The 

product, 9,10-diphenylanthracene (DPA), of the Suzuki coupling shown in Scheme 2.10, 

is similar to its counterpart, BPEA, in many of its optical properties.  A blue emitter with 

ΦF = 1.0, DPA is the lumophore found in most commercial blue glowsticks.  Unlike 

BPEA, however, DPA shows very little tendency towards excimer formation and 

maintains emission near 410 nm over a wide concentration range.  Unfortunately as 

shown in Figure 2.12, the precursor 2.35 also emits near 410 nm, however, the observed 

quantum efficiency of 2.35 is much lower than that of DPA which allows for the 

determination of emission increase. 
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A) 

 

B) 

 

Figure 2.12 A) Excitation and emission spectra for 9,10-diphenylanthracene (DPA) in 
THF at 3.74 x 10-7 M, and B) normalized spectral overlay of 
9,10-dibromoanthracene and DPA showing very little shift in emission. 

 
The Suzuki based assay is described by Scheme 2.10.  Using an extremely 

simplified dithiane formation procedure reported by Wakharkar, 1,2-ethanedithiol was 

condensed with cinnamaldehyde, 2.32 in water in the presence of hydrobromic acid.83  
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The reaction is extremely fast and forms a white precipitate which at low analyte 

concentrations, redissolves in the remaining immiscible ethanedithiol over the course of 

the reaction time.  Upon completion, the reaction is quenched with 6N NaOH to sequester 

the hydrobromic acid and deprotonate the dithiol to allow homogeneous mixing.  

Basifying the mixture also causes any dissolved dithiane product, 2.33, to precipitate 

again. 

Scheme 2.12 Schematic of the assay for aldehydes using a Suzuki coupling. 

 

Unfortunately, the low concentrations of the extremely efficient fluorophore 

product required for safe fluorescence determination again prevented this assay from 

direct monitoring in the fluorometer.  At nanomolar catalyst concentrations, the Suzuki 

reaction proceeds extremely slowly if at all.  Thus, the reaction was again run on a semi-
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preparative scale.   Analogous to the previous assay, initial attempts were preformed 

using 9-bromo-10-phenylanthracene as a starting material, however, results for this 

reaction were erratic and inconclusive.  9,10-dibromoanthracene, 2.35, gave much better 

results for both fluorescence and chemiluminescence detection.  Based on mass spectral 

and TLC analysis of an aliquot of a Suzuki reaction with 2.35 as the starting material and 

with no inhibitor after 2 hours, it was determined that very little formation of DPA had 

actually occurred.  Rather, the vast majority of fluorescing product was found to be the 9-

bromo-10-phenylanthracene intermediate.  This conclusion is supported in the literature 

from which the conditions were adapted, in that the authors report that while mono-

couplings were quick and nearly quantitative, attempts to use these parameters for di-, 

tri-, or polymer couplings gave low yields beyond the initial coupling product.84  Hence it 

was determined that the rate for the “double reaction” could be described in the same 

fashion as the single coupling as in the previous assay since most likely only a single 

coupling is actually occurring.   

Apart from low catalyst concentration disallowing direct monitoring of the 

fluorescence turn on, the insolubility of the anthracenes also prevented accurate aliquot 

measurement.  To overcome these difficulties, two identical reactions were set up in 

parallel, one as a control and one as the sample.  Two side by side reaction vessels were 

charged with palladium acetate in DMF, and a small aliquot of the completed dithiane 

mixture was added such that the palladium to original dithiol ratio was 1:1.  Then both 

flasks were given equal amounts of 2.35, PPO, and sodium carbonate.  The control flask 



 115

was allowed to stir for 20 minutes at 40 °C.  The sample flask was charged with 3 eq. of 

phenylboronic acid and allowed to react for 2 hours at 40 °C.  The Suzuki reaction 

conditions were modified from the literature and run in a 7:5:14 mixture of 

DMF:THF:H2O.84  THF was added for initial solubility of 2.35 before the addition of 

water.  Upon completion, the reactions were directly diluted with ethyl acetate to 

partition the solvents and dissolve the anthracenes.  The organic layer was then diluted 

for fluorescence and chemiluminescence measurements. 

2.4.2 Fluorescence vs. Chemiluminescence 

The solution resulting from the control experiment where no phenylboronic acid 

was added was used as a time zero measurement.  A 120 minute measurement was taken 

with the solution garnered from the full reaction flask.  For fluorescence measurements, 

the samples were diluted to 5 µM of total anthracene species.  Chemiluminescence 

samples were prepared at 200 µM of total anthracene containing species.  Data were 

observed over aldehyde loadings from 0-90% versus 1,2-ethanedithiol.  This represents a 

concentration range starting at 10 mM.  The results are plotted as a percent increase in 

fluorescence and chemiluminescence (Figure 2.13). 

Though single point measurements are insufficient to fully characterize the 

kinetics of the reaction, a similar nonlinear dependence on the catalyst concentration 

appears to be present in this assay as well.  The reasons for this observation have already 

been discussed.  Fluorescence data were taken in THF exciting at 393 nm and reading at 
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407 nm.  The data show a modest 13% intensity increase for the lowest concentration up 

to nearly 200% increase for the highest concentration studied.  Perhaps even more 

interesting is the chemiluminescence data. 

A) B)

Figure 2.13 Rate profiles of the Suzuki assay for cinnamaldehyde using A) fluorescence 
and B) chemiluminescence 

 
As with the Sonogashira assay, chemiluminescence data were recorded in the 

same fluorometer instrument with the excitation shutter closed.  The increase in 

chemiluminescence is nearly an order of magnitude higher than that detected by 

fluorescence, with the lowest concentration tested giving an astounding 150% intensity 

increase.   It is interesting to note that even though 2.35 has roughly the same excitation 

and emission profile as DPA and the mono-coupled intermediate, its chemiluminescence 

efficiency is essentially non-existent as is evidenced by the large difference in intensity 

changes between fluorescence and chemiluminescence.  This assay demonstrates the 

power of using chemiluminescent sensors for high sensitivity in molecular sensing 

assays. 
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2.5 CONCLUSIONS 

In this chapter, we have discussed the formulation of a new signaling 

methodology for use in chemosensing and chemodosimetric assays.  This research 

actually represents two major breakthroughs in signaling modalities for use with 

molecular recognition assays.  Though transition metal catalytic signal amplification has 

been described in the recent literature, its use has been limited to the detection of other 

metals and biological macromolecules.  This research represents the first use of this novel 

signal enhancing technique for the detection of a small organic analyte.  As with the first 

example of using transition metal catalysis in sensing, the assay here is not terribly 

sensitive nor selective.69  The goal of this research, however, was in the further 

development of this signal generating modality toward applicability for a wider range of 

targets.  This achievement is crucial in the development of this field as a molecular 

recognition scaffold.  Further work needs to be conducted on the extension of this 

methodology towards ever wider ranging analytes and catalysts.  One promising pathway 

for the recognition of small organics is through the use of organic catalysts.  One such 

system discussed in Chapter 3 reports that the target analytes, conformationally 

constrained dicarboxylates, produce a signal transduction in a catalytic fashion (see 

Scheme 3.5).85   

The second breakthrough described by this study is the first coupling of the highly 

sensitive technique of peroxyoxalate chemiluminescence with a molecular recognition 

assay.  As evidenced in Figure 2.13, the lack of a light source and the specificity of the 

activator help to bring about an enhanced level of sensitivity.  Work is ongoing in our 

laboratory to promote the use of this signaling methodology in a wide variety of analyte 
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determinations.  The work in Chapter 3, which utilizes a highly fluorescent squaraine 

dye, is currently being explored as a chemiluminescent chemodosimeter. 

In the first two chapters, we have looked at both aspects of molecular sensing, the 

binding, albeit circuitously, and the signaling.  The first chapter looked in depth at just 

one of the many intermolecular interactions supramolecular and molecular recognition 

chemists use to bind two or more molecules together.  The current chapter looked at the 

ways in which the binding of those molecules are observed in a sensing aspect.  That is 

with optical signals.  The next and final chapter will tie it all together for the development 

of a whole and complete assay with sensitive binding and exquisite signal output. 

2.6 EXPERIMENTAL SECTION 

2.6.1 Materials and Methods 

All reagents were obtained through Sigma-Aldrich or Acros Fine Organics and 

used without further purification unless noted.  Bis(acetonitrile)palladium(II)chloride, 

9,10-dibromoanthracene, and 9-bromo-10-phenylanthracene were prepared as described 

in the literature.86-88  Triethylamine and dichloromethane were distilled over calcium 

hydride prior to use.  Fluorescence and chemiluminescence measurements were 

performed on a Photon Technology International QuantaMaster Cuvet-Based 

spectrofluoromter. 

 

9-bromo-10-(phenylethynyl)anthracene (2.28): 4.0g (12 mmol) 9,10-dibromo-

anthracene, 83.5 mg (0.12 mmol) bis(triphenyphosphine)palladium(II) chloride, and 23 
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mg (0.12 mmol) copper (I) iodide were added to 250 mL of freshly distilled triethylamine 

and brought to 40 °C.  To this solution was added dropwise over 6 hours12.7 mmol 

phenylacetylene in 50 mL dry triethylamine.  The reaction was allowed to stir overnight 

at 40 °C after addition was complete.  Upon completion of the reaction by TLC, the 

mother liquor was filter with hexanes through celite and partitioned into 2N HCl.  The 

organic extract was washed again with 2N HCl until slightly acidic by pH paper.  The 

organic layer was then washed with water, saturated NaCl, and dried (Na2SO4).  10 mg of 

chromatography grade silica gel was added to the dried organic layer and the solvent was 

removed.  The silica adsorbed residue was chromatographed on silica gel with 100% 

hexanes to give 2.2 g (6.1 mmol, 52% yield).  Characterization is reported in the 

literature and is concomitant with our analysis.89 

2.6.2 Kinetics Determination in the Sonogashira Assay 

 
The trial using 55% 2-butanone to catalyst is used as an example procedure. 

2.6.2.1 Dithiolane Formation 

Under inert argon atmosphere, 2.5 mL of an 8.60 x 10-3 M solution of 1,3-

propanedithiol in dichloromethane is mixed with 2.5 mL of a 4.73 x 10-3 M solution of 2-

butanone in dichloromethane.  To the solution is added 10 µL concentrated sulfuric acid 

and 10 mg zinc chloride.  The reaction is stirred under argon at room temperature for 1 

hour and then quenched by adding 5 mL dichloromethane and 5 mL triethylamine.   
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2.6.2.2 Palladium Poisoning and Sonogashira 

Then 2.5 mL of an 8.60 x 10-3 M solution of Pd(MeCN)2Cl2 in dichloromethane is 

added to the quenched solution and stirred for five minutes under argon.  A 12.5 mL 

solution containing 0.19 mmol 9-bromo-10-(phenylethynyl)anthracene and 0.12 mmol 

2,5-diphenyloxazole along with 5 mg neat CuI are then added and the 30 mL solution is 

brought to gentle reflux.  Finally, 50 µL of phenylacetylene is added and 250 µL aliquots 

are taken and worked up every 10 min. for 2 hr. 

2.6.2.3 Aliquot Work-up 

250 µL of the reaction liquor is partitioned between 4 mL ethyl acetate and 2 mL 

2N HCl.  For fluorometry, the organic layer is then directly diluted by roughly 10-3 in 

ethyl acetate.  Preparation of the aliquot for chemiluminescence requires further washing 

of the organic layer with 2M NaOH followed by drying (Na2SO4). 

2.6.2.4 Fluorescence 

Spectra were taken for 2,5-diphenyloxazole, 9-bromo-10-

(phenylethynyl)anthracene, and 9,10-bis(phenylethynyl)anthracene in ethyl acetate 

exciting at 316nm, 406nm, and 451nm respectively for each aliquot.  2,5-

diphenylaoxazole was read at 357 nm, 2.28 at 432, and BPEA at 471.  Slit widths were 

set at 2nm for excitation and emission giving average fluorescence intensities of >105 
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counts/s.  Data from each spectrum was collected via integration from -5 to +5 nm about 

the respective emission λmax using the Felix32 v1.0 software package. 

2.6.2.5 Chemiluminescence 

To a standard 1 cm path length quartz fluorescence cuvet was placed 2 mL of the 

base washed sample in ethyl acetate, 50 mg 2.31, and 10 µL 0.1 M NaOH.  The cuvet 

was equipped with a stir bar and placed in the fluorometer with the excitation shutter 

closed.  The chemiluminescence reaction was started with the addition of 50 µL 30% 

hydrogen peroxide and data collection was begun at 357 nm for PPO, 432 nm for 2.28, 

and 470 nm for BPEA.  Data was collected as the average over a 60 second time period 

once the emission intensity had plateaued.   

2.6.3 Kinetics Determination for the Suzuki Assay 

The trial with 13.3% cinnamaldehyde is used as an example. 

2.6.3.1 Dithiane Condensation 

To a 5 mL round bottom flask are added 1 mL thoroughly degassed water, 50 µL 

(0.6 mmol) ethanedithiol, 10 µL (0.08 mmol) cinnamaldehyde, and 25 µL 48% 

hydrobromic acid in water.  The reaction is stirred at 40 °C for 2hr during which time a 

small amount of white precipitate forms and is redissolved in the remaining insoluble 

ethanedithiol.  The reaction is quenched with 3 mL of 6N sodium hydroxide which 

reforms the white precipitate as the ethanedithiol is deprotonated and dissolved in the 
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aqueous layer.  At this time the total concentration of disulfur species (ethanedithiol and 

the condensed dithiolane) is 0.147 M.  This solution is labeled solution A. 

2.6.3.2 Suzuki Coupling 

In 10 mL volumetric flask is placed 101.3 mg (0.3 mmol) 9,10-

dibromoanthracene and 25.3 mg (0.1 mmol) 2,5-diphenyloxazole (PPO), which were then 

diluted to 10 mL with a  1:1 DMF:THF solution.  The resulting solution was labeled 

solution B.  83.5 mg (0.37 mmol) of palladium (II) acetate was diluted to 50 mL in DMF 

in a separate volumetric flask and labeled solution C.   To each of two parallel reaction 

flasks were added 3.5 mL degassed water, 0.5 mL of solution C, and 25 µL of solution A.  

The solution turned from a light brown to burnt orange instantaneously.  The each of 

these solutions were then added 2.5 mL of solution B which precipitated upon contact 

with water.  The reaction vessels were then brought to 40 °C.  To the first reaction flask 

labeled time 120, was added 31.6 mg (0.3 mmol) sodium carbonate and 25.3 mg (0.2 

mmol) phenylboronic acid and the timer was started.  To the second flask labeled time 0, 

was added only 31.5 mg (0.3 mmol) sodium carbonate.  The time 0 flask was stirred for 

20 min. and the time 120 flask was stirred for 2 hours.  Final concentrations in the 

reaction flask prior to reaction were as follows: 9,10-dibromoanthracene 0.012 M; PPO 

0.004 M; palladium (II) acetate 5.7 x 10-4 M; phenylboronic acid 0.032 M; ethanedithiol 

based on no dithiolane formation 5.7 x 10-4 M; sodium carbonate 0.046 M.  Upon 

completion of the reaction both flasks were treated in the following manner.  7 mL of 
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ethyl acetate were added to quench the reaction giving a 10 mL organic layer on the 

assumption that all DMF was partitioned.  From the organic layer, a 0.25 mL aliquot was 

diluted to 10 mL with THF and labeled Lum0 and Lum120 respectively. 

2.6.3.3 Fluorescence 

Fluorescence measurements were taken by diluting 50 µL of Lum0 or Lum120 

respectively to 2 mL with THF in a quartz fluorescence cuvet.  This dilution gives a 

maximum 4.9 x 10-6 M solution of fluorophore based on the initial amount of 9,10-

dibromoanthracene.  Scans of each sample were taken with excitations at 316 nm for 

PPO and 393 nm for the anthracene fluorophores.  The emission outputs at 357 and 407 

respectively were integrated as with the previous method and taken as a ratio of product 

emission to PPO emission.  The percent fluorescence increase from time 0 to time 2 

hours was then calculated and plotted versus the initial concentration of cinnamaldehyde. 

2.6.3.4 Chemiluminescence 

Chemiluminescence measurements were conducted using undiluted portions of 

Lum0 and Lum120 using the same fluorometer.  To a cuvet equipped with a magnetic 

stirring rod was added 1.89 mL of the respective sample, 50 mg (0.075 mmol) bis(2-

carbopentyloxy-3,5,6-trichlorophenyl)oxalate, and 10 µL of 0.1 N sodium hydroxide.  

With the shutter to the excitation lamp closed 100 µL of 30% hydrogen peroxide solution 

was added followed quickly by initiation of a time based data collection protocol.  When 

luminescence levels plateaued, a spectrum scan was initiated, which took a 3-fold 
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average at each wavelength.  The data was integrated as before and the percent increase 

from time 0 to 2 hours was calculated and plotted versus the initial concentration of 

cinnamaldehyde. 
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Chapter 3: A Diagnostic Colorimetric Sensor for Residual Pd(II) in 
Cross-Coupling  Reactions 

 

3.0 INTRODUCTION 

As has been stated previously, there are two main components to the design of a 

molecular sensing or signaling assay: the recognition unit and the signaling unit.  

Depending on the class of recognition element that is chosen, there are a number of 

intermolecular non-covalent or covalent interactions which can be employed to affect 

strong binding affinity between the host molecule and the designated target.  Chapter 1 

discussed in detail some of the nuances associated with one widely employed non-

covalent interaction, electrophilic coordination, when we looked at the effects of 

unusually strong hydrogen bonds and nonclassically oriented electrophiles on the 

stabilization of carbon acids.  Other commonly utilized binding elements are ion-pairing, 

other dipole-dipole interactions, hydrophobic effects, and to a lesser degree Van der 

Waals forces.   The second part of a sensing assay involves the signaling motif.  Chapter 

2 discussed the different types of signaling motifs often employed for molecular 

recognition based sensing, and saw the development of a new type of signal in 

peroxyoxalate chemiluminescence coupled with catalytic signal amplification.  Whereas 

Chapter 1 focused on binding forces and Chapter 2 on signaling modes, the current 

chapter will see the development of a full and complete molecular signaling application.   

Herein, we will discuss the development of a regenerative chemodosimetric assay 

for the detection of trace Pd(II) from industrial process cross-coupling reactions.  The 

chapter will begin with a brief introduction to chemodosimeters and their uses followed 

by a look at some of the general properties and uses of the squaraine class of organic 
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dyes.  Some previously unpublished preliminary studies on the thermodynamic and 

spectroscopic properties of the squaraine-based dosimetric complexes conducted by Dr. 

Karl Wallace, formerly of the Anslyn research group, will be presented as a corollary to 

the research presented by this author on the highly sensitive chromogenic and fluorogenic 

detection of Pd(II). 

3.1 CHEMODOSIMETERS 

As described in Chapter 2, the difference between a chemosensor and a 

chemodosimeter relies on the reversibility of the binding interaction between the host and 

the analyte.  If the binding which leads to signal transduction is reversible, as with non-

covalent supramolecular receptors and a few types of covalent interactions, the host may 

be termed a chemosensor.  If an irreversible or effectively irreversible reaction occurs 

between the host and analyte, the receptor is called a chemodosimeter.1  A caveat of this 

distinction is that because chemodosimeters almost always involve the formation of 

covalent bonds, they do not technically fall under the supramolecular umbrella.  One of 

the greatest advantages of chemodosimeters is that because an irreversible reaction 

occurs between the dosimeter and the target, extremely high specificity can usually be 

obtained.  The major disadvantage also arises from the irreversibility of dosimetric 

assays, in that they can only be used once.  Chemodosimeters are also restricted by the 

kinetic and thermodynamic viability of the sensing reaction.  As such, many dosimetric 

assays are conducted as time-based assays.  Unlike chemosensors which can measure 

analyte concentration at equilibrium or dynamically with changing analyte concentration, 

chemodosimeters are usually concerned with the detection of cumulative analyte 

concentration.2, 3   
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Figure 3.1 Two types of chemodosimeters. A) The analyte reacts with the dosimeter to 
generate a new signal producing complex which integrates both original 
pieces.  B) The analyte reacts with the dosimeter to change its constitution 
such that the signal generating species is liberated. 

Figure 3.1 shows the two major types of chemodosimeters.  The first type 

involves a system in which the analyte reacts with the dosimeter to generate a signal 

transducing complex (Figure 3.1A).  This type of dosimeter, also called a chemoreactand, 

is primarily used in the sensing of neutral and anion targets.4  The dosimeter molecules 

used in this type of assay are often colored or fluorescent dyes which undergo a spectral 

shift or turn-on/off upon creating a covalent bond with the target.  The second type 

(Figure 3.1B) occurs when the target analyte catalyzes or promotes the release of a 

chromo- or fluorogenic moiety from the original dosimeter molecule.  This method is the 

primary choice for cationic sensing as most target cations of interest are transition metals 

which are often capable of catalysis or the promotion of chemical reactions.  The assay 

described in Chapter 2 is an intricate version of this signal liberating type of 

chemodosimeter.  The application described in this chapter is a combination of both 

varieties. The following subsections take a short look at some examples of both types of 
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chemodosimeter to gain a better understanding of the strategies employed and the types 

of analytes for which this methodology is best suited. 

3.1.1 Signal Liberating Dosimeters 

This strategy for chemodosimetric applications is by far the most widely used.  As 

mentioned above, it is widely used for the detection of cationic metals, though several 

examples of anion detection have been recently reported.  Of the metal targets most often 

screened with these assays, mercury(II) and copper(II) have received the most attention.5-

15  Silver(I) has also been a target in some cases.5, 16  Often the mode of action for these 

applications involves a coordinative promotion of the removal or addition of an optical 

quencher/modifier.  This type of assay can also be used for the detection of various 

neutral and anionic nucleophiles through a substitution type reaction or through the 

anionic promotion of a cyclization reaction.  Cyanide, fluoride, dicarboxylates, 

phosphates, thiols, and other divalent sulfur containing targets have been sensed via the 

signal liberating methodology.17-26   

Scheme 3.1 

 

The first dosimeter reported for the selective detection of Hg(II) and to a lesser 

extent Ag(I) was reported by Czarnik in the early 90’s.5  The thioamide group of 3.1 

strongly quenches the anthracene fluorescence due to the enhanced contribution of the 

thiolate resonance form.  The introduction of the extremely thiophilic Hg(II) salt in the 

presence of water serves to desulfurize the thioamide to the non-quenching amide 3.2.  
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The stoichiometry for mercury was 1:1 by the formation of HgS and 2:1 for silver with 

the formation Ag2S.  Time based measurement showed 87% completion and 73% 

completion after 10 minutes with stoichiometric amounts of Hg(II) and Ag(I) 

respectively.  This study represented the first instance of a fluorescence turn-on for the 

detection of what would normally have been a quenching metal.  Since both HgS and 

Ag2S are insoluble in water, their precipitation prevented collisional heavy-metal 

quenching of the anthracene signaling unit. 

Scheme 3.2 

 

Rhodamine and fluorescein based dyes are attractive for use as dosimeters due to 

the built in turn-off mechanism through lactone or lactam formation and have been 

described in the detection of some metal cations.  The rhodamine B derivative 3.3 was 

designed as a selective chemodosimeter for the detection of copper(II) in aqueous media.6  

The N-amino lactam 3.3 is both colorless and nonfluorescent in acetonitrile/water 

mixtures.  Based on the fact that Cu(II) coordination, as opposed to other metals, has a 

unique rate enhancing effect on the hydrolysis of α-amino esters, a dosimetric assay was 

derived from the hydrazidolactam moiety in 3.3.  Addition of Cu(OAc)2 rapidly resulted 

in the pink color and characteristic emission of rhodamine B.27-29  It was found that in 

pure acetonitrile, the addition of excess Cu(II)-scavenging ligands such as cyclen resulted 

in quenched fluorescence and color once again, indicating an equilibrium process.  Upon 
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the addition of water, however, the hydrazide 3.4 was hydrolyzed to yield true rhodamine 

B as determined analytically.  Upon testing against other metals it was found that only 

Hg(II) showed any similar activity, yet at a much slower rate.  In all cases, down to 

submicromolar concentrations, full response by copper was achieved within 2 minutes, 

whereas Hg(II) samples took over 50 hours to complete. 

Scheme 3.3 

 

The rhodamine 6G based 3.5 and later the fluorescein based 3.7 were used for the 

detection of Hg(II) ions.13, 14  The highly thiophilic nature of mercury was exploited by 

incorporating the elements required for mercury assisted formation of the 1,3,4-

oxadiazole moiety in 3.6.30  Upon addition of Hg2+ salts, the spirolactam is opened by the 

formation of a chelate complex between the Hg2+ ion and the carbonyl and sulfonyl.  

Irreversible mercury assisted desulfurization via the formation of the 1,3,4-oxadiazole 

then occurs.  Titrations of Hg2+ salts showed a stoichiometric dependence of the 

dosimeter with mercury with saturation occurring at 1 equivalent.  For compound 3.5 the 
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detection limit in water-methanol solutions (80/20 v/v) was less than 2 ppb or roughly 

10-8 M and showed very little if any response to other metals.13  In a later study, the 

fluorescein analogue 3.7 showed similar reactivity.  Studies on the fluorescence intensity 

versus reaction time indicated that effective completion was reached after less than 10 

minutes.  The fluorescein derivative was also found to be more stable to aqueous 

conditions and had a sub-nanomolar detection limit.14   

Scheme 3.4 

 

Quenching of fluorescence upon reaction with analyte has also been used in 

dosimetric assays.  The acridine derivative 3.8 was synthesized as a selective cyanide 

anion detector.23  In promoting media (95/5 v/v DMSO:H2O), in the presence of cyanide 

anion, 3.8 undergoes a stark colorimetric change from orange to very pale blue 

accompanied by a nearly complete turn off of fluorescence emission.  The CN 

nucleophilically adds at the 9-position, and in the presence of oxygen, is further displaced 

by oxidation of the acridine to the acridinone 3.9.  3.8 was screened against a variety of 

other anions and nucleophiles, all of which showed no change in the absorbance or 

fluorescence spectra of the acridine.  The sensitivity was found to be less than 

micromolar by naked eye colorimetric detection. 
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Scheme 3.5 

 

Scheme 3.5 shows a recent class of chromogenic dosimeters developed for 

selective anion recognition.24  The “inactivated” structure 3.10 has an absorbance 

maximum of roughly 380 nm (pale yellow) in buffered pH 6 dioxane/water solutions.  It 

was found that cyclization to the 2,4,6-triphenylpyrylium ion 3.11—which induces a 

stark color change to magenta—was pH dependent, and was facilitated in the absence of 

anionic triggers in the pH 2-5 range.  This assay is somewhat unique in that the signal 

generating reaction is not induced by a covalent interaction of the target with the 

dosimeter.  Rather, this approach combines the function of chemodosimeters with 

supramolecular binding.  In the presence of ATP and, to a lesser extent sulfate, the 

binding mode of the anions is such that sequestration of the anilino lone pair occurs at 

higher pH than found with the receptor alone.  In other words, binding of the guests raises 

the pKa of the aniline nitrogen.  It was found that only ATP and sulfate were capable of 

inducing the color change, while solutions containing halogens, phosphate, GMP, and 

ADP, remained yellow.  These dosimeters were later adapted to sense for 

conformationally constrained dicarboxylates, such as oxalate, maleate and malonate, 
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which again induced the dosimetric reaction through noncovalent interactions.22  In this 

case, the binding mode was determined to be in a tweezer-like fashion through formation 

of strong hydrogen bonds to the enolic tautomer of the 1,5-diketone moiety.  Analogues 

of 3.10 were found to be selective for maleate over fumarate based on the conformational 

restriction of the double bond.  In addition, the dicarboxylates were to found induce the 

formation of the pyrylium cation in a catalytic fashion.  As briefly mentioned in the 

concluding remarks in Chapter 2, this particular dosimeter could be coupled as an 

auxiliary to a separate molecular recognition event which releases these dicarboxylates to 

act as organic catalysts in a signal amplification assay. 

3.1.2 Complex Forming Dosimeters 

The examples above—which take advantage of the unique reactivity of their 

targets to induce an optical change without incorporating that target into the signaling 

motif—represent the majority of chemodosimetric assays described in the literature.  

However, there are several examples in which the covalent or other strong, essentially 

irreversible attachment of the target to the sensing molecule is the trigger for optical 

change.  Whereas the signal liberating motif has been more focused on cationic 

recognition, the complexation approach has seen fairly common use in the detection of 

neutral or anionic targets.  The nucleophilic nature of many anions and some neutral 

functional groups (i.e. thiols, alcohols, amines) makes them suitable targets for either 

removing a quenching moiety by substitution or inducing quenching or color change by 

addition or substitution. 
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Scheme 3.6 The crystal structure of 3.13 is reprinted from ref. 31 

 
 

 

Perhaps the most widely targeted anion for dosimetric detection has been fluoride.  

The spectral properties of trianthrylfluorosilane 3.12 were studied as a function of 

hypercoordination in the presence of fluoride anion.31  The affinity of silicon for fluoride 

is well known, and the formation of hypercoordinate “Ate-complexes” with fluoride is a 

widely used technique for the deprotection of alkylsilane protecting groups in organic 

synthesis.  While there was a slight (10 nm) chromogenic shift in the absorption spectrum 

with increasing fluoride concentration, the changes in fluorescence were much more 

striking.  It was found that upon reconfiguration from the four coordinate tetrahedral 

structure to the trigonal bipyramidal 3.13, the emission showed a 20 nm hypsochromic 

shift and a nearly 20-fold increase in quantum efficiency (Φ3.12 = 0.033 to Φ3.13 = 0.64).  

Based on controls with varyingly substituted arylsilanes, the large shift was attributed 

less to the hypercoordination and more to a lengthening of the Si-C bonds upon 

pyramidalization which increased the distance between the anthryl groups and optimized 

their through-space interactions.32 
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Boron also has a high affinity for fluoride ions, and several dosimeters have been 

designed to exploit this interaction.  In a series of boro-centric structures similar to 3.14 

and 3.15, a distinct colorimetric change was observed upon introduction of fluoride.33  In 

an opposite fashion to the silyl receptor above, the addition of fluoride causes the color to 

turn off due to a conformational change from trigonal planar sp2 boron to the sp3 

tetrahedral boronate anion.  Thusly, solutions of 3.14 turned from orange to colorless in 

the presence of fluoride, while the further π-extended 3.15 exhibited a marked 

hypsochromic absorbance shift and turned from bright yellow to orange.  The 

introduction of other anions such as chloride, bromide, iodide, perchlorate, and 

tetrafluoroborate showed no color change.   
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Another boron based fluoride detector is the boronic acid 3.16.34  It was found 

that the addition of potassium fluoride in methanolic solutions of 3.16 induced a color 

change from orange to a deep red wine color.  Other halides induced only an increase in 

absorbance at the original wavelength due to changes in the dielectric medium.  The color 

change was attributed to the formation of the monofluoroboronate anion.  Interaction of 

the aniline nitrogen with the boronate is suspected to alter the energies of the n and π* 

orbitals involved in the internal charge transfer associated with the color of azo-dyes.   

This receptor has also been studied as a saccharide sensor through the formation of 

boronic or boronate esters with the diol functionalities found in nearly all saccharides.35  

However, due to the highly reversible nature of boronic ester formation, real-time 

concentration measurements can be achieved for diol recognition with boronic acids.  As 

such, when used for saccharide and other diol detection, boronic acids are categorized as 

chemosensors. 

Scheme 3.7 

 

Though fluoride has received a good deal of attention in this arena, other anions 

have been targets for this type of chemodosimeter.  Using a similar set of chromogenic 

reagents as those presented in Scheme 3.5, the presence of sulfide anion can be 

selectively detected in aqueous solutions.36  As described above, the 2,4,6-
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triphenylpyrylium derivatives such as 3.11 and 3.17 show a unique intramolecular CT 

band near 540 nm which gives them a distinct magenta color.  Unlike other pyrylium 

chromophores, which are usually yellow, the presence of the aniline donor moiety allows 

for the CT band to appear.  Utilizing known chemistry, the pyrylium ion 3.17 can be 

converted to the thiopyrylium analogue 3.18.37  The conversion is pH dependent once 

again and requires two steps, one at basic pH to allow the attack of the sulfide anion, 

followed by acidification to facilitate ring closure.  Upon formation of the thiopyrylium 

core, the solution changes from magenta to blue, indicating a significant bathochromic 

shift in the CT band.  This color change was only observed for sulfide anions, though the 

presence of amines, cyanide, and the constrained dicarboxylates discussed above was 

shown to be inhibitory and the blue color upon acidification was not as strong. 

Scheme 3.8 

 

Neutral substrates are also detectable through dosimetric methods.  The 

tricyanovinyl azo-dye 3.19 has been used as a sensor for primary amines.4  Using a 

dipstick type assay in which 3.19 was adsorbed in PVC plasticized with 2-

nitrophenyloctyl ether the absorbance of the dye shifted from 642 nm (blue) to 470 nm 
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(yellow-orange) when the test stick was dipped into solutions containing primary amines.  

The color change arises from nucleophilic displacement of the benzyl cyano group by the 

amine to effectively generate an equivalent of hydrogen cyanide, and the amine appended 

dye, 3.20. 

Of particular pertinence to the research described in this chapter, a series of 

squaraine dyes have been shown to have selective interactions with cyanide and thiols 

under certain conditions in water.38, 39  Under basic conditions, the blue squaraines 3.21 

were decolorized on the addition of cyanide anion, though the presence of other anions 

had little to no effect.  In a later study at pH 6, it was found that selectivity for thiols was 

obtained.  In a screen against nearly all of the natural α-amino acids, only cysteine 

showed decolorization of the squaraine.  Attack of the electron deficient central four 

membered ring by the respective nucleophiles causes a break in the conjugation and a 

breakdown of the intramolecular charge transfer that is responsible for the blue color.  In 

the latter study, it was found that the squaraine-based chemodosimeter was capable of 

accurately detecting the concentration of aminothiols in human blood.  This interaction is 

exploited in the research discussed below and hence, and understanding of the 

photophysical properties and common uses of squaraine dyes is necessary and will be 

discussed in more detail in the following section. 

Scheme 3.9 
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3.2 SQUARAINE DYES 

Squaraine dyes result from the coupling of electron rich aromatic nucleophiles 

with squaric acid.  The first synthesis and description of this class of organic dye was 

reported by Treibs and Jacob in the mid-60’s and they were called at the time 

cyclotrimethine dyes.40  The molecules have undergone a number of different name 

changes, yet for the last 25 years or so, a systematic nomenclature based on the term 

squaraine has been adopted almost entirely.41  The most common synthetic route towards 

symmetrical squaraines is via electrophilic aromatic condensation under azeotropic 

conditions as originally described by Treibs and Jacob.  Scheme 3.10 shows this synthetic 

route in which the major product is a 1,3-disubstituted squaraine such as 3.23.  Other 

synthetic routes to symmetrical squaraines have been proposed.  For use in some 

photoconducting applications, the squaraines derived from squaric acid are unsuitable, 

and synthesis from alkyl squarates has been described.42  Starting with squaric acid 

diesters can also selectively yield 1,2-disubstituted dyes.43 

Scheme 3.10 

 

Unsymmetrical squaraines have also been synthesized through several routes.  

One of the major routes involves a [2+2] cycloaddition of an aryl ketene with 
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tetraethoxyethylene to ultimately yield after acidic reflux the monoadduct 3.24.44  This 

intermediate can then be condensed with various other nucleophiles to give the 

unsymmetrical product.  A second route to the 3.24 intermediate was described involving 

electrophilic aromatic substitution of the aryl nucleophile with 1,2-squaraine dichloride.45  

A large number of both symmetrical and unsymmetrical squaraines have been 

synthesized for a number of differing applications.  The discussion below is somewhat 

limited in scope and is confined to a small subset of bis-phenyl squaraines.  For more 

information on other types of squaraines and their properties, several excellent reviews 

have been published.46, 47 
 

 

3.2.1 Photophysical Properties and Applications 

3.2.1.1 Solvent Effects 

Squaraines are often described as donor-acceptor-donor type structures in which 

the donors are the electron rich aryl groups and the acceptor is the central C4O2 moiety. 

These dyes exhibit strong absorbances and can be quite fluorescent.  Often squaraines are 

described by the cross-conjugation resonance structures shown in scheme 3.11, however 

crystallographic evidence of the common anilino-squaraines suggests that the true 

structure contains a considerable amount of cyclobutadienylium dicationic character.  On 

the other hand the C-C bond lengths of the aromatic ring also show lengths of 1.366 Å 

indicative of quinoid character.48  This somewhat contrasting evidence suggests that the 

true form is a complex mixture of the two cross-conjugated resonance forms and the 
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dication form as in 3.23.  MNDO and CNDO semi-empirical calculations have confirmed 

this complex electronic nature.  The aryl groups again showed quinoid-like character.  

Evidence for the cyclobutadienylium character arose from the fact that the ground and 

excited states of squaraines exists as charge transfer states, which are confined mostly to 

the interior C4O2 moiety.49  It was found that abut 80% of the CT character arises from 

donation by the oxygens while only 20% comes from the outer donors.  However, this 

confined CT character along with the extended π-delocalization gives rise to the 

characteristic sharp low energy solution phase absorbance, which is characteristic of all 

squaraines. 

Scheme 3.11 

 

 

 A result of the reduced effect of the remote donor groups in CT states, is that 

within the same class of squaraines (i.e. anilines vs. anisoles) changes to the donor group 

have only a small effect on the photophysical properties of these dyes.  Table 3.1 lists the 

absorbance spectral properties for some symmetrical aniline based squaraines in 

methylene chloride.  Notice that the full range of absorbance values only shifts by about 

25 nm over a myriad of differing substitutions.  The series from Sq1-Sq5 only shifts by 

12.4 nm even though the stabilizing power of the aniline donors is increasing 

significantly.   

It has been postulated that the small bathochromic shifts that arise from increasing 

the chain length of the N-alkyl substituents arise not from better donation into the CT 
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state, but rather from an increase in absorption from a solute-solvent complex.50  From 

Table 3.1, several anomalies can be found to discount the idea that the spectral changes 

are resultant of CT enhancement due to structural changes in the peripheral donors.  For 

instance, one would expect the addition of a strongly donating group at the C-2 position 

(X) to give rise to large shifts in the absorbance maxima and εmax.  However the change 

from Sq7-Sq9 is actually less pronounced than that from Sq1-Sq4 suggesting that the 

addition of the hydroxyl group at C-2 is less important to the photophysical properties of 

these squaraines than the N-alkyl groups. 

Table 3.1 Spectral data of symmetrical aniline squaraines in methylene chloride.50 

 
 

Squaraine Substituents λmax (nm) log εmax 
Sq1 R=CH3, X=H 627.6 5.49 
Sq2 R=C2H5, X=H 634.1 5.51 
Sq3 R=C3H7, X=H 638.8 5.53 
Sq4 R=C4H9, X=H 640.0 5.53 
Sq5 R=C18H37, X=H 641.8 5.52 
Sq6 R=CH3, X=F 630.0 5.09 
Sq7 R=CH3, X=OH 635.0 5.52 
Sq8 R=C2H5, X=OH 641.1 5.57 
Sq9 R=C4H9, X=OH 648.2 5.56 
Sq10 R=CH3, X=CH3 643.5 5.42 
Sq11 R=C2H5, X=CH3 651.0 5.49 
Sq12 R=C4H9, X=CH3 657.1 5.47 
Sq13 R=CH3, X=OCH3 631.8 5.40 
Sq14 R=C2H5, X=OCH3 638.8 5.48 
Sq15 R=C4H9, X=OCH3 643.5 5.40 
Sq16 R=CH3, X=C2H5 643.0 5.42 
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This implication is further supported by looking at derivatives with the same N-

alkyl substituents but varying C-2 substitution.  If the donor-acceptor-donor (D-A-D) CT 

enhancement is occurring the expected magnitude of the bathochromic shift with respect 

to Sq1 should go in the order OH ~ OCH3>F>CH3 ~ C2H5.  However the order is 

reversed experimentally.  Sq13 is only shifted by 4.2 nm whereas the shifts observed for 

the alkyl substituted Sq10 and Sq16 are close to 16 nm.  The large shift associated with 

the alkyl substituted examples is attributed to a conformational change to a non-planar 

ground state.  Interestingly, this leads to a decrease in the CT donation by the peripheral 

groups as evidences by lower εmax values for Sq10-12 and Sq16.  The small shifts with 

the strongly donating groups such as hydroxyl and methoxy lend some doubt to the idea 

that these shifts arise from increasing CT donation. 

Strong evidence that the formation of solute-solvent complexes results in these 

optical properties came from a series of spectral determinations of Sq4 in a myriad of 

differing solvents.50  It was found that a strong linear correlation between the absorbance 

λmax and the coordinating ability of the solvent (π*-value) exists.  The π* solvent polarity 

scale is arranged based on a solvent’s ability to stabilize the excited state of a molecule 

and is generally a good prediction of solvatochromicity.51  Note that this scale does not 

necessarily adhere to the dielectric polarity of a solvent.  The absorbance maximum for 

Sq4 could be shifted from ~620 nm to nearly ~660 nm.  These solvatochromic effects 

were more pronounced in the fluorescence emission spectra.  Switching to fluorescence, 

in less coordinating solvents such as diethyl ether and p-xylene, three distinct bands can 

be seen in the emission of nearly all squaraines.  These emission bands have been termed 

the α, β, and γ bands and have been determined to correspond not to vibrational fine 

structure, but rather to three different environmental and conformational states of the 
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squaraine.  The α-band, which has the smallest Stokes shift, corresponds to Franck-

Condon type relaxation of the uncomplexed squaraine in solution.  This determination 

was made by noting that as conditions became more favorable for solvent coordination 

(i.e. lengthened N-alkyl chains, greater solvent π* value), the α-band disappeared.  

Temperature effect experiments with Sq4 in diethyl ether found that at room temperature, 

absorbance and emission were dominated by the uncomplexed squaraine, but at 77 K, 

both excitation and emission were significantly red shifted indicating the formation of a 

temperature dependent state which exhibited stronger stabilization of the CT.  The 

resulting emission λmax at low temperature resembled the β-emission at room 

temperature, while the absorbance was characteristic of Sq4 in solvents with high π* 

values.  

The origin of β-emission was determined with a mixed solvent experiment using a 

ternary system of diethyl ether, n-hexane and chloroform.  As chloroform was titrated 

into an Sq4 solution in ether and hexane, both the absorbance and emission spectra 

showed a marked bathochromic shift.  In fact, at low concentrations of chloroform, 

isosbestic and isoemissive points were observed and indicated the formation of a distinct 

complex between the coordinating solvent, chloroform and the squaraine with a 1:1 

stoichiometry.  A further shift was seen at higher concentrations of chloroform and 

fidelity of the isosbestic and isoemissive points was lost indicating preferential solvation 

of the squaraine with the coordinating solvent.  The emission band which grew in was 

determined to be the β-band and was said to originate from emission of the solvent-solute 

complex.  The final emissive band, the γ-band, was postulated to arise from emission of a 

twisted, non-planar conformation of the squaraine as evidenced by its pronounced 

observation with squaraines such as Sq10-15, which were previously determined to have 

some amount of non-planarity. 
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The explanation of a solvent-solute complex giving rise to the spectral shifts upon 

N-alkyl chain lengthening is also supported by the previously mentioned semi-empirical 

molecular orbital calculations.49  The electronic structure of the squaraine molecule was 

found to be highly polarized, with the central ring having a localized charge of +0.37 e 

and the oxygens and nitrogens have localized charges of -0.35 e and -0.4 e.  Despite the 

significant charge on the peripheral nitrogens, the effective increase in positive charge 

during the S0 to S1 transition is only 0.019 e as opposed to 0.094 e for the central 

oxygens.   Due to the disparity between the highly polarized nature of the periphery and 

the amount of effective charge transfer in the electronic transition, it was postulated that 

stabilizing the localized charges would result in an increase in the D-A-D CT character of 

the molecule.  Hence, forming a solvent-solute complex, whose stabilizing effects would 

not be as strong as adding donating groups directly to the molecule, could account for the 

small increase in CT character that gives the bathochromic shift in the absorbance. 

Similar effects have been observed for other types of squaraine dyes and though 

substituent effects are somewhat small within the same class of squaraines, the 

differences between classes (i.e. aniline versus phenol) can be quite large.  For instance, 

phenol-based squaraines such as 3.25 show remarkable hypsochromic absorbance shifts.  

In ethanol, 3.25 has a λmax of 510 nm even though the hydroxyl donating groups are much 

stronger than the aniline nitrogens of the squaraines in Table 3.1.52  The emissive 

properties of phenolic and anisolic squaraines are greatly reduced as well.  Whereas the 

quantum efficiencies of the aniline squaraines are generally quite high (0.2-1.0), phenolic 

and anisolic squaraines tend to have very low fluorescence yields.46   
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3.2.1.2 Aggregation and Solid State Applications 

In addition to the solvent complexes which are characteristic of most squaraines, 

these dyes have also been shown to aggregate with themselves even at low 

concentrations.53-55  The aggregation can occur in two ways, which yield opposite 

chromatic effects.  In accordance with exciton theory, upon aggregation, the monomeric 

excited state energy level splits into two new energy levels, one that is higher and one 

that is lower in energy than the monomeric form.56  Depending on the orientation of the 

two dye molecules, only one of the energy transitions is electronically allowed.  For 

head-to-tail “J-type” dimers, the higher energy transition is forbidden and this type of 

aggregate will see a bathochromic absorbance shift corresponding to the lower energy 

transition.  Conversely, the low energy transition is forbidden for face-to-face “H-type” 

aggregates, which leads to a hypsochromic shift corresponding to a transition to the high 

energy excited state.   

The type of aggregate formed is dependent on the phenyl substituents.  For 

instance, phenolic squaraines such as 3.25 often show formation of J-type aggregates at 

high concentrations.  Studies in acetonitrile show that at low concentration (<5 µM), 3.25 

exists as a monomer with maximum absorbance at 480 nm with εmax = 6.5 x 104 L 

cm-1mol-1.  However, higher concentrations see the growth of a new, more intense band 

centered at 563 nm.57  The bathochromic shift indicates the formation of head-to-tail 

aggregates for which the lower energy transition is allowed.  Furthermore, these 

aggregates dissociated in the excited state, and the emission occurs only from the 
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monomer.  Presumably, the aggregation arises from intermolecular hydrogen bonding 

among the peripheral hydroxyl groups since the aggregates were shown to dissipate upon 

addition of a competitive solvent such as water. 

Anilino squaraines have also been shown to aggregate in solution, however the 

mechanism of dimerization is quite different from phenolic squaraines.  A study using 

Sq9 from Table 3.1 was conducted on the solvent effects on aggregation.58  Sq9 exhibited 

a strong, sharp absorbance at 664 nm with a slight hypsochromic shoulder in pure DMSO 

to 70% DMSO-water (see titration data below for this curve shape).  With increasing 

concentrations of water, two different types of aggregates formed.  Between 50-70% 

DMSO-H2O, the main absorbance peak shifts to ~530 nm with a significantly reduced 

extinction coefficient.  The hypsochromic and hypochromic shifts were attributed to the 

formation of H-type face-to-face aggregates for which only the high energy transition is 

allowed.  A second type of aggregate occurred in higher water concentrations and gave a 

broad peak that spanned from 550-700 nm.  This aggregate form was still mainly blue 

shifted and was attributed to intermolecular interactions between the electron-rich anilino 

moieties and the electron-deficient C4O2 core.  This type of interaction has less face-to-

face character and as a result induces less hypsochromicity.  In a later study, several other 

anilino squaraines were subjected to similar tests.59  In most cases, formation of the first 

H-type aggregate was observed, and on squaraines with longer N-alkyl chains, the second 

type of dimer was seen.  The conclusion was that the full H-type aggregate is 

thermodynamically more stable and that formation of the lesser aggregate occurs under 

kinetic control.  The small shoulder observed in the pure DMSO samples was also 

attributed to a small amount of H-type aggregation.  Clearly these aggregation effects 

arise more from hydrophobic interactions than hydrogen bonding.  For the purposes of 
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the research discussed below, aggregation effects are minimal, but any that are formed 

are promoted by hydrophobic/van der Waals forces. 

Much of this discussion has focused on the importance of solvent in the 

photophysics of squaraine dyes.  In solution, as shown below, squaraines exhibit sharp 

absorption and emission bands, however in the solid state, the absorbance is 

panchromatic.47  For instance, the sharp absorbance bands between 630 and 660 of the 

squaraines in Table 3.1 give them intense blue colors indicative of long wavelength 

absorption.  However in the absence of solvent, the dyes often have a metallic green color 

indicative of absorbance both at long wavelength and at short wavelength.60    Though the 

research described below deals with solution phase chemistry of squaraines, this class of 

organic dye has seen much wider application for its solid state properties. 

Due to their highly polarized nature and panchromatic solid state absorption, 

squaraines have desirable semiconductive and photoconductive properties.  These 

properties have led to a large number of device applications such as photosensitizing 

materials in xerographic devices and optical sound recording devices, light harvesting 

layers in organic photovoltaic cells, electroluminescent diodes, and in the case of 

unsymmetrical squaraines, nonlinear optical devices.61-70  More recently, polymeric 

squaraines have been utilized for improved performance in many similar types of 

devices.71, 72  The alternating regions of donor and acceptor moieties along the polymer 

back bone is useful for many semiconductive and photoconductive devices.  In solution 

phase, squaraines have seen use as dyes for several biological and ionic sensing 

applications.73-95  The research described below applies the advantageous properties of 

solution phase squaraine dyes with the strength and sensitivity of a chemodosimetric 

analysis to the problem of detecting residual heavy metals in industrial process chemistry 

products such as pharmaceuticals.   
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3.3 DESIGN OF A PALLADIUM SENSOR 

Palladium complexes represent some of the more useful facilitators of organic 

transformations known.  Palladium(II) salts, such as PdCl2,96 Pd(OAc)2
97 and 

Pd(PPh3)2Cl2,
98 are predominantly used as oxidizing reagents, as well as catalysts for 

cross-coupling reactions.  The wide array of commonly used reactions catalyzed by these 

complexes,99 such as Suzuki, Heck, and aromatic amination reactions, are processes that 

would otherwise be infeasible or impractical.  Many of these methodologies are widely 

utilized in pharmaceutical research and development for the discovery and production of 

drugs.100  However, governmental restrictions on the levels of residual heavy metals in 

end products are very strict.  Typical contamination levels of palladium remaining in the 

organic phase after experimental work up range from 5 to 100 ppm.99  Due to its utility as 

well as its inherent stickiness, palladium poses a difficult challenge both for its detection 

and removal.  The most popular current method for detecting the presence of such metals 

utilizes ICP-MS to vaporize the metal ions and obtain a quantitative mass spectrum.*  

Though very precise even in the ppt and ppq range, the instruments are somewhat 

expensive to run, and the need for highly acidic samples in palladium detection tends to 

corrode the cones faster than normal.  Hence, new, milder methods for the sensitive 

detection of trace palladium is desirable. 

As discussed above, exploitation of reversible covalent bond formation for use as 

a tool in the detection of analytical targets has become an area of much interest in the last 

few years.88  Based on the work of Soto and coworkers shown above in Scheme 3.9, we 

postulated that a sufficiently thiophilic metal, such as palladium would be capable of 

scavenging the thiol and restoring the conjugation and CT character to the parent 

squaraine (Scheme 3.12).38, 39  Concurrent with our work in this area, Soto and coworkers 

                                                 
* According to sources at Merck Pharmaceuticals 
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reported a similar system for the selective detection of mercury in aqueous media.85 

Whereas Soto’s work shows selectivity for mercury in aqueous solutions, our own work 

in organic media suggests that little selectivity among heavy metal(II) salts is achieved.101  

Preliminary results show that the current method is sensitive not only to Pd(II) but also 

several other commonly used transition metals such as tin and common pollutants such as 

lead, cadmium, and of course mercury.  For the application we envision, however, it is 

unlikely that a lack of specificity will be detrimental as generally only one or two 

different metals will be present in a sample taken from a pharmaceutical process plant. 

Scheme 3.12 

 

3.3.1 Synthesis and Characterization of 3.26 

The synthesis of the squaraine dye 3.26 was prepared in a one pot procedure as 

described previously (Scheme 3.10).48, 55  Two equivalents of N,N-dibutylaniline were 

refluxed with one equivalent of squaric acid under Dean-Stark conditions in 1:1 n-

butanol/toluene for 6-8 hours at which time the solution is a deep blue-green color.  

Literature procedures describe the purification as a simple extraction and solvent 

removal, however, the low yield always associated with 3.26 forced a more stringent 
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work up method to remove the myriad side products.  Column chromatography of the 

resulting residue with hexanes and ethyl acetate produced a green solid which was 

recrystallized from methylene chloride and hexanes to give small, fluffy, blue-green 

needles.  Compound 3.26 was characterized by 1H NMR, 13C NMR, and high-resolution 

mass spectrometry, which were all consistent with the proposed structure.  Compound 

3.26 is symmetrical and shows very simple 1H and 13C NMR spectra.  Both low and high 

resolution ESI mass spectra show a significant amount of dimerization with a 70% 

intensity peak at 976 m/z. 

UV-Vis spectral analysis of 3.26 in DMSO is shown in Figure 3.2.  Beer’s law 

analysis shows a λmax at 656 nm over the concentration range tested.  The absorbance 

curve is unsymmetrical with a slight hypsochromic shoulder.  This shoulder, as 

mentioned above, corresponds to the slight amount of H-type face-to-face dimer present 

in solution.  Linear adherence to the Beer plot was maintained as high as 2 absorbance 

units.  The molar extinction coefficient in DMSO was determined to be 2.3 x 105  L mol-

1cm-1 from the slope of the plot of absorbance at 656 nm versus the concentration of 3.26.   
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A) 

 
B) 

 
 

Figure 3.2 Beer’s law analysis of squaraine 3.26 from 9 x 10-7 M to 9 x 10-6 M.  
Linearity is maintained as high as 2 absorbance units and an extinction 
coefficient of 2.3 x 10-5 L mol-1cm-1 was obtained.102   

3.3.2 Understanding the Squaraine-Thiol Interaction 

Though several reports have now been published on the interactions of squaraines 

with various nucleophiles, very little is known about the affinity of the nucleophile-

squaraine interaction.38,39  Since work with cyanide anions and thiols by Soto and 
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coworkers was conducted in water, the interaction was perceived to be complete and not 

at equilibrium.  However, our studies have shown that in organic media, this “dosimetric” 

system is fairly dynamic and has equilibrium-like properties.  Thus, an understanding of 

this equilibrium is of considerable importance. 

3.3.2.1 1H-NMR Studies   

A former group member, Dr. Karl Wallace, conducted a series of 1H-NMR 

studies to fully characterize the nucleophilic addition of the thiol nucleophile to the 

central four-membered ring.  The NMR studies and previous reported literature have 

shown that squaraine molecules desymmeterize upon the addition of nucleophiles.39, 85, 

101, 103, 104  1H-NMR titration studies are thus a viable tool in determining the stability of 

the complex.  For the conditions to be optimal for the nucleophilic attack in chloroform a 

base was added to facilitate deprotonation of the thiol for greater nucleophilicity.  In 

these preliminary studies, the base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was 

employed. 

Upon the addition of small aliquots of ethanethiol in the presence of DBU (Figure 

3.3) to a 37 mM solution of 3.26, four distinct signals appear at δ 6.51, 6.59, 7.48 and 

7.74 ppm, and are assigned to the aromatic protons of the 3.27 complex.   The aromatic 

protons for 3.26 appear at δ 6.71 and 8.36.  The immediate appearance of signals 

assigned to the aromatic hydrogen atoms upon each addition of thiol, suggests that 3.27 is 

a tightly formed covalent complex. 
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A) 

 
B) 

 
 

Figure 3.3 1H-NMR titrations of 3.26 with ethanethiol in the presence of DBU in 
CHCl3-d.  [3.26]0 = 37 mM; [DBU]0 = 37 mM.101 

3.3.2.2 van’t Hoff Analysis 

Further studies on the thermodynamics of the 3.27 complex were later carried out 

by this author through the use of van’t Hoff techniques.  Chemical insight into the 

formation of 3.27 can be gained by measuring the enthalpy (ΔH) and entropy (ΔS), by 

determining Keq at different temperatures.  A van’t Hoff analysis garners a plot of lnKeq 
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versus 1/T which gives ΔH from the slope of the graph and ΔS is from the intercept.  In 

this case, 3.27 was first generated by reaction of 1 equivalent each of 3.26 and ethanethiol 

in DMSO facilitated by the 0.75 equivalents of the base 2,8,9-trimethyl-2,5,8,9-tetraaza-

1-phosphabicyclo[3.3.3]undecane, 3.31 (a Verkade base).  The use of this base over DBU 

will be discussed in more detail in a later section.  The absorbance of unbound 3.26 was 

measured at regularly increasing temperature from 288.5 K to 317.8 K to monitor the 

change in the complex formation.  Higher temperatures were not used due to the low 

boiling point of ethanethiol.  The results are shown in Figure 3.4, and they are quite 

remarkable.  Not only did temperature affect the intensity of the absorbance, but there 

was a slight hypsochromic shift from 656 nm to 654 nm over even this limited 

temperature range.  This blue shifted absorbance indicates that the solvent-solute 

complex with 3.26 formed in DMSO is breaking up at the relatively low temperatures 

used here. 
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A) 

 
B) 

 

Figure 3.4 van’t Hoff analysis of 3.27 at 1.2 x 10-5 M. A) Spectral data of free 3.26 at 
temperatures from 288.5 K to 317.8 K showing a break up of the solvent-
solute complex.  B) van’t Hoff plot of lnKeq vs. 1/T showing an overall 
association constant of 2.9 x 106 M-1.102 

The thermodynamic parameters garnered from the van’t Hoff plot in Figure 3.4B 

are also quite interesting.  The temperature dependent equilibrium constants were derived 

as follows.  The concentration of free 3.26 was calculated from the absorbance at 656 nm 

based on the extinction coefficient derived above.  The bound complex 3.27  and free 
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thiol concentrations were extrapolated from the concentration of free 3.26 assuming a 1:1 

association of thiol with the squaraine.  With these concentrations the equilibrium 

constants at each temperature could be calculated as Keq = [3.27]/([3.26][RSH]).  The plot 

of the natural log of these values versus 1/T gives the plot shown in Figure 3.4B.   

The ΔH determined from the slope of the van’t Hoff plot was found to be -2.6 

kcal/mol whereas ΔS taken from the intercept is 20.7 cal mol-1K-1.  Thus at 298 K, this 

association is entropy driven with TΔS contributing 6.2 kcal/mol versus only -2.6 

kcal/mol from the enthalpy term.  The overall ΔG° at 298 K is -8.8 kcal/mol with an 

association constant of 2.9 x 106.  At first glance, these results seem to be quite odd.  

However, looking back at the mixed solvent study conducted on this same squaraine 

derivative at high concentrations of the coordinating solvent, a preferential solvation 

phenomenon occurred in which a 2:1 or 3:1 solvent-solute complex was forming, which 

shifted the absorbance out of the isosbestic region.50  Hence, if the introduction of a 

nucleophile to the electron deficient core serves to break up a higher order solvent-solute 

complex, the solvent release upon binding would be more entropically favorable than the 

cost of bringing the squaraine and the nucleophile together.  It is also reasonable to 

imagine that the formation of this bond would not be greatly enthalpically favorable.  The 

bond dissociation energies of C-S single bonds are generally quite low, usually less than 

75 kcal/mol, compared even to aliphatic S-H bonds which are usually around 83 

kcal/mol.105  Couple that with the breaks in conjugation and favorable charge transfer 

interactions that accompany the formation of 3.27, and it becomes plain that any 

enthalpic gain in this reaction is surprising.  Perhaps the most striking observation is how 

rare it is to find entropically driven associations in supposedly non-competitive media 

such as DMSO.   
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3.3.3 Initial Attempts at Pd(II) Detection 

Initial work on the Pd(II) chemodosimeter was performed again by Dr. Karl 

Wallace.  Based on the Beer’s Law and van’t Hoff analyses, it was determined that when 

ethanethiol and 3.26 were mixed in equimolar quantities in DMSO, the amount of free 

3.26 at equilibrium was roughly 1/10 the total concentration.  In order to keep the 

absorbance intensity within the limits of Beer’s Law, the total concentration of 3.26 both 

bound and unbound should be less than 105 M.  However, in an effort to develop “naked 

eye” qualitative detection of palladium, the concentrations used were such that a large 

color turn-on would occur at low analyte concentration.  Initial studies were conducted in 

a DMSO-based solution containing a small amount chloroform for solubility purposes.  

As before, the 3.27 complex was prepared by reacting a thiol (ethanethiol) with a solution 

of 3.26 in a one-to-one ratio in the presence of a suitable base (DBU) to prepare a 

complex in situ that has a concentration of 47 µM.  Upon completion of the reaction, the 

absorbance at 656 nm is greatly reduced or “switched off”.  The formation of 3.27 gives 

rise to a new absorbance band centered at roughly 317 nm.  Due to the transient nature of 

this complex, an accurate extinction coefficient could not be determined, however, it is 

much less absorbent than the parent squaraine 3.26. The formation of 3.27 is kinetically 

slow and takes approximately 24 hours to come to equilibrium.  The 3.27 complex must 

be formed prior to Pd(II) analysis and can be stored briefly for use.  When stored in the 

dark, the solution is stable for roughly 48 hours and is able to retain a response to Pd(II). 

3.3.3.1 UV-Vis Titrations 

Two palladium salts were used in the initial study.  Pd(OAc)2 and Pd(PPh3)2Cl2 

were chosen due to their extensive use in cross-coupling reactions.  Titrations of both 

palladium species into solutions of 3.27 formed with DBU are shown in Figure 3.5.   
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A) 

 
B) 

 

Figure 3.5 Titrations of A) Pd(OAc)2 and B) Pd(PPh3)2Cl2 into solutions of 3.27 at 2.35 
x 10-5 M in DMSO.  3.27 complexation was facilitated with 1 equivalent of 
ethanethiol and 2 equivalents of DBU.101 

Upon the addition of the palladium(II) salts, the band at 317 nm decreases and the 

band at 656 nm increases, switching “on” the color.  An isosbestic point is observed near 

344 nm indicating the interconversion of two distinct species with absorbances in that 

region.  The small band that appears at 373 nm was assigned to a palladium-thiol species 

forming in solution.  The isotherms obtained for the titration experiments are sigmoidal in 



 167

shape because at equilibrium, thiol complexation to the squaraine is not complete.  Thus, 

small amounts of uncomplexed thiol exist in solution, and the initial palladium that is 

added binds first to the “free” thiol.  Once the free thiol has been bound the remaining 

palladium then scavenges thiol away from the 3.27 complex and turns on the colorimetric 

response.  The saturation at one equivalent of palladium suggests that the species 

responsible for the absorbance at 373 nm is a monothiolated palladium species.  

Interestingly, the isotherm for the Pd(PPh3)2Cl2 does not plateau but instead a slight 

decrease in absorbance is seen again at 656 nm as more Pd(II) salt was added.  The 

formation of a covalent Pd-S bond liberates a chloride anion, however from previous 

studies on nucleophilic addition to squaraines, the probability that this chloride is 

responsible for the subsequent “re-quenching” of 3.26 is small.39  A more likely scenario 

is that the formation of the Pd-S bond significantly reduces the electrophilicity of the Pd 

center causing one or both of the triphenylphosphine ligands to dissociate.  A similar 

effect was observed in the previous chapter (Scheme 2.9).106  The PPh3 group thus 

indirectly displaced by the thiol is itself slightly nucleophilic and attacks the electron 

deficient 4-membered ring system of 3.26.  This result was confirmed by preparing a 

solution of 3.26 and adding one equivalent of PPh3 with the observation of a color “turn-

off”.  The ultimate sensitivity for these two Pd(II) salts using this method was roughly 

10-6 M.   

3.3.3.2 Fluorescence Titrations 

Even though there is an inherent interest in “naked eye detection” the sensitivity 

is limited even when chromophores with large extinction coefficients, such as squaraines, 

are used.  In an attempt to lower the sensitivity from the above mentioned µM range, Dr. 

Wallace performed a series of fluorescence titrations.  Squaraine 3.26 has been shown to 



 168

have very strong fluorescence emission in many organic solvents.46  Analogously to the 

colorimetric studies, it was anticipated that once the thiol attacks the electron deficient 

ring the fluorescence would be “switched off.”  The break in conjugation and the 

deviation from planarity accompanying the addition of the nucleophile should introduce a 

number of new non-radiative decay pathways.  As was seen in the UV-Vis studies, the 

solution of 3.27 is still slightly fluorescent due to the small amount of free 3.26.  A 0.24 

μM solution of 3.27 was prepared in a similar fashion to the UV-Vis studies in 

DMSO:CHCl3, and a λEx at 660 nm was observed (Figure 3.6).  The initial fluorescence 

spectrum shows a slight fluorescent signal at 660 nm indicating that complex formation is 

once again not complete.  Figure 3.6 shows the fluorescence titration curves obtained for 

both palladium salts.  As with the colorimetric titrations, the fluorescence signal shows a 

“turn on” upon the addition of palladium.  Again a sigmoidal curve is seen in each case, 

and again there is a decrease in the fluorescence signal upon the addition of Pd(PPh3)2Cl2. 

This decrease is more dramatic than observed in the UV-Vis titrations and can be 

attributed to the addition of slight PET quenching from the free phosphine.  Nevertheless, 

the two techniques compliment each other and are in good agreement. 
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A) 

 
B) 

 

Figure 3.6 Fluorescence titrations of A) Pd(OAc)2 and B) Pd(PPh3)2Cl2 in DMSO.  
Complex 3.27 was formed with ethanethiol and 2 equivalents DBU.  
Theoretical [3.27] = 2.35 x 10-7 M.  λex = 650 nm; λmaxF = 660 nm.101 

3.3.3.3 Testing Unkowns 

It was quite apparent that this system could be used in a controlled situation to 

quantitatively detect Pd(II) salts.  However, no tests had been conducted for the use of 

this assay on actual samples taken from a cross-coupling reaction.  First, calibration 
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curves using both UV-Vis and fluorescence were created using several solutions 

containing known quantities of Pd(OAc)2.  The resulting curves are shown in Figure 3.7.  

To perform real sample tests, several Suzuki coupling reactions were run as shown in 

Scheme 3.13.  The Suzuki coupling was chosen because it uses the palladium(II) acetate 

catalyst and a non-nucleophilic carbonate base.  When aliquots were taken directly from 

the reaction and administered to the 3.27 solutions, the result was a moderate turn-on of 

the 656 nm band corresponding to free 3.26 (Figure 3.7c).  However, the calculated 

concentration did not match up well with the calibration curve.  Furthermore, 

administration of samples taken from the quenched or worked up Suzuki reaction, 

showed no turn-on at all.   

Scheme 3.13 

 

It was observed that, often during the course of a palladium catalyzed reaction, 

much of the palladium is converted to Pd(0), and that upon quenching, all remaining 

active catalyst is either precipitated as palladium black or tied up in bulky, intractable 

ligands created during the reaction.  These palladium species are usually either insoluble 

or undetectable by this chemodosimeter.  One possibility to remedy this problem is to 

generate a uniform Pd(II) species via oxidation or ligand exchange with nitric acid to 

form the highly soluble nitrate salt.  To characterize this assay for use with nitric acid 

digested samples, several titrations were performed with Pd(NO3)2. 
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A) 

 
B) 

 
C) 

 

Figure 3.7 A) Colorimetric calibration curve for Pd(OAc)2 in DMSO. [3.27] = 2.35 x 
10-5 M. B) Fluorescence calibration curve for Pd(OAc)2 in DMSO. [3.27] = 
2.35 x 10-7 M. C) UV-Vis spectra of 3.27 solution with addition of 25 µL 
aliquots from the Suzuki coupling in Scheme 3.13 at 0, 60, and 120 minutes 
reaction time.107 
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3.3.4 Pd(NO3)2 Characterization 

To test the viability of nitric acid digestion as a means to homogenize the residual 

palladium in the product of a coupling reaction, a series of four Suzuki couplings 

according to Scheme 3.13 were conducted.  Each reaction was allowed to react until 

completion, at which point the reactions were quenched and each was handled in a 

different manner.  The first reaction was given no work up or purification; the second 

reaction was filtered through celite with hexanes; the third reaction was passed through 

an alumina plug with hexanes; the fourth reaction was run down a full silica column with 

hexanes and only the product fraction was collected.  The residues remaining from each 

of these reactions after work up, were subjected to 4N HNO3 at 80 °C for 30 minutes.  

After neutralization and extraction with methylene chloride, the samples were tested 

against the assay.  The results are shown in Figure 3.8 and show that the formation of the 

nitrate salt indeed allows for spectroscopic determination with this assay. 

 

Figure 3.8 Spectral data for samples from Suzuki couples digested with nitric acid.  
The samples were subjected to different work up conditions prior to 
nitration as shown. [3.27] = 2.35 x 10-5 M. 
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With the usefulness of the method tested, the displacement assay, which had only 

been tested previously with Pd(OAc)2 and Pd(PPh3)2Cl2, required characterization with 

Pd(NO3)2.  Initially, the 3.27 complex was formed as described above using a 1:9 v/v 

chloroform:DMSO solvent mixture in the presence of 2 equivalents of DBU.  The 

titration of Pd(NO3)2 into a 24 µM solution of 3.27 is shown in Figure 3.9.  Interestingly, 

saturation occurred at 0.5 equivalents of palladium(II) nitrate suggesting a novel 2:1 

interaction.  We attributed this anomaly to the increased electrophilicity of the nitrated 

palladium center, however upon further review of the spectral data, it was observed that 

we were not achieving full turn on of 3.26 even after reaching saturation.  A plot of the 

calculated concentration of 3.26 from absorbance at 635 nm (ε ≈ 99,000) versus the 

concentration of palladium(II) added (Figure 3.10) should have a slope of 2 based on the 

saturation point of the titration.  However, the slope is found to be 1 suggesting 1:1 

binding.  In fact, extrapolation of the initial slope on the isotherm in Figure 3.9b gives 1:1 

binding based on Beer’s Law equivalence. 
 

 

Figure 3.9 Titration data for Pd(NO3)2 into 3.27 (2.35 x 10-5 M in DMSO) formed with 
ethanethiol and 2 equivalents DBU. 
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Figure 3.10 Plot of the concentration of 3.26 calculated from the extinction coefficient 
versus the concentration of palladium added in the titration from Figure 3.9. 

To solve this quandary, we looked into all aspects of the assay.  All reagents were 

found to be analytically clean by NMR and mass spectral analysis.  In addition to 

degassing, the solvents were dried as well, which gave similar results.  We examined the 

base, DBU, and discovered that we had made a poor selection.  In aqueous solution, the 

pKa of H-DBU+ is roughly 12, and that of a typical aliphatic thiol is close to 10.108  

Hence, in water DBU is a suitable base to produce the thiolate anion.  However, the polar 

aprotic environment of DMSO drastically changes this relationship.  In the cationophilic 

DMSO medium, the pKa of H+-DBU does not differ very much, however, that of a thiol 

is dramatically increased to near 18.109  Thus, with DBU in DMSO, the complex 

formation is occurring under general base catalysis rather than the expected specific base 

catalysis.  In other words, the sulfur-squaraine bond must show a significant amount of 

formation before the S-H proton is acidic enough for DBU deprotonation.  This 

revelation explains why the complex formation was kinetically slow under these 

conditions.  In addition to being inadequate as a base, it was also discerned that DBU was 
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too nucleophilic and when added to 3.26 in excess (4+ equivalents), fairly rapid 

decolorization ensued.  Our first instinct then, led us to assume that the discrepancy 

between the saturation isotherm and the Beer’s Law equivalency arose from a 

deactivation of a portion of the squaraine through irreversible nucleophilic attack by 

DBU. 

3.3.3.1 The Verkade Base 

 

To resolve both the basicity and nucleophilicity issues we turned to the so-called 

“super bases.”  In particular, we chose the tricyclic phosphatrane base, 3.31 also known 

as a Verkade base.110  Reported to have a protonated pKa of 26.8 in DMSO, 3.31 is basic 

enough to act as a general base catalyst for the 3.27 complex formation.111  Several tests 

were conducted to determine the best ratio of base to thiol to achieve both facile complex 

formation and full recovery of 3.26 upon introduction of analytes.  Using 0.75 

equivalents of 3.31 gave the best results shown the spectra and isotherm of a titration 

conducted at 4 hours after starting the formation of 3.27 in Figure 3.11.  For this new 

system, titrations were performed at a lower concentration of 3.27 (8.8 x 10-6 M) to 

maintain Beer’s Law linearity over the complete titration range.  Interestingly, after 4 

hours of reaction time, full turn on and 1:1 binding were observed, however, when longer 

wait periods were used, both diminishing recovery and saturation points closer to the 0.5 

equivalents were observed in the DBU systems.   
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Figure 3.11 Titration of Pd(NO3)2 into 8.8 x 10-6 M 3.27 in DMSO formulated with 
ethanethiol and Verkade base 3.31.  Titration was conducted after 4 hours 
reaction time between squaraine 3.26 and ethanethiol. 

Several repeats of this titration were conducted for reproducibility, yet the system 

proved to be erratic and even strict adherence to a 4 hour limit on the interaction between 

the thiol and 3.26 was unreliable.  Fortunately, if the system was allowed to come to a 

true equilibrium over a 12-15 hour period, the data were much more stable from trial to 

trial.  However, as stated above, longer reaction time led to lower color recovery and 

apparent 2:1 stoichiometry.  Since this base is very non-nucleophilic it is unclear from 

what source the loss arises.  In fact, these data suggest that our earlier assumptions 

dealing with the nucleophilicity of DBU might also have been incorrect.  Regardless of 

which system is being used, the reason for the loss of signal remains a mystery.  Our 

theory for the 2:1 binding stoichiometry once again arises from the increased 

electrophilicity of the palladium(II) nitrate salt.  Figure 3.12 gives titration data with the 

Verkade system in DMSO after 12-15 hours of complexation time. 
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Figure 3.12 Titration of Pd(NO3)2 into 1.2 x 10-5 M 3.27 in DMSO formulated with 
ethanethiol and Verkade base 3.31.  Titrations were conducted after 12-15 
hours reaction time between squaraine 3.26 and ethanethiol 

3.3.3.2 Calibration Curves for DMSO-Verkade System 

Samples of known Pd(NO3)2 concentration were prepared and tested against the 

titration data to determine its usefulness as a calibration curve for unknown samples.  

Unfortunately, in all cases using the standard 5 minute wait period between sample 

injection and scan, the samples tested came well short of their theoretical turn on 

quantity.  Though much of the work described above focused on the thermodynamics of 

these associations, the discrepancies between the titration data and the known samples 

arises from a kinetic effect.  Throughout the course of a titration such as the one shown in 

Figure 3.12, each aliquot injected is given a 5 minute interval during which equilibration 

was though to be reached.  While the titration data is a good measure of the overall turn 

on one should expect, when applied to a sample with an intermediate concentration, it is 

indeterminate how long the thiol-scavenging reaction will take to complete.   
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Figure 3.13 A) Normalized kinetic traces of calibration curve data using a series of 
samples of increasing palladium concentration.  Below 1 equivalent shown 
in black, above shown in red.  The inset shows the half-time.  [3.27] = 
1.2 x 10-5; [Pd] range = 9.1 x 10-7 to 1.5 x 10-5 

To remedy this error and generate a truer calibration curve, a series of samples 

with steadily increasing Pd(II) concentrations was prepared.  Each sample was assigned a 

fresh solution of complexed 3.27, and upon injection of a 20 µL aliquot, the color turn on 

was monitored over time at 656 nm.  The normalized kinetic traces are shown in Figure 

3.13.  The time to full equilibrium was found to increase as the concentration of Pd(II) 

increased until saturation as described by the isotherm in Figure 3.14A.  After the 

saturation point, the time to full color turn on for each sample decreased as expected.  

The inset in Figure 3.13 shows the region at which the traces reach the half-time to full 

turn on.  The line drawn at 0.5 normalized absorbance units in the inset shows that as the 

concentration of the sample increases, the half-time to completion becomes steadily 

longer until the isotherm of maximum absorbance reaches saturation (~0.6 equivalents 

Pd).  Past this saturation point, the half-time stabilizes briefly then begins to shorten past 

a 1:1 equivalency.  The traces shown in red are those of samples containing greater than 1 
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equivalent of Pd(II).  Since a large concentration range gives a regular increase in the 

half-time to reaction completion, the implication is that for unknown samples containing 

less than a full equivalency of palladium, the half-time to full turn on could be used as a 

secondary validation in concentration determination (Figure 3.14).  When using newly 

formulated 3.27 to test known samples of arbitrary concentration, the half-time isotherm 

gave results that were much more accurate.   

The results for a set of arbitrarily selected samples of known Pd(NO3)2 

concentration with this system are shown in Table 3.2.  The first two sets of data are 

derived against the absorbance calibration curve shown in Figure 3.14A, and against the 

half-time calibration curve shown in Figure 3.14B.  The kinetics of the color turn on were 

monitored for every sample to ensure the true maximum absorbance was reached.  For 

the samples measured against the absorbance calibration curve, the error was quite large 

with an average of ~27%, yet the error was consistently underachieving, suggesting fairly 

good precision.  Since these results were taken using a newly made stock solution of 

3.27, the large error could possibly be attributed to inaccuracies in weighing and dilution 

in the stock preparation.  We have seen that the absolute absorbance values can vary 

significantly from titration to titration using different stock solutions. Usually there is 

good correlation in the relative absorbance values between stock solutions, however in 

this manner of data collection there appears to be a systematic error based on the total 

absorbance value.   
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A) 

 

B) 

 

Figure 3.14 A) Maximum absorbance calibration curve with linear fit and B) half-time 
calibration curve with linear fit for kinetics determination shown in Figure 
3.13. 

Determination of these known samples against the half-time calibration curve 

(Figure 3.14B) gave an overall better average error at ~14%, however, the precision was 

quite poor, and there did not appear to be any systematic deviation as with the absorbance 

values.  Since there was no apparent trend to the error, it is doubtful whether this method 

would actually be a viable recourse for concentration determination of unknown samples. 
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Table 3.2 A) Four samples of known concentration tested against the absorbance 
calibration curve (first column), the half-time calibration curve (second 
column).  B) Data for arbitrary known samples tested against a fully 
equilibrated titration isotherm generated from the same stock solution of 
3.27.   

A) Sample Concentration (M) Δ Absorbance Half-time (s) 
 1 1.56E-06 0.1000 15 
 2 2.61E-06 0.2148 26 
 3 5.73E-06 0.6376 43 
 4 6.78E-06 0.7623 66 
     

 Sample 
[Pd] from Abs 
 Calibration 

[Pd] from Half-time 
Calibration  

 1 1.14E-06 1.76E-06  
 2 1.83E-06 2.61E-06  
 3 4.37E-06 3.94E-06  
 4 5.12E-06 5.73E-06  
     
 Sample % Error  % Error  
 1 27.3 12.3  
 2 29.9 0.2  
 3 23.8 31.4  
 4 24.5 15.5  
 Average Error 26.4 14.9  

 
B) Sample Known [Pd] [Derived #1] [Derived #2] Average %Error 
 1 1.62E-06 1.62E-06 1.48E-06 4.6 
 2 2.70E-06 2.87E-06 2.58E-06 5.3 
 3 4.33E-06 4.74E-06 4.51E-06 6.8 
 4 6.49E-06 7.36E-06 7.07E-06 11.1 
      
   Average Error 6.9 
   Average Relative Deviation 3.6 

 

To alleviate the systematic error from the absorbance calibration, we conducted a 

third round of tests.  In this case, a titration was performed just prior to determinations of 

the arbitrary samples and all experiments were conducted from the same stock solution of 

3.27.  The calibration titration was conducted with kinetic monitoring of each aliquot 

injection and gives the spectra and isotherm shown in Figure 3.12.  Two determinations 

were conducted at each test sample concentration, and the absorbance values were then 
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applied to the sigmoidal Richards type 1 function curve fit of the isotherm.  In this 

fashion the average error over the concentration range tested was greatly reduced to 7%.  

At low concentrations, the error tended to be low, whereas higher concentrations lead to 

over estimation; however the extent of the error is fairly uniform with an average relative 

deviation of roughly 4%.  Thus for practical use we recommend that calibration via 

titration should be conducted for every new stock solution of 3.27 prepared.  

3.3.4 UV-Vis Studies in DMF 

An unfortunate side effect of using basified DMSO to perform a study involving 

thiols is that several factors converge to create a virtual perfect storm for disulfide bond 

formation.  DMSO is inherently oxidative in nature even apart from its ability to dissolve 

large quantities of molecular oxygen.  As disulfide bond formation requires oxidation of 

the two sulfurs, DMSO is a perfect solvent to facilitate the reaction.  In the presence of 

base, the reaction, which involves a thiol deprotonation step, is further enhanced.  

Disulfide formation is prohibitive of this assay being successful, and drastically shortens 

the lifetime of the 3.27 complex.  Also, based on the work in the previous chapter, the 

squaraine 3.26 was tested for its peroxyoxalate chemiluminescent (POCL) behavior.  

Through a qualitative assessment, 3.26 appears to have extremely high 

chemiluminescence yields and gives the striking effect of looking blue in lighted areas 

and red in the dark.  Unfortunately, the POCL reaction is inhibited in DMSO solutions.  

In order to find a suitable solvent system which was less beneficial for disulfide bond 

formation yet advantageous for both Pd(II) detection and chemiluminescence 

measurement, the formation of 3.27 was attempted in several different polar aprotic 

solvents.  Neither acetonitrile, THF, chloroform, nor ethyl acetate gave appropriate 

decolorization. Of all solvents tested only DMF was shown to facilitate complete 
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complex formation.  Our first attempts at complex formation using DMF and the Verkade 

base 3.31 as in the DMSO system proved disastrous, as the complex 3.27 was too tight to 

be disrupted by the Pd(II) salt.  It was determined through a series of experiments using 

various amounts of the Verkade base 3.31 that no exogenous base was required for 

complex formation in DMF.  

Unfortunately, DMF alone has the unfortunate attribute of decolorizing the 

squaraine 3.26.  DMF is often produced from a catalytic coupling of carbon monoxide 

and dimethyl amine, and under favorable conditions, DMF can degrade back to those 

starting materials.  Heat, acid, and base have all been shown to facilitate this 

degradation.112  The slight presence of dimethyl amine in even the purest DMF plays two 

opposite roles with regards to this dosimeter.  It first and foremost acts as the base to 

facilitate the 3.27 complex formation, allowing for the process to occur with out adding 

an extra reagent.  Adversely, this amine has proven nucleophilic enough to attack the 

squaraine and destroy its usefulness.  We have found qualitatively that the rate of 

nucleophilic attack of dimethyl amine is slow with respect to thiol addition.  The rate 

difference is probably due to two main factors.  The first and most obvious, is that when 

using relatively pure DMF, there is very little of this amine present.  The second factor is 

that the amine is a neutral nucleophile which is more basic than it is nucleophilic.113  The 

thiol on the other hand, while not very acidic in aprotic media, is a very good 

nucleophile.  As with DBU in DMSO, it is expected that dimethyl amine facilitates the 

nucleophilic attack via general acid catalysis.  The stability of the 3.27 complex in DMF 

as opposed to the amine-squaraine coupling allows the solutions to be usable for 2-3 days 

after initial preparation.  An unfortunate consequence of the presence of an auxiliary 

nucleophile in this system, is that a true Beer’s Law analysis could not be performed.  

However, based on qualitative assessments, the extinction coefficient of 3.26 in DMF is 
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reduced by about half from the value in DMSO.  The absorbance λmax sees a 

hypsochromic shift to 649 nm as expected from the lowering of the π* value of DMF 

(0.875) versus DMSO (1.000).50, 51  This reduction of excited state coordination by the 

solvent may also explain the diminished absorptivity.  The small hypsochromic shoulder 

still appears indicating the presence of a small amount of H–type aggregates in the DMF 

solution.   

 

Figure 3.15 Titration of Pd(NO3)2 into 3.27 (1.2 x 10-5 M) in DMF with no exogenous 
base. 

Several titrations were conducted to assess the viability of the palladium sensing 

assay in DMF.  Figure 3.15 shows the results of a typical titration with Pd(NO3)2, and 

shows a 1:1 isotherm.  It was found that the best data arose from titrations conducted 

when the 3.27 complex solutions were 10-24 hours old.  Though the complex formation 

appears to only require 2-3 hours to come to equilibrium, titrations conducted after only 4 

hours showed poor binding stoichiometry at 1.3:1.  It is unclear why this phenomenon 

occurs.  The return to 1:1 binding, as opposed to the apparent 2:1 seen in DMSO, most 

likely arises from a decrease in the nucleophilicity of the thiol in DMF and the increase in 
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strength of the 3.27 complex.  All titrations in DMF showed remarkable isosbestic 

fidelity at 344 nm as compared to previous experiments in DMSO which showed 

deviation after saturation.  Experiments in DMF were conducted at a slightly higher 

concentration to account for lower absorptivity.  Due to either a higher affinity of the 

3.27 complex or residual dimethyl amine complexing to the initial aliquots of Pd(II), the 

isotherms for experiments run under these conditions exhibit a much stronger sigmoidal 

character than previously observed in DMSO. 

3.3.4.1 Calibration Curve for the DMF system 

With the new solvent system well characterized, calibration of the DMF system 

against unknowns was attempted.  As with the DMSO-Verkade system, calibration 

against the titration data gave erroneous results due to the reaction time of thiol 

scavenging.  These results were much more pronounced in the DMF solvent system, and 

the reason became apparent from the kinetics experiments.  In a set of experiments 

analogous to those described for the DMSO-Verkade system, a set of 14 samples of 

increasing Pd(II) concentration were tested, each with fresh mixtures of 3.27 at 

1.2 x 10-5 M.  The normalized kinetic traces are shown in Figure 3.16A.   
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A) 

 

B) 

 

Figure 3.16 A) Normalized kinetic traces for Pd(NO3)2-induced color turn-on of the 3.27 
complex.  Inset shows the trend in the half-times to completion. [3.27] = 1.2 
x 10-5 M  B) Isotherm of absolute absorbance values for kinetics in A 
showing no saturation. 

The most obvious difference from the previous study is that the reaction times for 

full turn on are significantly longer, on the order of 45 minutes for intermediate 

concentrations.  The second major difference is that the reaction half-times began to 

shorten at a much lower concentration than with the DMSO system.  This result 

precludes any possible use of the reaction half-times as a diagnostic tool.  Finally, 
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looking at the absorbance calibration curve in Figure 3.16B, there is no appreciable 

saturation curvature even well passed a full equivalent of Pd(II) has been added.  It is 

unclear from where this apparent 1:X (X>1) binding equivalency arises.  Saturation is 

always observed in titration data, yet the linear fit of the calibration curve in Figure 3.16B 

is reasonably accurate over a wide concentration range. 

Table 3.3 shows the results of three arbitrary samples of known Pd(II) 

concentration tested against the calibration curve in Figure 3.16B.  Note that with this 

calibration curve, the absolute absorbance values gave better accuracy and precision than 

relative absorbance values, albeit judged only on these three samples.  The average error 

over the concentration range tested is 13% which is somewhat worse than the DMSO-

Verkade system when tested against a titration.  Since the titrations with the DMF system 

are all relatively uniform in both relative and absolute absorbances, it can be assumed 

that this calibration curve could be used as is without the need to conduct a titration with 

each new formulation of 3.27.   

Table 3.3 Data for three samples of known Pd(II) concentration tested against the 
calibration curve in Figure 3.16B.  

 
Sample Known [Pd] (M) Maximum Abs Calculated [Pd] (M) % Error 

1 2.96E-06 0.1417 2.58E-06 13.1 
2 6.35E-06 0.4202 7.18E-06 14.7 
3 9.73E-06 0.6551 1.12E-05 13.0 
     
   Average Error 13.6% 

3.4 CONCLUSIONS 

In this chapter we have discussed the combination of the two main components of 

a molecular sensing/signaling assay.  The recognition element chosen was of the 

chemodosimeter type, which is extremely powerful in determining the cumulative 
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amount of an analyte present in a given system.  In this case as in the previous chapter, 

the chemodosimetric element took advantage of the strong affinity of thiols for 

palladium.  Whereas previously, palladium was “displaced” in order to facilitate a signal 

transduction, this assay uses palladium in the opposite way.  In other words, palladium is 

the displacer which released the signaling motif.  As stated above, this assay represents a 

combination of the two major types of chemodosimeter.  There is a complexation type 

dosimeter in the formation of 3.27 followed by a signal liberating chemodosimeter in the 

thiol scavenging by the palladium analyte.  The signaling motif utilizes one member of a 

novel class of organic dyes, a squaraine, which interacts with the thiolic “host” through 

an electrophilic addition.  The squaraine 3.26 has a very large extinction coefficient 

which allows very sensitive detection. 

Further work on this system is ongoing in our laboratory.  The first step is to 

continue to lower the limit of detection through a more detailed exploration into 

fluorescence.  Because the quantum efficiency of 3.26 is also quite high, an estimation of 

3 orders of magnitude greater sensitivity could possibly be achieved through the use of 

fluorometry.  Other aspects which are under investigation are the quantification of other 

thiophilic metals with this assay.  Through qualitative inspection, this chemodosimeter is 

active for at least Pb(II), Cd(II), Cu(II) and Zn(II), all of which are targets of interest for 

their environmental, biological, and/or chemical activity.  The search for a palladium 

sensor arises from its wide use in industrial processes, and hence, metals such as tin, 

rhodium, ruthenium, and platinum would also be of interest.  Assuming success with 

these efforts the ultimate goal is to incorporate a variety of thiolic “hosts” with differing 

peripheral substitutions for use in pattern recognition of multiple metals.114-118  The 

research presented in this chapter sees the fulfillment of a number of in depth studies on 

the various aspects of molecular/atomic recognition. 



 189

3.5 EXPERIMENTAL SECTION 

1H and 13C NMR spectra were recorded on a Varian Unity Plus 300 MHz 

spectrometer in CHCl3-d.  Chemical shifts are reported in parts per million (δ) downfield 

from tetramethylsilane (0 ppm) as the internal standard and coupling constants (J) are 

recorded in Hertz (Hz).  The multiplicities in the 1H NMR are reported as (br) broad, (s) 

singlet, (d) doublet, (dd) doublet of doublets, (ddd) doublet of doublet of doublets, (t) 

triplet, (sp) septet, (m) multiplet.  All spectra are recorded at ambient temperatures.  UV-

Vis experiments were performed on Beckman DU-70 and DU-800 UV-Vis 

spectrophotometrs.  Low and High-resolution mass spectra were measured with a 

Finnigan TSQ70 and VG Analytical ZAB2-E instruments, respectively. Compound 3.26 

was synthesized according to a slight modification of the reference method.55 All 

chemicals and reagents where brought from Aldrich or Fluka and used without further 

purification.  DMSO was degassed via displacement with N2 and dried over molecular 

sieves for at least 6 hours prior to use.  DMF was obtained purified through filter-based 

solvent delivery system.  Dilutions and aliquots were performed using FisherBrand 

Finnpipette autopipets calibrated by mass. 

Bis[(N,N-dibutyl phenyl] squaraine (3.26): Under a dry atmosphere of nitrogen, 

a mixture of squaric acid (1.5 g, 13.5 mmol, 1 eq.) and N,N-dibutylaniline (6 mL, 27 

mmol, 2 eq.) were dissolved in a mixture of toluene (20 mL) and 1-butanol (20 mL).  The 

mixture was refluxed with azeotropic distillation of water for 6-8 h.  During this time 

period the solution turned an intense blue color.  The solvent was removed under reduced 

pressure, and the dark blue oil was then subjected to column chromatography using 3:2 

v/v ethyl acetate and hexanes and the blue band was collected.  The solvent was 

immediately reduced to form a green solid.  This residue was precipitated from 
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methylene chloride with hexanes the green solid was filtered and washed with pentane 

(100 mL).  The filtrate was then refiltered and washed with hexanes (100 mL) then 

diethyl ether (20 mL) and dried under hi-vacuum overnight to give (120 mg, 0.25 mmol,  

2% yield).  1H-NMR (CHCl3-d, J / Hz, δ / ppm):  0.98 (t, 12H, CH3); 1.43 (m, 8H, CH2); 

1.64 (m 8H, CH2), 3.43 (m, 8H, CH2), 6.70 (d, J = 9.2 Hz, 4H, ArH), 8.35 (d, J = 9.2 Hz, 

4H, Ar); 13C-NMR (CHCl3-d), 75 MHz, δ / ppm): 13.9, 20.2, 29.6, 51.2, 112.2, 119.6, 

133.2, 153.4, 183.5, 187.7 HRMS (CI): m/z calcd for C32H44N2O2; 488.704; found: 

C32H45N2O2; 489.702.  UV-Vis (DMSO) λmax (ε) = 2.3×105 cm-1 M-1 (656 nm) 

3.5.1 UV-Vis Titrations in DMSO with DBU 

A stock solution of 3.26 (6.0 x 10-4 M) was prepared by dissolving 3.26 (3 mg, 

6 µmol) in 10 mL 1:9 CHCl3/DMSO.  This stock solution was then used to prepare a 4.7 

x 10-5 M solution of 3.26 using pure DMSO.  A separate stock solution of ethanethiol 

(2.7 x 10-3 M) and (2 eq. of DBU) was also prepared in pure DMSO.  This second 

solution was then used to prepare a 4.7 x 10-5 M solution of ethanethiol.  Equal volumes 

(2 mL) where added together and left for 24 hours to form a theoretical 2.35 x 10-5 M 

solution of 3.27.  A 1 mL aliquot of the 3.27 complex was transferred to the UV-Vis 

cuvet.  A separate solution of the Pd(II) salts where prepared at 10 times palladium 

concentration and 10 µL aliquots were added and the spectrum was recorded 5 minutes 

after each aliquot injection. 

3.5.2 UV-Vis Titrations in DMSO with Verkade Base 

A 4.7 x 10-5 M solution of 3.26 was prepared in DMSO analogously to the 

previous method.  A separate solution of 4.7 x 10-5 M ethanethiol and 0.75 eq (3.53 x 10-5 

M) 3.31 was also prepared.  Complex 3.27 formation was achieved by combining 1 part 

each of the above solutions with 2 parts DMSO.  The resulting concentrations of 3.26 and 



 191

ethanethiol were each 1.18 x 10-5 M.  Decolorization proceeded quickly, though the 

solution was allowed to come to equilibrium for 12-15 hours prior to use.  The complex 

thus prepared and stored over molecular sieves was stable for titration use up to 48 hours. 

The palladium(II) nitrate titrant solution was prepared by dilution of 2.5 mg of 

Pd(NO3)2·2H2O in 10 mL DMSO.  100 µL of this solution is combined with 750 µL of 

the 3.27 complex solution and 150 µL DMSO to give a 1 mL solution containing roughly 

10 eq. of Pd(II) to squaraine.  A standard, quartz, 3 mL volume, 1 cm pathlength UV-Vis 

cuvet was charged with 750 µL of the 1.18 x 10-5 M solution of 3.27 and 250 µL DMSO 

giving a final concentration of 8.82 x 10-6 M.  The titration was performed by 

administering successive 10 µL aliquots of the Pd(II) solution. 

3.5.3 van’t Hoff Analysis 

500 µL of the above prepared solution of 3.27 with the Verkade base and 500 µL 

DMSO were placed in a standard 1 cm pathlength cuvet.  UV-Vis spectra were collected 

upon equilibration of the 3.27 at iteratively increasing temperatures.  The temperature 

was set using a built in Peltier apparatus and independently monitored in cuvet using a 

FisherBrand digital K-thermocouple.  The absorbance readings at 656 nm and 635 nm 

were used for separate determinations of the thermodynamic parameters as described in 

section 3.3.2.2. 

3.5.4 UV-Vis Titrations in DMF 

Dry, degassed DMF was obtained through a high-pressure filter-type solvent 

delivery system and kept over 4A molecular sieves.  1 mg (2.0 x 10-6 mol) 3.26 was 

diluted to 10 mL in DMF to give a 5.9 x 10-4 M solution.  A separate 4.1 x 10-2 M 

solution of ethanethiol in DMF was prepared via dilution of 30 µL of ethanethiol to 

10mL of DMF.  2.875 mL of the 3.26 solution is mixed with 14.5 µL of the ethanethiol 
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solution and the resulting mixture is diluted to 25 mL with fresh DMF.  The resulting 

2.35 x 10-5 M solution of 3.27 was allowed to react for 12-15 hours after which time the 

solution was completely colorless to the naked eye.   

6.96 mg (2.61 x 10-5 mol) Pd(NO3)2·2H2O was diluted to 10 mL in DMF resulting 

in a 2.61 x 10-3 M solution.  A small vial is charged with 45 µL of the Pd(II) solution, 455 

µL DMF, and 500 µL of the prepared 3.27 complex solution to yield a 1.18 x 10-5 M 

solution of 3.27 and 1.18 x 10-4 M in Pd(II).  This solution is labeled “titrant.”  To 

standard 1cm path length 3 mL UV-Vis cuvet is added 500μL each of DMF and the 

prepared 3.27 complex solution resulting in a 1.18 x 10-5 M solution of the 3.27 complex.  

The titration was performed with successive 10 µL injections of the titrant solution.  A 

five minute equilibration period was allowed between injection and spectral scan.   

3.5.4 Kinetics and Calibration Curve Determination 

For both kinetics determinations, the 3.27 solutions were prepared as described 

for the respective titrations.  For the DMSO study, 4 mg Pd(NO3)2 was dissolved 10 mL 

DMSO to give a 1.5 x 10-3 M solution.  15 vials labeled 1-15 were given 10 µL 

increasing amounts of the Pd(II) stock solution such that vial 1 contained 10 µL and vial 

15 contained 150 µL.  The vials were then charged with DMSO to bring the total volume 

in each vial to 150 µL.  Directly before each kinetics determination, each vial was 

charged with 150 µL of the 3.27 solution to give a total volume of 300 µL and 3.27 

concentration 1.2 x 10-5 M.  For the DMF study, 5.75 mg Pd(NO3)2 was diluted to 10 mL 

in fresh DMF to give a 2.2 x 10-3 M solution.  15 vials labeled 1-15 were give aliquots of 

the stock solution as follows: vials 1-10 were given volumes increasing by 10 µL such 

that vial 1 contained 10 µL and vial 10 contained 100 µL; vials 11-15 were increased to 

20 µL increasing volumes such that vial 11 was given 120 µL and vial 15 had 200 µL.  
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Each vial was then filled with DMF to a total volume of 250 µL.  Directly before each 

kinetics determination, each vial was charged with 250 µL of the prepared 3.27 solution 

to give a total volume of 500 µL and concentration of 3.27 of 1.2 x 10-5 M. 

The trials were identical from this point onward.  The cuvet was charged with 500 

µL of the 3.27 solution and 500 µL of the respective solvent to give 1.2 x 10-5 M 

solutions of 3.27.  The UV-Vis sample holder was kept at a constant temperature of 25 

°C by a built-in Peltier apparatus.  Once the sample had equilibrated to temperature (5-10 

minutes depending on ambient temperature), an initial wavelength scan was collected.  

The UV-Vis was then switched into kinetics mode and set to acquire.  A timer set to 

count down 5 seconds was on hand.  A 20 µL aliquot of the vial being sampled was 

injected into the cuvet while simultaneously starting the 5 second timer.  The cuvet was 

shaken vigorously to mix and replaced in the cell holder within the 5 second countdown.  

The kinetics collection at 656 nm was started at the completion of the 5 second 

countdown and the absorption was monitored until it leveled off.  Upon completion, 

another wavelength scan was collected for verification of the final absorbance value.  The 

Kinetic traces were then normalized such that the maximum absorbance was set equal to 

1.  5 seconds was added to the start of trace to account for the time from injection to the 

start of data collection. 
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