Demand side load control in residential buildings with HVAC controller for demand response
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Demand Response (DR) is a key factor to increase the efficiency of the power grid and has the potential to facilitate supply-demand balance. Demand side load control can contribute to reduce electricity consumption through DR programs. Especially, Heating, Ventilating and Air Conditioning (HVAC) load is one of the major contributors to peak loads. In the United States, HVAC systems are the largest consumers of electrical energy and a major contributor to peak demand. In this research, the Dynamic Demand Response Controller (DDRC) is proposed to reduce peak load as well as saves electricity cost while maintaining reasonable thermal comfort by controlling HVAC system. To reduce both peak load and energy cost, DDRC controls the set-point temperature in a thermostat depending on real-time price of electricity. Residential buildings are modeled with various internal loads using building energy modeling tools. The weather data in different climate zones are used to demonstrate that DDRC decreases peak loads and brings economic benefit in various locations. In addition, two different types of electricity wholesale markets are used to generate DR signals. To assess the performance of DDRC, the control algorithms are improved to consider the characteristics of building envelopes and HVAC equipment. Also, DDRC is designed to be deployed in various areas with different electricity wholesale markets. The indoor thermal comfort on temperature and humidity are considered based on ASHRAE standard 55. Finally, DDRC is developed to a hardware using embedded system. The hardware of DDRC is based on Advanced RISC Microcontroller (ARM) processor and senses both indoor and outdoor environment with Internet connection capability for DR. In addition, user friendly Graphic User Interface (GUI) is generated to control DDRC.