General-purpose optimization through information maximization

Date

2012-05

Authors

Lockett, Alan Justin

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The primary goal of artificial intelligence research is to develop a machine capable of learning to solve disparate real-world tasks autonomously, without relying on specialized problem-specific inputs. This dissertation suggests that such machines are realistic: If No Free Lunch theorems were to apply to all real-world problems, then the world would be utterly unpredictable. In response, the dissertation proposes the information-maximization principle, which claims that the optimal optimization methods make the best use of the information available to them. This principle results in a new algorithm, evolutionary annealing, which is shown to perform well especially in challenging problems with irregular structure.

Description

text

LCSH Subject Headings

Citation