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Chapter 1

Introduction

The discovery of an effective general-purpose learning algorithm is the

Holy Grail of artificial intelligence research. Such an algorithm would be ca-

pable of learning to solve disparate real-world tasks autonomously, without

relying on specialized problem-specific inputs. This quest has come to be re-

garded as quixotic in light of the No Free Lunch theorems, which proved that,

when averaged over all problems, every learning method performs equally.

This sentiment reflects a misunderstanding of the meaning of No Free Lunch,

which only applies in restricted circumstances. This dissertation establishes

a formal context for studying optimization within which it is proven that if

No Free Lunch did apply to all real-world problems, then the world would

be utterly unpredictable. Predictable physical laws could not exist, neither

gravity, nor electromagnetism, nor indeed the atom itself. Regularity would

be outlawed, and reality would be reduced to an absurd sequence of random

events. In fact, real phenomena are relatively predictable on small time scales.

Thus there must exist learning strategies that outperform others on the gen-

eral class of real-world problems. In response, this dissertation proposes the

information-maximization principle, which claims that the optimal optimiza-

tion methods in any problem setting are those that make the best use of the
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information available to them. This principle is applied to develop a new al-

gorithm, evolutionary annealing, which solves optimization tasks in spaces of

real vectors and neural networks.

1.1 Motivation

Nearly every problem to which human ingenuity is applied either con-

sists of or contains an optimization task. When constructing a building, one

wishes to use the least amount of materials and labor to achieve certain stan-

dards of size, quality, and content. When planning a trip, one seeks a route of

transportation that minimizes distance and maximizes speed. When designing

the layout for an integrated circuit, one desires an arrangement of components

that minimizes both fabrication errors and surface area. In machine learning

research, optimization is ubiquitous, with nearly every learning task being for-

malized as an optimization problem in which errors are to be minimized and

performance is to be maximized. In this setting, learning and optimization are

closely intertwined, and a general-purpose optimization method is required in

order to implement a general-purpose learner.

This dissertation studies methods for solving optimization tasks in the

abstract. Previous studies have examined the optimization task in the context

of a particular method or class of methods. The present study encompasses all

possible iterative optimization methods by analyzing the sequence of proposed

optima generated by each method. In this manner, optimization methods are

identified as mathematical objects in a normed vector space with well-defined
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notions of distance, continuity, and limits. This text focuses primarily on

trajectory-restricted optimization methods, that is, methods that propose new

solutions based solely on the measured objective value of previously proposed

solutions, as opposed to methods that use additional information, such as

gradient evaluations. The formalization pertains to all optimizers, however,

and some results will be presented for larger classes of optimizers as well.

This dissertation makes four main contributions. First, the particular

formalization of optimizers offered here is of high value in itself as a context

within which broadly applicable theorems can be stated and proven. Prior

formalizations have been limited to finite spaces [162, 218] or subsets of opti-

mizers [111, 206]. Secondly, an explicit account is given of how the performance

of an optimizer can be defined and measured objectively. Many standard met-

rics for performance exist currently, but there has previously been no means

of studying their analytic properties. Thirdly, the No Free Lunch theorems for

optimization [162, 171, 218] are extended to arbitrary measure spaces and the

exact conditions under which such theorems hold are expounded for the first

time. Specifically, it is shown that No Free Lunch only holds if objectives are

assumed to be unlearnable a priori. Since the human experience in particular

demonstrates that general learning does occur, it follows that general-purpose

optimization is possible for real-world problems. Fourthly and finally, the role

of information in optimization is discussed at length, and evolutionary anneal-

ing is proposed as an optimization method that makes full use of information

and is experimentally effective on several optimization problems.
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This dissertation presents the mathematical theory of stochastic global

optimization on arbitrary measure spaces with static objective functions. The

material is quite broad and covers a wide scope of information. This text

presents the first results of this potentially powerful approach. There are a

substantial number of questions left open and a large quantity of obvious con-

sequences that might be added to this body of work. Some possible extensions

are presented in Chapter 14. This dissertation aims to present a comprehen-

sive and clear account of the relevant aspects of optimization methods, with a

focus on the analysis of optimizer performance.

In the remainder of this chapter, the optimization task is discussed in

detail and the formal context adopted in this text is motivated. The implica-

tion of the results obtained in later chapters is previewed, and a guide to the

content of the dissertation is provided.

1.2 The Optimization Task

At its core, an optimization task consists of a configurable system, a

set of quantifiable objectives for the system, and potentially a set of observ-

able environmental factors. A solution to an optimization problem prescribes

an input configuration (possibly as a function of the observable environment)

such that the objectives attain their maximal or minimal values. The set of

admissible configurations is the search space or the search domain. The objec-

tives for the system are considered as functions taking system configurations

as input and producing the objective values as output. As such, in academic
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settings, optimization is almost always studied in terms of finding the minimal

or maximal values of a computable function. The function is referred to as

the objective function or the fitness function depending on the context. In

the presence of multiple objectives, the objectives may be combined into a

single metric, or each objective can be treated independently. The latter case

is termed is termed multi-objective optimization and is not discussed further

in this text.

Formally, let X be the search domain, and suppose the objective func-

tion f is some real-valued function over X, i.e. f ∈ RX . Optimization is

formally considered to mean minimization, since a function f can be maxi-

mized by minimizing −f . It is then further assumed that infx∈X f(x) > −∞.

Then the goal of the optimization task is to find one or more x∗ ∈ X such that

f takes its minimal value on x∗, i.e.

f(x∗) = inf
x∈X

f(x). (1.1)

Many times, a general search space such as R is provided along with a set

of constraints that defines a search domain C ⊆ R, and a minimal value for

f is sought from among the elements of the set C. This setting is termed

constrained optimization. This text focuses on unconstrained optimization,

although for generality, the constraints can be assumed to be built into the

space, so that X = C from the discussion above.

A simple example is in order. Consider the task of driving a car from

a given location to a second fixed location through an urban setting. The car
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is the system, and its relevant configurable parts consist of the steering wheel,

the gas pedal, and the brake. The car can be controlled by specifying at each

point in time the rotational force on the steering wheel and the downward

pressure on the gas pedal and the brake. In this case, the proper controls for

the car depend on the state of the environment. The task of driving a car

has several objectives. First, the car must arrive at the correct destination as

quickly as possible. Secondly, the car must obey traffic laws, remaining within

the appropriate lanes, stopping at red lights, maintaining appropriate speed,

and signaling turns in advance. Thirdly, the car must avoid collisions with

other vehicles, pedestrians, animals, and objects. A solution to the driving

task specifies the force on the steering wheel, brakes, and accelerator as a

function of the observed environmental state. The objective function in this

case is typically a simulation environment or a real-world test in which the car

is controlled by a proposed solution and its performance is measured in terms

of the three main criteria above. The search domain is a space of functions

that map the observations of the environment to driving decisions. A good

solution safely drives the car from its starting point to its destination along

an efficient route while following the traffic laws and avoiding collisions.

The example above can be mapped into a formal optimization problem

by identifying the car’s sensors as an array of m real numbers in Rm and

the three controls as an element of R3. The search domain X consists of all

functions from Rm to R3. For any controller x ∈ X, one may define three

objectives f1, f2, and f3, such that f1(x) records the distance from the desired
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destination at the end of the simulation, f2(x) counts the number of traffic

law violations, and f3(x) indicates the risk of a collision or other catastrophic

mistake over the course of a simulation run. Then a suitable objective function

would be f =
∑3

i=1 αifi with αi > 0, where the αi balance the importance of

each objective. A solution to this optimization task would output a controller

x∗ for the vehicle such f(x∗) is minimal, that is, such that the vehicle reaches

its destination while obeying traffic laws and avoiding collisions.

An iterative optimization method or optimizer proposes a sequence of

potential solutions to an optimization task, x1, x2, x3, · · · ⊆ X. The quality of

the solutions should increase as the method proceeds, e.g. f(x100) < f(x1).

Many optimization methods have been proposed and their effectiveness has

been demonstrated in a variety of contexts. Some optimization problems can

be solved analytically using derivatives or other means. Other problems can

be effectively solved by iteratively following the gradient of the objective using

methods such as Newton-Raphson [163] or conjugate-gradient descent [90].

When derivatives are not available, they can sometimes be estimated. On

many practical problems, particularly those that involve complex simulations,

precise estimates of the gradient are highly variable or unpredictable, or they

might be too expensive to obtain. In addition, derivative-based methods are

local optimizers that find a local optimum rather than the true global optimum;

that is, derivatives can only be used to optimize in the neighborhood of a

starting point. If an objective function is particularly bumpy or multimodal,

as in Figure 1.1, then a derivative-based method must be restarted many times
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(a) unimodal (b) multimodal, periodic (c) multimodal, aperiodic

Figure 1.1: Three example objective functions. Figure 1.1(a) is unimodal
and possesses a unique minimum, easily located analytically or by gradient
methods. Figure 1.1(b) is multimodal but periodic. Gradient methods will
fail, but the periodicity can be used to locate the optimum. Figure 1.1(c) is
multimodal and irregularly structured. Such problems can be difficult to solve,
particularly in high dimension.

with different starting points, or a derivative-free method may be attempted.

Derivative-free methods use trial and error to locate the optimum. Di-

rect search methods test every possible direction from current best solution and

then move iteratively in the general direction of the unknown gradient [111].

Genetic algorithms mimic Darwinian evolution by maintaining a population

of solutions that are combined and varied iteratively in a manner that prefers

to keep solutions with a higher score on the fitness function [77]. Monte

Carlo methods such as simulated annealing sample a special Markov chain

that theoretically converges on the global optimum, though with many prac-

tical caveats [109]. More recent evolutionary algorithms are based on various

natural analogies, from the flocking of geese [62] to the foraging of ants [58] or

the functioning of the human immune system [63]. A more thorough review of
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existing optimization methods is provided in Chapter 2, but this brief summary

gives the reader a sense of the overwhelming number of different approaches

to the optimization problem. The challenge taken on in this dissertation is to

organize all these methods with an analytic approach.

1.3 Spaces of Optimizers

In the face of this variety of optimization methods, one may wonder

whether a framework that unifies them will be so abstract that it has little

practical meaning. A cursory study of these methods gives the first impression

that the set of all optimizers for a particular search space is fundamentally

discrete and unstructured, and that there is no apparent relationship between

any two arbitrary optimizers. This dissertation aims to dispel this impression

by presenting a mathematical analysis that reveals to the contrary that the

set of optimizers for a fixed search space is highly structured in mathematical

terms. It is, in fact, a closed, convex set within a normed vector space with

well-formed notions of distance, continuity, and limits.

In a finite search space with finitely many output values, the structure

of the space is easy enough to understand. A search space is finite if there

are only finitely many configurations or inputs to the system. Each of these

inputs may be assigned a natural number, so that the inputs are number from

1 to N for some N <∞. The optimization task can be solved by testing each

of these inputs in turn; once all inputs have been tested, the optimal input

must be known.
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An optimizer selects the order in which each possible input is tested.

The optimizer may determine the order for later inputs based on the output

values for earlier inputs. For instance, if the optimizer has proposed input

number 3 as the first input to test, then it may choose to examine input number

4 as the second input to test if the objective value for 3 was negative but might

instead choose input number 5 if the objective value for 3 was positive. The

optimizer may randomize its choices, but for this example, assume that an

optimizer makes only deterministic choices. Additionally, assume that the

optimizer does not repeat itself. Since there are only finitely many inputs and

outputs, there are only finitely many ways in which an optimizer may order

the inputs for testing. Therefore, there are only finitely many optimizers on

this space.

Simplifying even further, consider the subset of optimizers that do not

depend on the output values at all. These optimizers merely specify at the

outset an order in which the inputs will be tested. Suppose that there are only

10 system configurations. Then there are exactly 3, 628, 800 such optimizers

(i.e. deterministic optimizers that do not vary with output and do not repeat

points). Each of these optimizers can be represented as a sequence of 10

numbers, such as:

1, 2, 5, 7, 8, 9, 6, 3, 4, 10

1, 2, 7, 5, 8, 9, 6, 3, 4, 10

5, 7, 1, 3, 4, 9, 8, 10, 2, 6
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It is plain to see that the first and second of these optimizers are more similar

to each other than to the third optimizer. In fact, one can define a distance

metric between any two optimizers in this subset by counting the minimal

number of entries that must be swapped in order to convert one optimizer into

another. The distance between the first and second optimizer above under this

metric is one. The distance between the first and third optimizers is seven.

The maximum distance between any two of these optimizers is nine. Far

from having no structure at all, the set of output-independent, non-repeating

optimizers on a finite space is at least a metric space.

Suppose that an optimizer is allowed to depend on the outcome of

objective evaluations, but is still deterministic. Then an optimizer may be

specified as a function that takes as input a finite sequence of pairs containing

the input value and the corresponding objective evaluation and produces as

output the identity of the next input to test. Since the outputs were specified

to be finite, they may be numbered as well. There are only finitely many

sequences of such pairs no longer than N , and thus an optimizer is defined

by a table of input-output associations. For example, if there are M outputs,

numbered 1 to M , then an individual optimizer might look like the following:
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evaluation history next choice
∅ 1
(1,1) 3
(1,2) 6
. . . . . .
(1,M) 7
(1,1),(3,1) 6
(1,1),(3,2) 2
. . . . . .
(1,M),(7,1) 2
. . . . . .
(1,1),(3,2),(2,6),(5,4),. . . ,(N,5) 1
. . . . . .

Notice that not all sequences need to be considered for a deterministic op-

timizer, but only those sequences that the optimizer will produce on some

objective function. So only those sequences that begin with input 1 are valid

for the optimizer above, since optimizer always tests input 1 first when pre-

sented with the empty sequence, ∅. This formalization is essentially identical

to the one used by Wolpert and Macready in their paper introducing the No

Free Lunch theorems for optimization [218].

The number of entries in such tables is bounded above by T = N !NMN

since the inputs cannot repeat but the outputs can. The extra factor of N

reflects the fact that input sequences can have length 1 to N ; a tighter bound

is possible but is unnecessary here. Thus even if optimizers are allowed to

consider objective outcomes, the number of deterministic optimizers is finite

and bounded above by TN , allowing each entry to take on all N possible

outputs.
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Most importantly, all non-repeating deterministic optimizers on any

finite search space can be represented in this table format, regardless of the

rationale that led to its formulation. It does not matter whether the algorithm

is described by a search heuristic or a biological analogy. Once it is reduced to a

table like the one above, it is just another optimizer in the space. Furthermore,

one can characterize the distance between any two optimizers as the number

of edits that must be made to the table for the first optimizer to convert it

into the second. It is also reasonable to speculate that two optimizers with

similar tables will perform similarly on the same objective. Further, if the

search domain has a known topology, then optimizers may be compared even

more meaningfully by incorporating the topological structure over the outputs

into the distance metric over optimizers.

The analysis in this section provides an example of the kind of structure

that may be observed in optimizer spaces. Fundamentally, an optimizer is a

means of selecting which input points will be evaluated next given the inputs

evaluated so far and the outputs that resulted. By analyzing the outcome

of these selection mechanisms independent of the descriptions and procedures

used to obtain them, it is possible to compare any two optimizers on practically

any search domain and objective.

It should be evident that even with substantial restrictions, such as

a finite search space and deterministic, non-repeating optimizers, a general

formalization of optimization methods is an ambitious project. Including ran-

domized optimizers is not difficult. Every run of a stochastic optimizer pro-
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duces a single input-output sequence, and thus a stochastic optimizer may be

regarded as a distribution over the deterministic tables described above, that

is, as a (very long) probability vector. However, allowing repetition or infinite

search domains requires more powerful mathematical tools. Non-repeating

optimizers may produce infinite sequences of inputs without observing the ob-

jective value of all inputs, and thus the tables above may require infinitely

many entries to represent them. And infinite spaces can certainly not be

studied by reasoning about lists and tables.

It is important to justify for why infinite spaces deserve to be studied at

all. One might argue that only finite representations are computable, and so

the table representations above should suffice for formal analysis. While it is

true that digital computers can only represent and manipulate finite objects,

many optimizers are designed to search mathematical spaces that are formally

infinite. It does not make sense to limit the formal analysis of these optimizers

to their finite, computable encodings. Ultimately there are two reasons to

study infinite spaces directly. The first reason is that by considering the native

topology of the problem, one avoids distortions that may be introduced by

projecting the topology into a finite approximation. Secondly, an analysis

that accounts for infinite spaces is in some ways simpler than a finite analysis

because of the availability of analytic tools developed by the mathematical

disciplines such as topology, measure theory, and abstract algebra.

A measure-theoretic analysis of optimization methods on topological

spaces is undertaken in Chapter 3, presenting the first abstract treatment of
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optimization that allows for the simultaneous analysis of general optimizer

spaces independent of procedural descriptions and without substantial sim-

plifying assumptions (e.g. finiteness, lack of repetition, etc.). It applies the

concepts above to infinite spaces, defines the terms that will be used, and

lays the groundwork for subsequent analysis. Chapter 4 applies this frame-

work to population-based optimizers, and Chapter 5 studies their continuity

properties. What will be accomplished with this formalization is discussed

next.

1.4 Optimizer Performance and No Free Lunch

Ordinarily, one is not interested in the similarity of optimizers in terms

of how they select inputs. Rather, one seeks an optimization procedure that

prioritizes input points with high quality. Whenever an optimizer proposes

an input configuration to evaluate, the optimizer makes an error whose mag-

nitude is given by the difference between the optimal output value and the

output value for the proposed input. A good optimizer performs well on a

problem if it minimizes its errors very quickly. A performance criterion speci-

fies what kinds of errors are salient and on what time scale the errors are to be

considered. Formal definitions of performance criteria are given in Chapter 7.

These definitions are accompanied by experimental results for a variety of the

optimization methods introduced in Chapters 2 and 4.

The obvious next question is whether there is some optimizer that out-

performs all the others, not just experimentally, but theoretically. An initial
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answer is given by Wolpert and Macready in the well-known No Free Lunch

theorems for optimization [218]. In finite search spaces with finitely many

outputs, all optimizers have the same average performance over all possible

objective functions. That is, no optimizer is better than any other; good per-

formance by an optimizer on one objective is paid for with bad performance

by the same optimizer on a different objective. Even an optimizer constructed

to perform poorly will perform well on some objectives.

This theoretical result comes with a major qualification. The result

was only proven for the case when each possible objective function is equally

likely to occur. Suppose someone has devised a novel optimization method.

In order for No Free Lunch to hold under Wolpert and Macready’s proof,

one must assume that the novel method is going to be tested against some

arbitrary, unknown objective, selected according to a random procedure. If

some objective functions are more likely than others under this procedure, then

an optimizer that does better on the more common objectives may outperform

optimizers that perform well on the less common objectives. Wolpert and

Macready conjectured that No Free Lunch would hold for many if not most

other random procedures for choosing a test objective. In fact, as will be

shown in this dissertation, the opposite is true. No Free Lunch actually holds

for very few such random procedures, and those in which it does hold are

philosophically unsavory, as will be discussed below.

In Chapter 9, this dissertation expands No Free Lunch from finite spaces

to arbitrary measure spaces, which can be uncountably infinite. In doing so,
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one encounters a substantial problem: There is no obvious way to average over

all objective functions on an infinite space without preferring some functions

over others. The resolution to this issue is the key achievement of this dis-

sertation. In short, it turns out that the conditions in which No Free Lunch

theorems hold can be explicitly stated for both finite and infinite spaces. No

Free Lunch only applies when the random procedure for selecting test objec-

tives satisfies two properties. First, the objective values under the test proce-

dure must be identically distributed at each input point. Second, and more

importantly, the output values obtained from evaluating the test objective at

any particular sequence of input points must have no value for predicting the

output value of the test objective at any other point. This property will be

termed path independence. A random procedure for selecting test objectives

produces a No Free Lunch result if and only if the procedure is identically

distributed and path independent.

Consider what it means for a random optimization problem to be path

independent. When optimizing such an objective, prior evaluations are useless

for guessing the outcome of future evaluations. Thus the order in which input

points are evaluated is irrelevant. It is impossible for an optimizer to learn

anything about such a problem, because the problem reveals nothing about

itself. In order to accomplish this feat, the random procedure must scramble

the relationship between inputs and outputs to the point that the relation-

ship is fundamentally incompressible. Thus there can be no rule to represent

the selected test objective that is smaller than an enumeration of all input-
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output pairs. The world of No Free Lunch is preeminently unstructured and

unlearnable; it is the fuzz between the channels on an old television set.

In small, finite search spaces, the assumption of path independence

may make sense. There is no obvious way to compare categorical values with

each other, and so one may as well presume that they are arbitrarily inter-

changeable. However, as soon as the inputs or outputs take on some kind

of local structure, the assumption of path independence falls apart. In real

problems, concepts such as locality, periodicity, and regularity are important.

As soon as such conditions hold, No Free Lunch fails. A simple example of a

random test procedure that violates No Free Lunch is the standard Brownian

Motion, commonly used to model physical processes involving the diffusion of

particles within a substrate, such as the expansion of coffee grounds in water.

The position of a single particle at each time step forms an objective that has

unbounded variation but is locally predictable with high probability. Another

example of such a random test procedure is the Solomonoff’s universal prior,

which prefers functions that are easily computable over functions that are dif-

ficult to compute [190]. A random test procedure can be quite general without

being subject to No Free Lunch.

This point of view challenges the philosophical idea that the world is

unknowable at its core. If one views the universe as a random test procedure

generating a variety of test objectives, then one does not expect to encounter

problems in which the outcome in one situation is utterly unpredictable on

the basis of previous outcomes in similar situations. This expectation of reg-
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ularity is not merely utilitarian. It is not sufficient to object that humans

expect the world to behave predictably because they have no choice but to

do so. To make such an objection is to suggest that every decision made by

humans that succeeds is purely serendipitous. While it is true that many of

the more complex aspects of human life are subject to severe variability and

unpredictability, it is nonetheless the case that many of the everyday aspects

of life are highly predictable. When a man takes a step, his foot does not

fall through the ground in front of him as it does through the air. The sun

proceeds regularly through the sky, and when it sets at night, the time of its

rising may be predicted precisely. Apple trees do not produce peaches, and

a peach seed will not grow into an apple tree. In these and in many other

situations, prior experience is a strong predictor of future outcomes. The very

experience of humans as learning machines disproves the claim that the world

is unlearnable.

Thus even as this thesis reaffirms No Free Lunch in a wider sphere, it

rejects the popular interpretation of No Free Lunch that claims that any par-

ticular optimizer is just as good as any other. This claim is categorically false

in the context of real-world problems. It is also false on computable problems

on infinite spaces, not just real-world problems, since such problems must have

finite representations to be computable. The existence of a finite representa-

tion is a form of regularity that invalidates No Free Lunch. In sum, some

optimizers are better than others when averaged over all possible problems of

interest. General-purpose learners exist.
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Just because some optimizers are better than others does not mean

that one particular optimizer performs best on all common objectives. As the

random procedure for generating test objectives changes, the optimizer with

the best average performance changes as well. The space of optimizers and the

space of random test procedures are in duality. Even if an optimal optimizer for

a particular random test procedure can be found, there is no way to know that

the chosen test procedure accurately reflects the likelihood of actual problems

of interest. In general, specific solutions to specific problems will almost al-

ways perform better than general solutions that work on many problems. This

fact has often been raised as an objection to the search for general-purpose

optimizers. This objection ignores the effort that human researchers put into

finding such specific solutions. In practice, specific solutions are usually iden-

tified as the result of a general problem-solving methodology that relies on

human learning capabilities. Although specific problem-solving strategies are

to be preferred for specific problem classes, general-purpose learners are still

necessary to discover such strategies.

1.5 Information-Maximizing Optimization

One may regard the optimization process as a zero-sum game in the

sense of von Neumann’s Game Theory [205]. One player selects an optimizer,

and his adversary selects a random procedure for generating objectives. As is

proven in Chapter 10, this game is biased in favor of the second player, who

can always choose a selection procedure subject to No Free Lunch, since such a
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selection procedure always exists. If the strategy of the second player is fixed,

however, then the first player must select the best optimizer for a fixed strategy.

The best choice the first player can make is to play a strategy that minimizes its

error. One way to minimize error is to utilize the conditional expectation of the

objective function given the outcome of previous objective evaluations. The

conditional expectation estimates the true objective function with minimal

variability, and variability is directly correlated with optimizer errors. The

conditional expectation may or may not be computable in any particular case.

If it is not computable, then an approximation may be used. This sort of

approach can be viewed as an information-maximizing approach, where points

are to be selected in a manner that minimizes the variability of optimizer errors.

There is reason to speculate that the optimal optimizer pursues a strategy that

maximizes its use of available information and structures its search to improve

its access to useful information.

Following this line of thought, this dissertation proposes a new method

named evolutionary annealing in Chapter 11. Evolutionary annealing is an

efficiently computable method for generating strategies that are roughly based

on the conditional expectation of the objective function given prior evalua-

tions. Like simulated annealing, evolutionary annealing approximates samples

from an increasingly sharp Boltzmann distribution, asymptotically focusing

on the global optima. Procedurally, evolutionary annealing resembles an evo-

lutionary algorithm, since it proceeds in phases of selection and variation.

Evolutionary annealing selects previously observed points probabilistically in
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proportion to their fitness in a way that asymptotically samples from the

Boltzmann distribution. Then, the selected point is randomly altered to pro-

duce a new evaluation point. Evolutionary annealing is provably convergent

to the global optimum under certain conditions. The proof is based on a mar-

tingale analysis that shows that the global optima become increasingly likely

as the information about the objective functions is refined. Experimentally,

evolutionary annealing compares favorably with other common optimization

methods in a Euclidean search space (Chapter 12), based on the performance

criteria presented in Chapter 7.

Evolutionary annealing is a template for new optimizers, and can be ap-

plied to arbitrary measure spaces; one needs only to specify the mechanism for

generating new points from previously observed ones (in evolutionary terms,

the mutation process). To demonstrate this versatility, evolutionary annealing

is used to develop a novel procedure for learning artificial neural networks in

Chapter 13. Artificial neural networks are parameterized functions represent-

ing a network of artificial neurons [88]. The artificial neurons are connected to

each other by artificial synapses that are represented by a single real number

termed the weight of the connection. An artificial neuron computes a function

by taking a weighted sum of its input values and passing the sum through a

nonlinear squashing function. The network as a whole computes a function

by treating the output of a subset of neurons as the output of the function.

Arbitrarily complex functions can be represented by wiring sufficiently many

neurons together in different ways [49, 185]. Because a neural network com-
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putes a function, the space of neural networks can be used as a proxy to search

for dynamic control functions, such as those needed to solve the driving task

presented in Section 1.2 above.

In Chapter 13, neuroannealing applies evolutionary annealing to the

task of learning a neural network to solve control problems. Neuroanneal-

ing compares favorably with other methods for training neural networks, and

solves some tasks that require complex networks more effectively than previous

methods.

In the final analysis, however, choosing a good optimization method re-

quires an understanding of the particular optimization problem to be solved.

Evolutionary annealing is an interesting new optimization method based on

thorough use of available information. But it is still not the best choice for

every optimization problem. Thus the broader contribution of this disserta-

tion is to provide tools that can be used to assess which methods are the

proper methods to use for a particular problem, intuitively, theoretically, and

experimentally.

1.6 Guide to the Reader

A general mathematical analysis of stochastic optimization methods

as undertaken in this dissertation requires mathematical tools that may be

unfamiliar within the artificial intelligence and machine learning communities.

There is not sufficient space in this dissertation to provide the necessary math-

ematical background for the formulae and proofs that follow. In particular,
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basic familiarity with limits, probabilities, set theory, and real analysis is as-

sumed. Most importantly, the formalization of optimizers that is undertaken

here is built on top of measure theory [43, 83] and functional analysis [8, 23],

with some elements of topology [144], as well as probability theory, martin-

gales, and stochastic processes [30, 38, 105, 126].

In order to prevent this text from becoming a sequence of impene-

trable formulae and abstruse theoretical pontification, the definitions, theo-

rems, propositions, and proofs have been infused with connective narrative

that should clarify the intent and significance of the more mathematical por-

tions of the text. To a large degree, it should be possible to obtain a workable

sense of what has been presented by reading the narrative sections while skip-

ping the proofs and much of the mathematical detail.

Although the author has made sincere efforts to present the material

that follows with a proper level of theoretical depth and rigor, he readily admits

that his background and experience primarily reside in practical aspects of

computation. In addition, however, while the basic readership is assumed

to be mathematically literate, the audience of this dissertation is, like the

author, assumed to have a primary interest in computation. Although the

mathematical concepts in this text are drawn from disciplines of advanced

mathematics, the goal is to produce results that are of practical interest and

benefit, and analytic excursions have been limited to those topics that are

necessary for proving these results. In particular, integrability, measurability,

and even finiteness are often blithely assumed. There is little if any mention
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of standard analytic topics such as compactness or dense sets, nor is there

substantial discussion of convergence over sequences of optimizers or methods

of approximating optimizers.

Those familiar with the subject matter who wish to skip directly the

most significant contributions of this dissertation should read the following

sections. The formal setting adopted for this research are given in Section 3.2

and the description of the normed vector space containing all optimizers is con-

tained in Section 3.4. Particular attention should be given to Section 3.2.3,

where the notational convention used throughout the text are defined. Per-

formance criteria are defined at the beginning of Chapter 7, and Chapter 8

describes the experimental performance of a variety of popular optimization

methods. The formal proofs of No Free Lunch and the characterization of

function priors subject to No Free Lunch are found Chapter 9. The implica-

tions of these theorems are expounded in Chapter 10, which also introduces

the information-maximization principle as a means of identifying the optimal

optimizer for a particular function prior. The basic evolutionary annealing al-

gorithm is presented in Chapter 11, and Chapter 12 presents an experimental

analysis of its performance in Euclidean space. These chapters form the core

material of the dissertation.

The other chapters contain material that, while significant, may be of

less interest to particular readers. Chapter 4 discusses how particular evolu-

tionary algorithms fit into the formal framework. Chapter 5 provides tools to

aid in determining when optimizers are continuous, demonstrated by proving
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the conditions for continuity in existing optimization methods. This material

is crucial to the proof in Chapter 7 that optimizer performance is continuous

as the objective function changes, but is not otherwise used later in the text.

Chapter 6 discusses the relationship between the sequence of points generated

by an optimizer and the decisions made by the optimizer at each time step.

This chapter also reviews aspects of stochastic processes that are needed for

the proofs of No Free Lunch in Chapter 9 and formulates certain equations

that are referenced repeatedly in later chapters. Chapter 13 shows how evo-

lutionary annealing can be applied to train neural networks.

With these guidelines in mind, the reader will hopefully discover in

this dissertation a new way of thinking about optimization methods that has

the potential to bridge the divide between advocates of different optimization

methods and to enable a proper assessment of the value of each method.

1.7 Conclusion

Let us conclude with a brief review of the salient points of this dis-

sertation. One might think of the space of optimizers as a large, unexplored

territory with pockets of civilization representing well-known and deeply stud-

ied forms of optimization, such as gradient, Monte Carlo, or evolutionary

methods. However, the space of optimizers is at least as large as the space of

objective functions, and many of the unknown and unstudied optimizers may

prove to have practical uses. Although the No Free Lunch theorems place some

bounds on the degree to which different optimizers can be compared with each
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other, these bounds are weaker than has been supposed. It is thus possible to

develop a rich theory of optimizer performance.

The currency of this unexplored land is information – prior information

about the function being optimized and information obtained from evaluating

the objective. The best computable optimizer for an unknown objective is one

that fully utilizes all sources of information to exclude incorrect objectives.

Function evaluations provide a source of increasing information, evoking the

idea of a martingale, a stochastic process of constant mean with a resolution

that increases with the available information. This dissertation proposes evo-

lutionary annealing, a martingale-driven stochastic optimizer, as an example

of such a method. Evolutionary annealing is established theoretically and

demonstrated to work well on several optimization problems in real vectors

and neural networks. More importantly, evolutionary annealing is a new type

of optimization method that is typologically different from existing optimiza-

tion methods, but that arises organically from a functional analysis of the

space of optimizers.

As the number of optimization methods proliferates, it is increasingly

important to provide a theoretical structure within which these methods can

be organized and meaningfully compared. The functional analysis employed in

this dissertation is a step in this direction, and it is anticipated that analyses of

this type will become increasingly important and useful in the years to come.

This dissertation is a modest attempt at the following three goals: (1)

to provide a general framework and terminology for analyzing the class of iter-

27



ative stochastic optimization algorithms; (2) to propose a set of analytic tools

and methods for comparing optimizer performance and for selecting a partic-

ular algorithm for a particular task; and (3) to demonstrate the applicability

of the analytic framework by proposing evolutionary annealing as an interest-

ing new optimization method made possible through this analytic lens. The

discussion will remain primarily at the theoretical level throughout, although

experimental results will be provided to demonstrate performance criteria and

to establish the efficacy of evolutionary annealing and neuroannealing. These

experiments notwithstanding, the focus will be on the elegance with which a

wide range of optimization methods can be compared and on the surprising

relationships that exist between them.

With this summary in mind, after a historical interlude in Chapter 2,

the following chapters develop the basic theory of population-based stochastic

optimization. It is hoped that the definitions and formalisms herein will aid the

reader in identifying the similarities and differences between the wide variety of

optimization methods that now exist. It is further expected that the constructs

that follow will be useful for directing future research in new and profitable

directions.

28



Chapter 2

Review of Optimization Methods

Modern optimization methods of optimization originated in the sev-

enteenth century with the discovery of the calculus. Until the advent of

the digital computer, however, analytic solutions and fast-converging itera-

tive methods were the only practical means of performing optimization. The

introduction and proliferation of computing technologies widened both the

scope and the number of optimization problems. Nearly all of the optimiza-

tion methods that will be described in this chapter were developed after 1950,

when large research laboratories first acquired programmable computers. The

vast majority of common optimization methods were developed after the ad-

vent of the personal computer around 1980. Thus a history of optimization

methods is necessarily a history of computational methods in optimization,

since most of the problems and solutions described in this chapter could not

be seriously posed or tested without the computing machinery that is widely

available today.
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2.1 Overview

This chapter presents a brief survey of the primary areas of research

in optimization. The best-known methods are based on following the deriva-

tives of an objective. Such gradient methods usually converge quickly and

accurately on unimodal objectives. However, these methods may not be ap-

propriate for objective functions where the gradient must be estimated from

noisy data, or where the objective function is particularly rough, causing gra-

dient methods to converge to a suboptimal point.

Direct search methods work on some problems where gradient-following

methods fail. These methods exhaustively search all possible directions on an

increasingly refined grid over the search space. They ultimately follow the

gradient without estimating it, but at an exponential cost in speed.

Gradient-based methods have a major drawback: They tend to find

only local optima. If one wishes to find global optima, one may run gradient

methods multiple times on random points. But then the question arises of

how random points should be chosen. Simulated annealing avoids gradients

entirely by embedding the optimization problem inside of a sequence of proba-

bility distributions that asymptotically favor the optima. Simulated annealing

still explores the search space one point at a time, but unlike gradient methods

and direct search, the point is allowed to explore regions with lower objective

values, permitting this method to cross hills and valleys in the objective func-

tion in search of the true global optimum.
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Many of the previous descriptions have implicitly assumed that the

space being searched is a continuous space. A large number of problems are in

fact discrete, and many of these can be represented as a search over a graph

structure. This field is known as combinatorial optimization. Many important

optimization methods are applied specifically to these problems, such as greedy

hill-climbing, simulated annealing, and genetic algorithms.

Evolutionary algorithms represent a different approach to optimization

that seeks inspiration from biological processes and analogies. Darwinian evo-

lution was the primary motivation for early research in this field; later work

branched into a variety of biological analogies under the moniker natural com-

putation. In the past two decades, rigorous mathematical explanations of the

core evolutionary algorithms have been developed that make it possible to

assess of the capabilities and limits of evolutionary methods. These analyses

have also pushed the evolutionary computation community into two distinct

camps: those who focus on simulated and artificial biology as a testbed for

computational innovation and creativity, and those primarily interested in

static function optimization. The research of the latter group has produced

mathematically explicit, quasi-evolutionary methods that quintessentially rep-

resent a transition towards more mathematical representations: estimation of

distribution algorithms, natural evolution strategies, and differential evolu-

tion. The present dissertation continues in this vein, with a goal of unifying

evolutionary computation with static optimization, while recognizing that the

study of computational creativity and the optimization of dynamic functions
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is a separate topic that is interesting in its own right.

Explicitly excluded from this review are componential search domains

such as boolean clause satisfaction (SAT), where the structure of the domain

favors approaches that break the problem down into parts that can be inde-

pendently analyzed.

Instead, the methods that are described here are chosen to represent

what has been termed black-box optimization, in which little substructure is

available to the optimizer up front. On closer inspection, one finds that this

distinction is somewhat contrived, since information about the objective can be

embedded into most successful black-box methods. In addition, the domain-

specific algorithms can be subsumed in to the formalisms of the following

chapters; the formal approach does not in any way prevent it. However, to

save space and to promote clarity, this text will focus on the tradition of

black-box methods.

2.2 Gradient Methods

Gradient-based optimization methods have a long history and continue

to be widely used due to their fast convergence to accurate local optima. This

section reviews the origins of gradient-based optimization, leading up to a

discussion of its modern variants.
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2.2.1 Early Methods

Early optimization methods focused on real-valued functions of one or

more real variables. The first published work addressing this problem is Pierre

de Fermat’s Methodus ad disquirendam maximam et minima, written in 1638,

in which Fermat presented a method for locating the minima and maxima of a

function that corresponds to what is now termed the first derivative test [55].

Given a real function over an interval of the real line, the extrema must either

lie at the boundary, at the non-differentiable points, or at the points where

the function’s derivative is zero, i.e. f ′(x) = 0. If these points are few in

number, then the function can be evaluated at each of them to identify the

true maximum or minimum. The second derivative test provides a means

of determining whether internal points are minimal or maximal. Using these

tests, the global extrema of a function can be determined analytically for many

important objectives. However, the method assumes that the non-differential

points are identifiable, and it requires that the objective function be stated in

closed form as an equation. Most importantly, one must be able to locate the

zeros of the derivative, a difficult task even for many equations easily stated

in closed form.

Fermat’s method can also be extended to functions of several variables,

but the restriction to intervals limits its applicability. The introduction of

Lagrangian multipliers in the eighteenth century provided a means for enforc-

ing more complex constraints [121]. The modernized refinement of Lagrange’s

method, the Karush-Kuhn-Tucker conditions, remains an important technique
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in constrained optimization [106, 119].

2.2.2 Newton’s Method

By 1669, Isaac Newton had discovered an iterative method for locating

the zeros of a real function, now known as Newton’s method or the Newton-

Raphson method. Given a continuous real function f(x) and a starting point

x0, the sequence (xn) defined recursively by

xn+1 = xn −
f(xn)

f ′(xn)

converges to a root of f , i.e. f(limxn) = 0. Building on the derivative test

methods of Fermat, this result implies that the sequence

xn+1 = xn −
f ′(xn)

f ′′(xn)
(2.1)

converges to an extremal point of f [208]. Equation 2.1 is not actually due to

Newton or Raphson. Newton devised an equivalent derivation as a sequence

of polynomials, and it was Raphson who presented the scheme as an iterative

search along the real line [163]. Surprisingly, neither Newton nor Raphson

recognized the relationship of the method to the calculus, but instead used

the method only on polynomials; the generalization to arbitrary functions in

Equation 2.1 was not recognized until later in the eighteenth century.

When it applies, the Newton-Raphson method converges quickly. The

rate of convergence is quadratic, that is, the distance from the iterate xn

to the local optimum x is inversely proportional to n2. Unfortunately, pure
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Newton-Raphson has limited applicability. The objective function must have a

continuous first derivative and a finite, nonzero second derivative. The starting

point x0 must be sufficiently close to the extremum x, and if there are multiple

local optima close together, then convergence will be slower. In some cases,

the iterates may enter a limit cycle. Finally, only a local optimum close to

the starting point x0 will be found, and there is no way to choose the starting

point x0 without analyzing the objective function or sampling from it. If the

derivatives are not available in closed form, they may be estimated by sampling

points near xn and applying the finite difference method. The approximation

of the derivative with finite differences is termed the secant method; a version

of the secant method, the Rule of the Double False Position, dates back to

ancient India and China [151]. The secant method has a linear convergence

rate rather than quadratic.

Newton-Raphson can be generalized to real functions of more than one

variable. In this case, the gradient ∇f =
(
∂f
∂x1
, . . . , ∂f

∂xn

)
and the Hessian

matrix ∇2f =
[

∂2f
∂xi∂xj

]
must be computed. Then the iteration is given by

xn+1 = xn − ηn
[
∇2f(xn)

]−1∇f(xn) (2.2)

where ηn > 0 has been introduced as a time-varying step size or learning rate

to aid convergence as described in the discussion of line search below. In the

multi-dimensional version, the gradient functions must each be Lipschitz con-

tinuous, and the Hessian must be invertible. If the conditions are satisfied,

there is a neighborhood of each local optimum such that the generalized New-
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ton’s method converges to that local optimum for all starting points contained

within the neighborhood.

Newton’s method is one of the most effective known optimization meth-

ods, but it applies very narrowly due to the strict conditions of continuous dif-

ferentiability and an invertible Hessian. Various approximations relax some of

these requirements and replace the Hessian and/or the gradient with approx-

imations and simplifications. These approximations were primarily developed

during the mid-twentieth century and constitute the most popular and widely

known optimization methods today. Of these, the most significant are gradient

descent and line search.

2.2.3 Gradient Descent

Equation 2.2 is difficult to compute because of the Hessian. However,

an effective method can be developed by omitting the Hessian. Given a point

xn, the Taylor expansion of f around xn is given loosely by

f(xn + ηn) = f(xn) + ηn∇f(xn) + o(ηn)

where, as usual, o(ηn) indicates a term that is asymptotically obliterated by

ηn (i.e. o(ηn)/ηn → 0). If the step size ηn is small, then ηn∇f(x) is much

larger than o(ηn) ≈ η2n||∇2f(xn)||2. In this case the final term can be ignored

with minimal error, and the iterates can be computed by

xn+1 = xn − ηn∇f(x),
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where the step size becomes smaller as n increases. The sequence xn defined by

this iteration typically converges to a local minimum of f ; a local maximum

can be found by reversing the sign. Because this method follows only the

gradient and ignores the curvature of the objective, it is known as gradient

descent or steepest descent. As a result of ignoring second-order information,

the step size ηn must be small in order for gradient descent to succeed, and

its convergence rate is consequently slower. Nevertheless, gradient descent is

typically easy to implement and avoids the calculation of the Hessian.

Gradient descent has three common failure modes. First, the step size

can be too large, causing divergent oscillation away from the optimum. This

error can be avoided by choosing the step size to respect the Armijo (or Armijo-

Goldstein) condition,

f(xn + ηn∇x) ≤ f(xn) + c1ηn||∇f(xn)||2,

where ||z||2 =
∑

i z
2
i is the square of the standard Euclidean norm [9]. If the

step size decreases too quickly, then the iterates can converge before reaching

a local minimum. This situation can be prevented by observing the Wolfe

condition,

||∇f(xn + ηn∇x)||2 ≥ c2||∇f(xn)||2,

with 0 < c1 < c2 < 1 [216].

As a different type of failure, gradient descent may converge to a shallow

local optimum rather than a deeper one nearby. A common approach to avoid
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this problem is to introduce a momentum factor µ and set

xn+1 = xn − ηn∇f(x) + µ∆n

where ∆n ≡ xn − xn−1 [158]. The value µ = 0.9 is standard. This method is

often justified by the analogy of rolling a ball over the function surface. The

momentum of the ball allows it to roll over small depressions, so that it only

gets trapped in a large hole. In certain situations, however, the momentum

factor may backfire, causing the iterates to pass over the attraction basin of

the global minimum and into a local minimum.

2.2.4 Line Search

Rather than eliminate the Hessian entirely from Equation 2.2, one can

replace it with a more manageable matrix. This generalization of Newton’s

method is known as line search, and it is defined by the equation

xn+1 = xn − ηnB−1n ∇f(xn)

where Bn is a positive definite matrix. In this case, the quantity

dn = −B−1n ∇f(xn)

is termed a descent direction. The sequence (xn) will still converge to a local

optimum of x provided that the inequality

−∇f(xn)Tdn > 0

holds. This inequality guarantees that xn+1 moves towards the optimum in

general (i.e., the descent direction is not orthogonal to the gradient and does
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not move against it). Generalized versions of the Armijo and Wolfe conditions

can be used to select the step size [111]. Importantly, the step sizes do not

necessarily decrease and may increase so long as f(xn+1) < f(xn). A back-

tracking line search may attempt several values of ηn until this monotonicity

condition is satisfied.

Line search is a generalization of both Newton’s method and gradient

descent. In Newton’s method, the matrix Bn is given by the Hessian, ∇2f(xn),

whereas in gradient descent Bn is the identity matrix. The key intuition is that

the matrix Bn linearly transforms the search space in a manner dependent

on xn. In the case of gradient descent, no transformation is performed. The

Hessian transforms the space to optimally reflect the curvature of the objective

function at the current iterate. One may imagine that between these extremes

there exist transformations that still tailor the iteration to the shape of the

objective function at point xn but are simpler to compute than the Hessian.

One popular method that can be characterized in this way is conjugate gradient

descent [90]; another is to use the second derivative along only a single axis.

2.2.5 Gradient Descent in Parametric Models

The description of gradient descent in Section 2.2.3 assumes that the

gradient ∇f must be computed for the objective function f . In practice,

gradient methods can be applied in many situations where ∇f is not available

through the use of a parametric model. For example, in the car driving task

of Section 1.2, the objective function is a simulation and the search domain is
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a functional space. Clearly, a simulation cannot be differentiated.

Proposed solutions in this sort of task are often formulated as param-

eterized functions, so that a solution is of the form c(x; θ) where x is the

environmental state and θ is a set of parameters drawn from a parameter

space Θ. For example, in a neural network the parameters are the weights

between connected artificial neurons. The objective function can be rewritten

as f̃(θ) = f(c(·; θ)). In many cases, the parameterized form ∇f̃(θn) depends

only on some statistics (tn1 , . . . , t
n
m) gathered during the evaluation of f ; that is,

∇f̃(θn) = h (tn1 , . . . , t
n
m). This situation occurs commonly when the objective

function is to minimize interpolation error on a given set of input-output pairs,

where the statistics gathered are the interpolation errors for each input. Thus

in order to compute xn using gradient descent, one does not need ∇θf(c(·; θn))

but only tn1 , . . . , t
n
m, and the particular statistics needed depend in part on the

objective function and in part on the parameterization.

Thus parameterized gradient descent and direct gradient descent differ

in the type of information they extract from the objective evaluation in order

to update the next solution. This distinction is important for reasons that

will become more clear during the discussion of information restrictedness in

Chapter 3.

2.3 Problems with Gradient Methods

The previous section gave a rough but thorough review of gradient-

based methods. Since most of the text that follows focuses on gradient-free
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methods, the amount of material allocated to gradient methods in this chapter

requires some justification. First of all, if gradient methods work at all, they

work accurately and quickly. Their failure modes are also well understood and

can often be identified a priori or during operation.

There are also several reasons why many gradient-free methods exist

and continue to be invented. Perhaps the most obvious one is that many

optimization tasks are performed on non-continuous search spaces. A prime

example is the Traveling Salesman Problem (TSP), in which a salesman is

tasked with finding a route that visits each city on a map exactly once using

existing roads. Solutions to this problem can be represented in multiple ways,

but the representations typically do not induce a continuous search space.

Non-continuous tasks require searching on various spaces, including trees, per-

mutations, graphs, subgraphs, and binary codes. Objective functions on these

spaces do not have derivatives and cannot be searched with gradient-based

methods.

There are also reasons why gradient-free methods can be preferable

even in continuous spaces with differentiable objectives. The main one is that

gradient-based methods are local optimizers. In the optimization literature,

when it is said that an optimizer converges to an optimum, what is typically

meant is that the optimizer produces a sequence of points that converges to

some local optimum in the limit. Given an objective function f , a point x is

a local minimum (or a local maximum) if there is some open neighborhood N

containing x such that f(x) ≤ f(z) for all z ∈ N (for a maximum, f(x) ≥
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f(z)). If this inequality is satisfied for the entire search space, then the point

is a global minimum (or a global maximum). A gradient-based method will

converge to a local optimum that is determined by the starting point and the

step size. A local optimum may be a high-quality solution to the optimization

task, or it can be of low quality. Thus a local optimum is sometimes a sufficient

solution, and sometimes not.

The local optima of a function divide the search space into a disjoint

set of attraction basins. An attraction basin of a dynamic system is the set

of initial conditions for which the system converges to a particular attractor.

Gradient-based optimization approximates a dynamical system given by

dz(t) = ∇f(z(t)) dt

with initial condition z(0) = z0 and t ∈ [0,∞). In this system, the local optima

are attractors, since the gradient is zero there. For a given local optimum x,

the attraction basin of x is the set {z0 | x = limt→∞ z(t)}. Generally, if the

starting point z0 is in the attraction basin of x under this system, then the

iteration of a gradient method will converge to x unless the step size is large

enough that one of the iterates steps across the entire attraction basin. Most

gradient methods aim to find the local optimum of the attraction basin that

contains the starting point. To study the quality of a gradient-based method

on an objective, one should study the attraction basins of the objective.

Even among differentiable functions, the attraction basins of a function

may have almost any shape, size, or arrangement within the search space.
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Figure 2.1(a) shows contours and attraction basins for the sum of ten two-

dimensional Gaussian kernels with varying centers and size, given by

f(x) =
10∑
i=1

1

2πσi
exp

(
− 1

2σ2
i

||x− µi||2
)
.

This function has 10 maxima, and the basins for each were determined by

running conjugate gradient descent on a 300 × 300 grid of starting points

arranged from −1 to 1 on each axis. Importantly, the narrower kernels have

higher objective values at the center, but correspondingly smaller attraction

basins. Assume that the starting point is chosen uniformly at random with

each component in the interval [−1, 1]. Figure 2.1(b) shows the probability of

achieving each of the 10 maxima, ordered by rank with the global maximum

at the left. The true optimum is located in the smallest basin and attracts

only 639 out of the 90, 000 sample points. That is, if the starting point is

chosen randomly, then the true optimum is found on less than one out of every

100 runs. If this experiment were repeated in five dimensions with a similar

function, the chances of finding the true optimum would be much less than

one in 10, 000. Therefore, the fact that a gradient-based method will converge

quickly and accurately to a solution provides little comfort if the solutions

achieved in this manner are severely suboptimal with high probability.

For many tasks, there is a rational means for choosing a starting point

that will yield high quality. For example, if the objective is given in closed

form as above, it may be analyzed. Yet for many other optimization tasks,

there is no way to know at the outset which starting points will yield good

results. One must choose the starting point heuristically.
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Figure 2.1: (a)Attraction basins for a sum of ten Gaussian kernels under con-
jugate gradient descent on a square region. Plots were generated by sampling
a 300×300 grid to discover which local maximum results from each grid point
using conjugate gradient descent. Different colors indicate regions that result
in different local maxima. Contour lines are included in gray to indicate the
location of the Gaussians. The global maximum is the red region in the upper
left. Its area among possible starting points is small; only 639 of the 90, 000
sample points (0.7%) converge to the global maximum. (b) A bar chart show-
ing the probability of arriving at the best local maxima, ordered by quality
from left to right. Again, gradient descent is unlikely to find the best solution.
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In essence, the use of a gradient method converts a continuous opti-

mization task into a discrete task. An objective with N local optima yields

N possible outcomes under Newton’s method. It may be that each one of

these local optima are acceptable solutions, in which case the gradient search

always succeeds. But if only a proper subset of the outcomes are acceptable,

then the gradient search is successful only some percentage of the time. This

percentage is a property of the objective and may be small.

Several methods have been proposed to improve the quality of the op-

tima obtained by a gradient search. Each of these methods succeeds in some

situations and fails in others. The use of a momentum factor was mentioned

during the discussion of gradient descent. It can backfire by causing the opti-

mizer to skip over the true optimum in certain situations. Another approach

is to add random noise to the computation of the gradient. This approach is

called stochastic gradient descent, and the random noise is usually embedded

into the objective function itself as part of the task. The addition of noise

can allow the gradient iteration to escape randomly from shallow local op-

tima. The method succeeds when poor local optima are more shallow than

good local optima, since the variance can be tuned just enough so that the

iteration escapes poor optima with high probability but is trapped by good

optima. But there is no way to know ahead of time whether the poor and

good optima fit this profile. An objective can be constructed in which poor

optima are relatively deep and good optima are reached by a long series of

shallow steps, each of which can be escaped. It is impossible to know how the
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variance should be set without some experimentation.

If the momentum factor and random noise fail, then another approach

is to run a Newton method many times with different starting points. These

methods typically require at most several dozen objective evaluations before

convergence, making this approach practical. In this case, one is essentially

randomizing the starting point and then sampling from a histogram like that

of Figure 2.1(b). If the good optima are unlikely, then it is possible that even

this method will fail.

Gradient-free methods provide alternatives that answer many of the

problems brought up in this section. A full review of these methods is presented

over the next few sections.

2.4 Direct Search

Direct search is a catch-all term for several gradient-free optimization

methods frequently employed within the applied mathematics community over

the course of the last century. According to the definition of the term, any

method that relies strictly on objective evaluations in order to determine the

next point to search is a direct search method [96, 111, 160, 220]. However, the

term “direct search” is not used outside of applied mathematics, and it will

not be applied more widely here. Some of the earliest variants of direct search

were already in use at Manhattan Project in the early 1940’s [111]. The most

important categories in this group of approaches are the simplicial methods,

represented by the Nelder-Mead algorithm, and pattern search, to which the
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name generating set search is applied following Kolda et al. [111]

2.4.1 Simplicial Methods

Simplicial optimization methods search through a d-dimensional con-

tinuous space manipulating a simplex with its d + 1 vertices. Because of the

way the simplex moves through the search domain, this method is often re-

ferred to as the amoeba method. The initial simplex is built around a starting

point, typically by taking the starting point as a vertex and setting the other

d vertices by adding the d coordinate vectors to the starting point. The end-

points are then evaluated under the objective function. At each iteration, the

simplex is be transformed in various ways.

The first simplicial method was proposed in 1962 by Spendley et al. [193].

It included two possible transformations to the simplex. The worst vertex

could be reflected around the centroid of the opposite face, or the entire sim-

plex could be shrunk towards the best vertex. Nelder and Mead introduced

additional transformations [149]. In addition to being reflected, the worst ver-

tex could be moved towards the centroid of the opposite face (contraction),

or projected through it twice as far as the reflection would have accomplished

(expansion). The transformation to be used is determined by a set of rules

that depend on the objective values of the vertices.

The Nelder-Mead algorithm is popular because it works quickly and

reasonably well. An implementation of this optimizer is included with several

software packages and is widely available. However, Nelder-Mead is not guar-
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anteed to converge, and its widespread use seems to be primarily a matter of

convenience.

2.4.2 Generating Set Search

In contrast to simplicial methods, generating set searches are designed

to ensure convergence to a local optimum. Generating set search maintains an

accepted solution that is updated only if the objective value can be improved.

The name was coined by Kolda et al, and subsumes the earlier term pattern

search of Hooke and Jeeves [96, 111]. Recalling the definition of a descent

direction in line search from Section 2.2.4, suppose that one wishes to follow the

gradient in order to improve the accepted solution, but no gradient information

is available. In a d-dimensional continuous space, this can be accomplished by

testing the objective at d + 1 points around the current accepted solution. If

these points are chosen correctly, then at least one of them will be a descent

direction for the objective.

The correct points can be generated from a positive spanning set. A

set B = (b1, . . . , bk) of d-dimensional vectors is a positive spanning set if for

any vector z in the space, there exists vector α with non-negative components

such that z =
∑

i αibi. If B̃ is a basis for the space, then a positive spanning

set of size d+ 1 can be generated by appending to B̃ a vector b̃ = −1
d

∑
x∈B̃ x.

Or, a positive spanning set of size 2d can be generated by extending B̃ with

the negative of each vector in B̃.

The simplest generating set search starts at a given point x0 and re-
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quires a step-size parameter ∆0. The method generates a positive span-

ning set B and then polls each of the directions x0 + ∆0b for b ∈ B. If

f(x0 + ∆0b) < f(x0) for at least one direction b, then the current solution is

updated to x1 = x0 +∆0b and ∆1 = ∆0. The search can either choose the best

descent direction or the first discovered. The process continues until a point xn

is found such that none of the directions in B yields an improvement. In this

case, xn+1 = xn, and the step size ∆n is reduced by some factor τ < 1 so that

∆n+1 = τ∆n. The process continues again until ∆n falls below a tolerance, in

which case the search is complete.

This algorithm converges to a local optimum because the step size ∆n

can be proved to decrease to zero asymptotically [45, 111]. It can be modified

in a number of ways while remaining convergent. A search heuristic can be

inserted before each polling step that evaluates any finite number of points

on the grid {xn +m∆nb | b ∈ B,m ∈ Z,m 6= 0}. When the search heuristic

is successful, the step size ∆n can be increased instead of decreased. The

generating set B is allowed to depend on xn as long as the magnitude of its

vectors does not increase.

Several optimization methods that fit this template have been devel-

oped and continue to be proposed [11, 45, 202]. These methods work well in

practice, but are designed to converge to a local optimum. Once convergence

has occurred within a specified tolerance, the search is complete, and new

local optima can only be discovered by restarting from a different point. A

systematically different approach is to use a stochastic algorithm, as will be
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discussed next.

2.5 Stochastic Optimization

Most of the optimization methods examined so far have shared two

properties. First, they have been deterministic. The resulting solution is

a function of the starting point. Secondly, they converge to a single local

optimum and then either terminate or become asymptotically stable. Once

these methods have converged within an acceptable tolerance, they no longer

explore new regions of the search space. In contrast, stochastic optimizers

search the domain by randomly sampling points based on the objective value

of one or more previously evaluated points. Because they move randomly,

stochastic optimizer can escape local optima with some probability. As a

result, they may not always converge, or they may at least explore multiple

local optima prior to convergence. The most dominant method of this type is

simulated annealing, which is reviewed in this section.

2.5.1 Simulated Annealing

Simulated annealing was developed by Kirkpatrick et al. in the early

1980’s [26, 109]. It employs properties of statistical mechanics to locate min-

ima of a given fitness function. The usual analogy is that of crafting a metallic

artifact by repeatedly shaping it at different temperatures. At high temper-

atures, the metal is malleable and easy to shape, but as such the metal does

not easily remain in detailed configurations. As the temperature is gradually
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lowered, more refined and delicate shapes become possible, but the overall

shape is increasingly fixed.

At the core of the simulated annealing algorithm is the Boltzmann

distribution. At time n, simulated annealing samples from a distribution given

by

Af
n (dx) =

1

Zn
exp

(
−f(x)

Tn

)
dx, (2.3)

where f is the fitness function, Zn is a normalizing factor known as the partition

function, and Tn is a sequence of temperatures with Tn → 0. The sequence

Tn is known as the cooling schedule. The distribution Af
n will be referred

to as an annealing distribution in this paper. Simulated annealing samples

from Af
n repeatedly using the Metropolis algorithm [87, 136]. The process

begins with a proposed solution x. At each time step, a proposal distribution

Q is used to sample xn. The proposed solution x is replaced with xn with

probability exp (−max {0, f(x)− f(xn)} /Tn). For each fixed temperature Tn

the algorithm will converge to a sample from Af
n. As n→∞, Af

n converges in

probability to a distribution that samples directly from the optimal points of

f [109].

Subject to conditions on the cooling schedule, simulated annealing can

be shown to converge asymptotically to the global optima of the fitness func-

tion [82, 223]. For combinatorial problems, Hajek [82] showed that simulated

annealing converges if the cooling schedule is set according to Tn ∝ 1/ log n.

In practice, simulated annealing has been used effectively in several science
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and engineering problems. However, it is highly sensitive to the proposal dis-

tribution and the cooling schedule.

Whereas simulated annealing lowers the temperature Tn to zero in order

to sharpen the Boltzmann distribution, stochastic tunneling raises the temper-

ature to higher values in order to soften the function and lower the barriers

separating the attraction basins of different local optima. Raising the temper-

ature allows for complete exploration of the local minima of the function and

may make it possible to locate the global minima. However, more thorough

exploration comes at the cost of much slower convergence.

2.5.2 Justification for Stochastic Methods

Stochastic optimizers have some advantages over deterministic meth-

ods. Stochastic optimizers do not become trapped by local optima as easily as

deterministic optimizers, although eventually most popular stochastic methods

do converge around a single point, potentially a local optimum. However, this

flexibility comes at a high price. Stochastic methods inevitably converge more

slowly than deterministic gradient-based methods because they can explore in

the opposite direction of the gradient. This slowdown may be exponential if the

stochastic method is particularly thorough. Direct search methods suffer from

the same reduction in speed, but many of them can still work faster because

they provide a guarantee that a descent direction is eventually followed. Thus,

before using a stochastic method, especially a non-gradient-based stochastic

method, some justification is required.
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Stochastic methods are valuable because they reflect the underlying

uncertainty in the optimization task. As will be seen in Chapters 9 and 10,

there is substantial reason to believe that the best optimizer under any fixed

random test procedure is deterministic. However, if the exact nature of the

test procedure is unknown, an optimizer can be made robust against the uncer-

tainty of the test procedure by randomizing. The best deterministic optimizer

on one test procedure could have poor performance on a slightly different test

procedure. The primary justification for a stochastic method is the underlying

uncertainty about the true nature of the problem.

If one desires to study a specific optimization task, then one might learn

a great deal about the problem through exhaustive exploration. It would then

always be advantageous to design an optimization method that accounts for

what one has learned. However, it is important to recognize this procedure for

what it is: a long, tedious, manual optimization process in which the researcher

has adopted the role of the optimization method and has himself made a

series of evaluations in order to remove uncertainty and increase available

information. In other words, this approach reflects confidence in humans as

superior optimizers. However, the skills, knowledge, and ability required by

such a researcher are rare in relation to the number of optimization problems,

and the “running time” of the human optimizer is often much longer than that

of a general purpose optimizer. If resources and time permit, then the human

optimizer is almost always preferable to automated optimization methods.

But if resources and time are a constraint, then a good stochastic optimizer

53



is a viable option. Finally, if the goal of research is to develop human-level

problem solving abilities, then comparing the success of human researchers to

the success of a good black-box algorithm is useful for assessing the progress

of artificial intelligence.

In the end, stochastic methods are useful and can be shown to have good

performance on a wide array of metrics. Deterministic or quasi-deterministic

optimizers can always perform better on static problems with a sufficient

amount of information. The success of an algorithm depends on its align-

ment with the test procedure used to evaluate it [218].

Note that the statements above do not necessarily hold for dynamic and

stochastic objectives. In this dissertation, these are explicitly excluded, and

the focus is on static objective functions. That is, if an objective f is evaluated

at a point x, then the value f(x) is fixed, i.e. subsequent evaluations must

return the same value. If subsequent evaluations of f(x) can change, then

either the objective function is dynamic (varying over time) or stochastic. If

the objective is a random function, then it seems reasonable to conjecture that

appropriate stochastic methods should outperform deterministic optimizers,

although this conjecture is not explored further in this dissertation.

2.6 Evolutionary Methods

Evolutionary computation is a major category of stochastic optimiza-

tion method. Its origins lie in the computational simulation of evolution-

ary processes. The general concept of evolutionary computation has been
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invented independently numerous times by different researchers [15, 32, 67, 69–

71, 165, 170]. This section reviews the most common elements of these meth-

ods.

2.6.1 Overview

The basic structure of a traditional evolutionary algorithm consists of

a sequence of subsets of the search space, termed populations, with each pop-

ulation in the sequence called a generation. Population consist of individuals,

generally represented as an array of parameters. The population for each gen-

eration is built from the prior generation through processes of competitive

selection and random variation. The prior generation is ranked according to

fitness, and the most fit individuals are chosen to create the next popula-

tion either with minor variations called mutations or by combining parameters

from two or more members in an operation called crossover. Many other vari-

ants exist, and these variants will be discussed as needed. A short historical

summary of evolutionary computation follows.

The earliest research on computational simulation of evolutionary pro-

cesses was published in 1954 by Barricelli in the context of a cellular au-

tomaton [22]. Friedberg and Fogel independently studied genetic program-

ming [67, 71]. Evolution stragegies was an approach developed by Rechenberg

and Schwefel to search through Euclidean space with selective competition

and local variation [165, 183]. Genetic algorithms became the most dominant

branch of evolutionary algorithms, having been developed independently by
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Bremerman [32] and by Holland and his students [15, 94, 170]. Holland cham-

pioned the cause of genetic algorithms and developed a result known as the

schema theorem to explain their success [95]; his work was followed by that

of Goldberg, who likewise had a substantial influence in popularizing genetic

algorithms [77]. Early work comparing the effects of varying algorithm hyper-

parameters and population transition mechanisms empirically was performed

by De Jong [56]; these experiments were furthered by Brindle [33].

The schema theorem asserts that genetic algorithms would probabilis-

tically select and refine subcomponents by making it more likely that adjacent

subcomponents contributing high fitness would survive into later generations.

The schema theorem was used as an argument to assert that binary repre-

sentations were more efficient because binary subcomponents would be more

likely to be preserved in population transitions [77, 95]. This argument as-

sumes that problems are structured into small, uncorrelated subcomponents,

when in fact real-world problems can be structured in ways that exhibit in-

tricate long-distance dependencies [65]. In these cases, genetic algorithms are

likely to struggle to find the correct problem structure. Furthermore, genetic

algorithms are highly sensitive to representation in a binary setting. For exam-

ple, De Jong produced an experiment comparing two different types of genetic

algorithms in which a change of representation reversed their order in terms

of performance [103].

Experiments like those of De Jong on the sensitivity of a genetic al-

gorithm to its implementation details created an atmosphere of ambivalence
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about the prospects of tuning a genetic algorithm to solve yet more complex

problems. Further, the No Free Lunch Theorems of Wolpert and Macready [218]

demonstrated that, averaged over all problems, any genetic algorithm would

perform equivalently to any other genetic algorithm. From that point, research

turned to generalizations and abstractions of genetic algorithms, for which it

was hoped that novel techniques would outperform genetic algorithms on par-

ticular problem domains where genetic algorithms fared poorly.

Many of these new algorithms were proposed as biological analogies.

Collectively, they are referred to as natural computation. Dorigo presented

Ant Colony Optimization (ACO) [58] in 1992 in analogy with the food gath-

ering behavior of ants. For ACO, problems are transformed into a search for

a path through a graph. In each generation, a population of artifical ants

explore the graph stochastically, laying down pheromones that bias future

searches whenever they locate interesting structure. Particle Swarm Opti-

mization (PSO) was introduced in 1995 by Eberhart and Kennedy [62, 107]

to imitate the behavior of flocks of migrating birds in choosing a direction in

which to fly. In PSO, rather than randomly mutating population members,

candidate solutions in the population travel through the search space with a

directional momentum that is incrementally shifted towards the current best

solution in the population. Artificial Immune Systems (AIS) were proposed

in stages by several researches to employ an analogy with the structure of the

human immune system in order to address issues such as network intrusion de-

tection using a population of antibodies [25, 63]. Particle Swarm Optimization
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will be analyzed as an example of natural computation in Chapter 4.

In addition to the biological variants, a substantial field of research de-

veloped to learn a probability distribution governing the transition between

populations in a genetic algorithm [17, 18, 86, 120]. This research culminated

in algorithms that greedily learn Bayesian networks over the best members of

the population; these networks are then sampled to produce the next gener-

ation [142, 155–157]. These algorithms are alternately known as Estimation

of Distributions Algorithms (EDAs) or Probabilistic Model-Building Genetic

Algorithms (PMBGAs) [154]. EDAs are relevant to the dissertation as an

example of the application of probability to genetic algorithms and will bere-

viewed in further detail in Section 2.7.2.

With this historical background in mind, it will be useful to discuss

the issues arising in theory and analysis of classical genetic algorithms before

returning to newer, probabilistic variants.

2.6.2 Genetic Operators

Genetic operators are used to describe the substructure of population

transitions in genetic algorithms. A transition from one population to the

next is accomplished by applying an ordered sequence of operators to the

current population. Typically, these operators include a selection operator,

a crossover operator, and a mutation operator. Other genetic operators have

been proposed such as diploidy, dominance, and inversion [77]. The most com-

mon genetic operators can be subsumed by a two stage process of selection
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and variation, where selection is a weighted choice over previously observed

individuals and variation is an arbitrary stochastic perturbation of a selected

individual. A formal account of selection and variation is provided in Chap-

ter 4. The relevant background is summarized in the following paragraphs.

The role of a selection operator is to select the parents of the next gen-

eration from among the individuals whose fitness has already been measured.

Selection can be treated as a probability distribution over candidate solutions

observed thus far. The most common types of selection are proportional selec-

tion [77, 95, 154, 206], ranking selection [16, 206], tournament selection [33, 206],

and elitist selection [56]. Proportional selection (also known as roulette wheel

selection) is an individual-level selection operator that selects members of the

previous generation in proportion to their fitness [77, 95]. Formally, for a fit-

ness function f , individuals x, y in the prior generation, and the number of

occurrences of x in the prior generation nx,

Ptprop (x) =
nxf (x)∑
y nyf (y)

. (2.4)

Proportional selection plays a key role in the simple genetic algorithm and

in many EDAs. Note that proportional selection assumes that the fitness

function is positive. Any bounded function can be shifted so as to be positive,

or other monotone increasing transformations may be applied to obtain a

positive function (such as exponentiation). These transformations may distort

the shape of relative weight of different solutions, but they cannot alter the

order in which solutions are preferred.
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Ranking selection can operate either at the level of populations or indi-

viduals. At the individual level, parents for the next population can sampled

randomly from the ranked population according to any monotone decreasing

weighting scheme. Ranking selection differs from proportional selection in that

the relative weight of population members can be altered by any method that

preserves order.

Tournament selection also ranks the population, and then chooses the

best individual with probability p and the kth individual with probability

p (1− p)k−1 [33, 206].

Elitist selection guarantees that the best solution from all prior gener-

ations survives into the next population. When elitist selection is used along

with a mutation scheme that eventually visits every point in the space, then

asymptotic convergence is obtained with probability one [173].

Selection operators introduce competition into the population. By con-

trast, crossover and mutation operators provide variation to widen the scope of

the search in order to discover highly fit individuals not previously in the pop-

ulation. A crossover operator recombines two candidate solutions to construct

a third candidate solution. Crossover relies on two selection operators, one

for each parent, which may or may not be the same. In addition, a crossover

methodology must be supplied to determine how recombination is to occur.

The most basic crossover strategy is one point crossover, in which an

index inside of a chromosome is selected as a split point, and each parent
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provides the parameters on one side of the index. The split point may be

selected deterministically, or chosen according to some probability. In contrast,

uniform crossover performs a Bernoulli trial for each parameter, and copies

the parameter of the parent chosen by that trial [201].

Mutation operators are applied at the individual level to slightly vary an

individual’s parameters. Crossover can only alter the particular arrangement

of parameter values already present in the population; mutation operators

introduce new parameter values into the population. Mutation therefore facil-

itates detailed exploration of regions with high fitness. In binary spaces, this

concept is formalized by the mutation rate, that is, the expected percentage of

bits in the gene that will be flipped by mutation. In metric spaces, the analo-

gous feature is characterized by the variance of the operator. If an individual

can be transformed to any other individual in the space with some nonzero

probability after application of the mutation operator, then an evolutionary

algorithm equipped with this operator will asymptotically locate the optima

of the fitness function [64, 173].

Both crossover and mutation can be construed as a family of probability

distributions indexed by candidate solutions. Given an individual, crossover

places nonzero probability on solutions that can result from crossing that indi-

vidual with other members of the population using the crossover methodology.

Mutation places nonzero probability on solutions reachable from a given indi-

vidual. These intuitions are made more explicit in the discussion of Random

Heuristic Search that follows.
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2.6.3 Random Heuristic Search

Some theoretical issues pertaining to the simple genetic algorithm were

explored by Vose [206] within a framework he introduced under the name of

Random Heuristic Search. The analysis performed by Vose prefigures certain

aspects of this dissertation and will therefore be reviewed in this subsection.

Vose describes the simple genetic algorithm as a search in the space of proba-

bility vectors. A random heuristic search [207] consists of two repeated steps.

The first step applies a deterministic heuristic G to map the current population

pn to a candidate population p̂n = G (pn), and the second step resamples a new

population pn+1 from p̂n. The transition rule τ is defined as the composition

of the two steps.

For the simple genetic algorithm, the heuristic G can be broken down

further into three steps: selection, mutation, and crossover. The selection

scheme F maps a population p to a distribution over bit strings that produces

an individual x with probability F(p, x). Significantly, the selection scheme

operates at the level of individuals rather than populations. The mutation

function µxu gives the probability of mutating an individual u to an individual

x. A crossover function χx,yz recombines individual parents x and y into a third

individual z in accordance with a crossover rule.

These three operations can be combined to give an explicit form for

the action of the heuristic G on a population p using SGA. Specifically, for

each z ∈ {0, 1}n, the probability of obtaining an individual z for the next
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population is given by

G (p, z) =
∑
x,y,u,v

F (p, x)F (p, y)µxuµ
y
vχ

u,v
z . (2.5)

With some rearrangement, it can be seen that Equation 2.5 is actually a mix-

ture distribution, since it can be rewritten loosely as

P (z ∈ τ (p)) =
∑
x∈A

q (x) νx (z) , (2.6)

where A is the set of individuals i such that F (p, i) 6= 0, q (x) ≡ F (p, x) and

νx (z) =
∑
y,u,v

F (p, y)µxuµ
y
vχ

u,v
z . (2.7)

This equation makes explicit the claim that mutation and crossover can be rep-

resented as a family of probability distributions operating on individuals, and

that selection could be viewed as a weighted choice over previously observed

individuals. This claim will be used implicitly in Chapter 4 to characterize

evolutionary algorithms theoretically.

Here, the heuristic G is defined on binary search spaces. However,

this characterization can be generalized to arbitrary separable measure spaces,

which will be done in Chapter 3.

2.7 Quasi-Evolutionary Methods

As discussed in Sections 2.6.1 and 2.1, recent trends in evolutionary

computation have focused on developing optimization methods with more de-

tailed mathematical justification. These methods bear strong similarities to
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evolutionary optimization methods in both terminology and intuitive origins

but are not adequately described as attempts at artificial evolution. They

are more aptly described as parallelized stochastic optimization techniques

with historical ties to evolutionary computation. For these methods, this term

quasi-evolutionary methods is adopted in this text. In formal terms, it is

not possible to distinguish evolutionary and quasi-evolutionary methods com-

pletely. Thus this distinction is primarily rhetorical, and will be reflected in

the formalisms of Chapters 3 and 4 only to a limited extent.

This section discusses three kinds of quasi-evolutionary methods: differ-

ential evolution, estimation of distribution algorithms, and natural evolution

strategies. Evolutionary annealing, introduced in Chapter 11 of this disserta-

tion, is a new type of quasi-evolutionary method.

2.7.1 Differential Evolution

Differential evolution was introduced by Storn and Price [198] in 1995

as a means of optimizing the coefficients of Chebyshev polynomials. It has

since proven itself as a fast and effective optimizer for finite-dimensional real

vector spaces.

Differential evolution maintains a population of candidate solutions

that may be thought of as an array of slots. Each slot obeys an independent

acceptance-rejection scheme much like in direct search or simulated annealing.

At each generation, a new population is created with one candidate solution

from each slot. These solutions are evaluated against the objective. The slots
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are then filled with either the new candidate from that slot or the prior occu-

pant of the slot, depending on which performs better. Thus the objective value

of each slot improves monotonically, and differential evolution with population

size K consists of K parallel, monotonically improving searches.

The procedure for generating new candidate solutions involves altering

one or more components of the real vector that constitutes the solution. Let

x be the member of the population in the ith slot. To generate a new solution

x̃ from x, the following steps are used. First, three other members of the

population are selected, say, a, b, and c. Then for each component j, set

x̃j = aj + F (bj − cj) with probability CR and x̃j = xj otherwise. If no

component of x̃ is changed from x, then randomly select a component j̃ and

apply the change above to that component. The value F is a parameter of the

algorithm termed the weighting factor that regulates the step size through the

search space, and CR is the crossover rate, a probability governing the rate at

which components are mixed across the population. Typically, F ∈ [0, 1] with

F = .2 and F = .9 being common values. The crossover rate is also often set

to CR = .2 or CR = .9.

Ghosh et al. [74] showed that differential evolution in the form above

converges to the global optimum on continuous real-valued functions that pos-

sess a unique global optimum. A number of variants have been developed as

well. Some of them move components in the direction of the best member of

the population rather than in a random direction (i.e. they replace the vector a

above with the best solution in the population). Other methods use crossover
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operations to further mix the members of the population. Still other methods

relax the acceptance criterion to operate more like simulated annealing [52].

Many of these methods have performed well on benchmarks and in optimiza-

tion competitions, making differential evolution one of the best performing

gradient-free stochastic optimizers available today [74].

2.7.2 Estimation of Distribution Algorithms

Evolutionary algorithms can be thought of as building a sequence of

probability distributions used to sample each generation. The process begins

with an initial distribution that is used to sample the first population. Then,

the population is scored, and a new population is created stochastically. The

new population is just a sample from some abstract probability distribution.

This point of view begs the question: can the optimization algorithm be im-

proved by making this abstract distribution explicit?

Estimation of Distribution Algorithms (EDAs) were the first quasi-

evolutionary algorithms to seek to learn a distribution explicitly governing the

transition between populations [140, 154]. EDAs rank the prior population ac-

cording to fitness. The worst members of the population are discarded, and the

remaining solutions are used as a dataset to estimate parameters for a prob-

abilistic model, usually some sort of graphical model [122, 140, 152]. Because

EDAs arose out of the genetic algorithms research, they are typically applied

to objectives with binary encodings, and so multinomial Bayesian networks

are a suitable probabilistic model.
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Baluja et al. introduced the first EDA, Population-Based Incremental

Learning (PBIL), in 1994 [17, 18]. PBIL treats each bit in the encoding as

an independently sampled Bernoulli random variable. Despite its simplicity,

PBIL can outperform traditional genetic algorithms on several problems with

significantly fewer evaluations. Hill Climbing with Learning (HWcL) and the

Compact Genetic Algorithm (cGA) implement the same concept with distinct

update rules for the probability vector [86, 120].

Mühlenbein generalized PBIL by considering a variety of approaches

that attempt to implement proportional selection statistically [142]. That is,

given proportional selection Ptprop as in Equation 2.4, the algorithm estimates

proportional selection by some distribution Qt at each generation so that

Qt (x) ≈ EPtprop (x) , (2.8)

where the expectation is taken over populations, that is, over the variable nx in

Equation 2.4. The rationale here is that if the initial population is uniformly

distributed, then at time t the pointwise expected value of the proportional

selection rule yields

E
[
Ptprop (x)

]
∝ f (x)t , (2.9)

which is a sharpened version of the fitness function. Because of normalization,

the result is that as t→∞, E
[
Ptprop (x)

]
goes to one at the maxima of f and

zero elsewhere. Proportional selection in genetic algorithms fails to achieve

this effect because a specific sample path is followed rather than the pointwise

average. By attempting to model the underlying distribution rather than
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relying on a sample path, EDAs attempt to benefit from convergence to the

optimum. A similar sharpening effect to that observed in Equation 2.9 will

be proposed in Chapter 11 without the accompanying context of proportional

selection.

A series of subsequent algorithms provided increasingly accurate ap-

proximations of Equation 2.9 [140, 142, 157]. The Factorized Distribution Al-

gorithm (FDA) extends this analysis to arbitrary dependencies between vari-

ables by estimating EPtprop with a graphical model [122, 140, 152], but FDA

does not incorporate a structure learning algorithm. Pelikan introduced the

Bayesian Optimization Algorithm (BOA) to provide structure learning details

for Bayesian networks and Hierarchical BOA (hBOA) to extend this framework

to a hierarchical graphical model [155, 156]. The Real Bayesian Optimization

Algorithm (rBOA) translates BOA into an optimization method for real vec-

tor spaces [3]. MARLEDA applies similar techniques using a Markov random

field rather than a Bayesian network [6].

The class of EDAs thus effectively converts the basic evolutionary algo-

rithm into a probabilistic population-based algorithm that proceeds by match-

ing the structure of a probability distribution to the distribution governing

increasingly fit solutions as captured in the mean proportional selection rule

of Equation 2.9. It is important to note that the techniques developed for

EDAs primarily work for fixed-length binary strings. Evolutionary annealing,

introduced in Chapter 11, is similar in some respects to EDAs, but employs

mixture distributions that are considerably simpler than Bayesian networks.
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But evolutionary annealing can be applied naturally to complex domains, and

it will be seen that these mixture models approximate more complex models

in the limit.

2.7.3 Natural Evolution Strategies

Evolution strategies was mentioned above as a major branch of evo-

lutionary algorithms for real vector spaces; it is reviewed more thoroughly

in Chapter 4. Its most common version is characterized by global adapta-

tion of the Gaussian mutation parameters embedded into each candidate solu-

tion [27, 165, 183]. In 1996, Hansen and Ostermeier [85] introduced a scheme

for adapting the mutation parameters to use elliptical Gaussians with arbi-

trary rotations and named it Correlated Matrix Adaptation Evolution Strate-

gies (CMA-ES). Over time, the algorithm changed substantially so that rather

than storing Gaussian parameters on each candidate solutions, a single global

set of Gaussian parameters were used to generate each new generation [84].

These changes occurred around the same time as Estimation of Distribution al-

gorithms were being developed to search binary spaces, and they share impor-

tant characteristics. The naming of CMA-ES retains the standard (µ/ρ+ λ)

notation of traditional evolution strategies, but the algorithm itself has few

similarities with earlier evolution strategies and little if anything to do with

artificial evolution.

In the current version of a (µ, λ)-CMA-ES, a single d-dimensional Gaus-

sian distribution (µn,Σn) is updated with each generation. The initial popu-
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lation of λ solutions is generated randomly. The population is evaluated, and

then the mean and covariance of the best µ solutions are calculated (µ < λ).

Then the global Gaussian parameters are updated to incorporate this new

information in a manner that smoothly integrates the results of subsequent

generations. The details of these parameter updates are complex and can be

found in the literature [84]. Because CMA-ES uses a single multivariate Gaus-

sian to generate its population, the search cannot adapt itself to a multimodal

objective landscape. In practice, CMA-ES converges to a local optimum rela-

tively quickly, and may be restarted in order obtain good results [13].

Wierstra et al. introduced Natural Evolution Strategies (NES) in 2008,

and Akimoto et al subsequently demonstrated that NES is a generalization of

the standard CMA-ES algorithm [5, 215]. In NES, the stochastic optimization

method is represented as a parameterized probability distribution π (x | θ)

where the parameters θ are drawn from a real parameter space and each pop-

ulation samples individuals independently from π (x | θ). This representation

can be used to generate a meta-optimization problem of choosing the param-

eters θ to optimize the expected value of the objective function under π,

J(θ) = Eθ [f(x)] .

Gradient descent (or ascent) may be applied to this function using

∇θJ(θ) = Eθ [f(x)∇θ log π (x | θ)] ,

which may be estimated by Monte Carlo integration. A final improvement,

termed natural gradient descent [215], applies a quasi-Newton method replac-
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ing the Hessian with the Fischer information matrix, which captures second-

order information about how the distribution π changes with the parameters

θ.

Natural Evolution Strategies has a firm theoretical foundation and good

performance on test problems. Existing versions are limited by the choice of

parameterized distribution, which may not align well with the objective being

searched. However, this field is relatively new and can be expected to make

several useful contributions to the stochastic optimization literature in the

near future.

2.8 Conclusion

This chapter has reviewed the primary branches in deterministic and

stochastic optimization research, including Newton and quasi-Newton meth-

ods, line search, simplicial methods, generating set search, simulated anneal-

ing, evolutionary algorithms, natural computation, and quasi-evolutionary

methods. It is hoped that the reader has acquired an appreciation for the

diversity and scope of these methods. Each of these approaches exists for

a distinct purpose because it performs (or used to perform) reliably well on

certain kinds of objectives relative to other concurrent methods.

Given the variety of descriptions and terminology among these various

optimizers, it may seem challenging to organize all of them within a single

formalism. The subsequent chapters seek to accomplish exactly this goal. The

key observation is that every method discussed so far produces a sequence of
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proposed solutions. The formal study of iterative optimization is built on the

analysis of this sequence, beginning with the next chapter.
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Chapter 3

Functional Analysis of Optimization

In the previous chapter, the major approaches to optimization were re-

viewed. At a first glance, these approaches present themselves as autochthonous,

unrelated, and independent. Indeed, many of these methods seem opposed to

each other in both derivation and intent. Evolutionary algorithms appeal

single-mindedly to biological analogies. Gradient-based methods blithely as-

sume that local optima will always suffice. These different techniques are alien

to each other; it is difficult to see how they can be expressed in a common

framework. Yet all of these methods may be compared with each other by an-

alyzing the sequence of solutions each one proposes. A formal analysis along

these lines is presented in this chapter.

3.1 Motivation

A germ of similarity among these different methods can be found among

these methods in the most basic aspect of their operation. At its core, a black-

box optimizer follows a trajectory through the search domain, and then pro-

poses one or more points to add to the trajectory. These points are evaluated

against an objective whose internal structure is known only to a limited extent.
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Thus the black-box optimizer must propose new points to evaluate based only

upon the current trajectory and the objective values along that trajectory.

This simple fact is held in common among all optimization methods under

consideration by the definition of the optimization problem.

From this seed, it will be possible to derive a formal structure that

contains all optimization methods. As is necessary, a formal setting so broad

as to include so many disparate algorithms will not be able to provide much

detailed analysis without further constraints. However, the mere existence

of a universally applicable formal setting for optimization should make new

insights possible. In fact, the set of all optimizers possesses a surprising degree

of universal structure, and this insight is one of the main contributions of this

dissertation.

As a brief overview, optimization algorithms are viewed in this theory

as consisting primarily of the mechanism by which the current trajectory is to

be extended. The space of all such optimizers is a continuous space. Between

any two fixed optimization methods on a common search space, there is an

infinite number of optimizers that form a spectrum blending the behavior of the

original two methods. Furthermore, if the two optimizers at the endpoints are

computable, then so is any point along the line connecting them in optimizer

space. As a concrete example, suppose one of the endpoints is a hill-climbing

search and the other is genetic algorithm with a binary encoding. Then it is

meaningful to speak of an optimizer that is exactly halfway between the two,

and in fact such an algorithm can be computed simply by flipping a fair coin
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at each generation to decide whether the hill-climber or the genetic algorithm

will be used to construct the next population. Though this result is the most

basic of the facts considered in this chapter, it is perhaps the most profound.

Despite the vast diversity of optimizers – from line searches to differential

evolution, from gradient descent to ant colony optimization – whenever they

are used to solve the same problem, they can be smoothly transformed into

each other.

With this overview in mind, the following sections develop the basic

theory of stochastic optimization. These definitions should aid the reader in

identifying the similarities and differences between the wide variety of opti-

mization methods that now exist. The definitions and constructs that follow

should also be useful for directing future research towards new and profitable

directions.

3.2 Optimizer Space

This dissertation analyzes the structure and behavior of iterative stochas-

tic optimizers on static fitness functions. The first step in this analysis is to

define a mathematical space that can be thought of as the space of all optimiz-

ers. The study can then proceed by considering the properties of that space

using standard analytic techniques and terminology. The next few sections

introduce the formal context and define optimizers as mathematical objects.
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3.2.1 Assumptions

Every optimization problem begins with a space to be searched and a

fitness function to be optimized. In this dissertation, optimization is assumed

to be synonymous with minimization; a function f can be maximized by min-

imizing its additive inverse −f . This inquiry into the nature of stochastic

optimizers will begin with some assumptions on the nature of the search space

and the fitness function.

First, the search space is assumed to be a topological space (X, τ) where

X is the collection of possible solutions and τ is a given topology. A topology

on a space X is a set of subsets of X that are to be considered as open sets,

with the requirement that the empty set and the space X both be in the

topology and that finite intersections and countable unions of open sets are

also in the topology [144]. Topologies are mainly used to reason about issues

such as continuity, limits, and nearness without reference to distance metrics.

In addition, the search space will also be a measurable space (X,Bτ ),

where Bτ is the Borel σ-algebra on the topology τ . A σ-algebra on a space

X is a set of subsets of X that can be measured [30, 43, 83]. That is, they

preserve certain intuitive notions about volume or area. For instance, if any

two subsets of X can be measured, then so can their union, intersection, and

complements. The σ-algebra is necessary in the definition of a measure space

because even in spaces such as the familiar Euclidean space there are subsets

for which standard intuitions about volume do not hold up (e.g. additive

decomposability over disjoint sets). A Borel σ-algebra is a σ-algebra formed
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by taking the closure of a topology under countable intersections, unions, and

complements; the Borel σ-algebra is the smallest σ-algebra containing the open

sets of the topology.

These requirements are quite broad and accommodate all familiar spaces

on which optimization is performed, including binary strings, real vectors, neu-

ral networks, graphs, state machines, and programs.

The objective function is drawn from the space of real functions on

X, denoted RX . The topology of pointwise convergence is assumed for this

function space. Under this topology, a set of functions {fn} converges to a

function f if and only if fn(x) → f(x) for all x ∈ X. When a σ-algebra

on R is required, the standard Borel σ-algebra for the Euclidean topology is

assumed [30, 83]. Occasionally but not often, the objective is required to be

Borel-measurable. In this case, the level sets of the objective function must

be contained in the Borel σ-algebra.

The formalization below relies heavily on measure theory. A measure

is a set function (usually nonnegative) that assigns a volume to each set in a

σ-algebra. Lebesgue integration over a real function with respect to a measure

sums up the measure of the level sets of the function, i.e∫
X

f dµ =

∫ ∞
−∞

µ ({x : f(x) ≤ y}) dy.

A function f is measurable if the sets {x : f(x) ≤ y} are contained in Bτ

for all y ∈ R. It is integrable on a measure µ if
∫
X
|f | dµ < ∞ [43, 83]. The

set of all integrable functions for a particular measure is a complete normed
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vector space, denoted by L1 [X,µ]. For a given measure µ, the search space

is a measure space, written as (X,Bτ , µ). In Euclidean space, µ is assumed

to be the Lebesgue measure, the familiar measure of volume. Evolutionary

annealing, to be introduced in Chapter 11, requires an explicit measure to be

defined for the search space, but most optimization methods do not.

With the formal context of optimization defined in this manner, a math-

ematical definition of an optimizer can now be stated.

3.2.2 Basic Representation

Stochastic optimization procedures generate successive populations prob-

abilistically with the intent that later populations should contain more optimal

solutions. A deterministic optimizer can be regarded as a degenerate stochas-

tic optimizer, and thus deterministic methods are included in this analysis as

well.

A stochastic optimization procedure can be described completely by

the specification of (1) a (possibly degenerate) distribution over the search

space giving the initial evaluation point, (2) a transition rule in the form of a

conditional probability distribution over the search space for the next evalu-

ation point given the prior trajectory and its evaluations, and (3) a stopping

criterion which decides whether the optimizer should halt given the population

history and its fitness scores. To run such an optimizer, the initial trajectory

with one point is created by sampling the initial distribution, and its members

are scored. Subsequent evaluation points are sampled from the transition rule.
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When each population is sampled and its fitness evaluated, then the stopping

criterion is consulted to decide whether to halt. The output of the optimizer

is typically the member of population history with the lowest score on the

objective function (recall that minimization is assumed).

To simplify the analysis, the initial distribution will be absorbed into

the transition rule. The stopping criterion will be ignored for the time being,

although ultimately it will be represented as a stopping time for the purpose

of evaluating performance. Thus an optimizer will be described solely by a

transition rule. This rule can be identified with the optimizer because the

transition rule generates the points used to evaluate the objective function. A

similar perspective in a simpler context can be found in Vose’s random heuristic

search, where Vose’s heuristic plays the role of the transition rule [206].

Later in this dissertation, a distinction is made between how an op-

timizer generates a single point and how it generates an infinite sequence of

proposed solutions. When this is done, the optimizers described in this chap-

ter are referred to as one-step optimizers, as opposed to the long-running or

extended optimizers that result from running one-step optimizers iteratively to

generate a sequence. The two objects are closely related, and their relationship

is discussed thoroughly in Chapter 6.

Consider the identity of a optimizer as a mathematical object. At a

general, abstract level, an optimization method is a function that maps a tra-

jectory along with its evaluations and attendant information (such as deriva-

tives, errors, and other side effects of evaluation) into a probability measure
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over populations. That is, for each particular trajectory (including the empty

trajectory) and each particular objective function, an optimizer must spec-

ify a probability measure that can be sampled to produce the next point for

evaluation.

Evolutionary methods generate entire populations, not individual points,

so a probability distribution over individual points may seem inappropriate.

However, each population is nothing more than a collection of points. A pop-

ulation can be generated by sampling the new set of points one at a time

with the appropriate dependency relationships. While it may seem strange

to discuss evolutionary algorithms in terms of sampling a probability distri-

bution, it is entirely correct, since the underlying probability distribution is

nothing other than the mechanism by which the next population is created

from previous populations with random variations. An alternative approach

is to treat evolutionary methods as operating on the search space XK , so that

a evaluation point is an entire population, with an altered objective function

f ′ : XK → RK , but this perspective obscures the relationship to other op-

timization methods as well as the internal relationship between instances of

an evolutionary algorithm with different population sizes. Upon consideration,

the one-point-at-a-time analysis is found to be the more elegant representation.

From here on, a stochastic optimizer G is a function G [t, f ] that takes

a finite trajectory and its objective evaluations as inputs and returns a prob-

ability distribution as outputs. To formalize this functional space, both the

domain and range of these functions must be specified. For the domain, let
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T [X] be the space of all sequences on the search space X of finite but arbi-

trary length, so that an element in T [X] is a finite trajectory of candidate

solutions. For the objective function, any real function over the search domain

will be allowed. That is, the objective f is an element of RX , the space of

arbitrary real functions on X. This choice implies that the objectives under

consideration are static real functions. Let P [X] = P [X,Bτ ] be the space of

probability measures on (X,Bτ ). Then the set of optimizers is contained in the

set PF [X,µ] ≡
{
G : T [X]× RX → P [X]

}
, where PF stands for probability-

valued functions.

It might seem odd to refer to members of PF as optimizers, since they

are in fact merely functionals that output probability distributions. However,

it is no exaggeration to say that every single member of PF is in fact an

optimizer in the sense defined above. Let G ∈ PF be arbitrary. Then G [t, f ] is

a probability distribution for each t, f . An optimizer does not resample points

if with probability 1, G produces a new point not in t, i.e. G[t, f ](z ∈ t) = 0.

If G does not resample, then the No Free Lunch theorem suggests that as long

as G relies only on the evaluations of f on t, G must work better than other

optimizers on some objective [218]. Thus PF is a suitable space in which to

begin an exploration of stochastic optimization.

3.2.3 Notation and Conventions

This subsection introduces notation and conventions that are used

throughout subsequent chapters. Optimizers will typically be denoted by cap-
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ital cursive letters, usually by G. The expression G [t, f ] will be used to refer

to the probability measure corresponding to a trajectory t ∈ T [X] and a fit-

ness function f ∈ RX . Accordingly, G [t, f ] (A) indicates the probability that

the next point will lie inside of a set A contained in the σ-algebra Bτ . The

notation G [t, f ] (dx) represents a quantity that can be integrated over A in

the Lebesgue sense to obtain G [t, f ] (A). Occasionally, the space of objec-

tives will be restricted to functional spaces smaller than RX , such as L1[X,µ],

the space of µ-integrable functions. In the definition of spaces, the particular

search domain or other parameters are often omitted if understood, so that

PF = PF [X,µ] or L1 = L1 [X,µ] and so on. From here on, the term optimizer

will mean an element in the set PF or related spaces, although the term may

sometimes refer more generally to elements of MF defined below as required

by context. Thus several objects in these spaces will be referred to as optimiz-

ers, even though these objects would perform quite poorly at most common

optimization tasks.

In later chapters, indicator functions will be used in some definitions

and proofs. An indicator function is represented in this dissertation by 1A(x)

for a set A; this function is equal to 1 if x ∈ A, and zero otherwise.

Objective functions f ∈ RX are assumed to have a finite minimum,

denoted by f ∗ = infX f(x) > −∞. Obviously, the space RX may contain

functions that are not bounded below on X. When objectives are referred to

specifically, these functions are ignored. Later chapters will place a measure

over all of RX ; unbounded functions will be specifically excluded at that point.
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As the definitions suggests, only static objective functions are consid-

ered in this theory. The formalism could be expanded to accommodate either

dynamic or stochastic objective functions, but these adaptations would yield

distinct results and would complicate the discussion that follows. Unless men-

tioned or otherwise clear from context, the terms optimization and optimum

should be interpreted as minimization and minimum for the sake of under-

standing the formulae. Additionally, objective functions may be referred to as

fitness functions with equivalent meaning, and the fitness of a point x ∈ X

is just its objective value f(x). Points in the search space will be referred to

interchangeably as points, individuals, evaluation points, solutions, candidate

solutions, proposed solutions, or even organisms with equivalent meaning.

Elements in T [X] are referred to as evaluation histories. An evaluation

history t ∈ T [X], also termed a trajectory, an evaluation trajectory, or an

evaluation sequence, is a finite list of points. The empty history is required to

be in T [X] and will be denoted by ∅. As the narrative develops, there will be

a need to complete T [X] to the sequence space XN containing all countable

sequences on X. Elements in T [X] may be identified with subsets of XN that

share a common finite prefix. Occasionally, an integral is taken over a set

T ⊆ T [X]. When this is done, the integration is actually to be performed over

the set of all elements in XN that extend any member of T .

Trajectories will be indexed using superscripts, so that tn indicates the

nth evaluation point in t, with indices starting at 1 for the initial point, with

t0 = ∅. Negative superscripts index the trajectory backwards, so that t−1 is
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the last point in t, t−2 the next to last, and so on. Subscripts on trajectories

indicate a sequence of trajectories, so that e.g. tn is not a point, but an entire

sequence of points. Thus tmn represents a particular point within a sequence of

population histories. Two trajectories can be concatenated to form a longer

trajectory, denoted by a union operator, e.g. t = t1∪t2. An element x ∈ X can

also be appended to a trajectory, denoted similarly by t = t1∪x. The notation

t∪
(⋃K

i=1 xi

)
indicates successive concatenation, i.e. t∪x1∪x2∪· · ·∪xK . Given

a sequence (xn)∞n=1, the expression (xn)Nn=1 represents a trajectory of length

N , and (xn)0n=1 = ∅ by convention. In addition to indexing, the notation x ∈ t

will be used to indicate that x is an arbitrary point occurring at some point

in t, i.e., x = tn for some n.

The notation H(t) is used to convert a trajectory in T[X] to a trajectory

in T[XK ] for some fixed K that will be clear from the context. When this is

done, H(t)n refers to the nth entry of H(t), an element of XK , and H(t)n,k

refers to the kth component of the nth entry, an element of X. This mapping

is further described in Chapter 4.

Consider the process of running an optimizer G ∈ PF on an objective

function f . First, the trajectory is initialized to t0 = ∅. Then, a point x1 ∈ X is

sampled from G [t0, f ]. This population is appended to t0 to create t1 = t0∪x1.

Next, a population x2 is sampled from G [t1, f ] and appended to t1 to form

t2 = t1 ∪ x2. The process continues until a stopping criterion is reached.

Thus in actual practice the trajectory t is progressively sampled from the

optimizer G, and the trajectory takes on random values. This random sequence
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of evaluation points is a stochastic process, termed the optimization process.

Given an optimizer G and an objective f , the notation Gf or Gf will be used

equivalently to represent the distribution of this random process. Gf is a

distribution over XN, the space of infinite sequences on the search space. The

existence of Gf is discussed in Chapter 6. Any property that holds for a set

of sequences with full measure in Gf is said to hold Gf -a.s. If a property of

trajectories in T[X] holds for all prefixes of such a set, then that property is

also said to hold Gf -a.s.

The optimization process will be denoted by Z = (Zn)n∈N. Any pro-

cess Z that is distributed according to Gf is said to be generated by G on f ,

also written as Z ∼ Gf . The natural filtration of the optimization process

will be written as {Zm} The evaluation point corresponding to the running

minimum of the optimization process for a particular objective will be denoted

by Z∗ = (Z∗n)n∈N. The optimization process will be used extensively to define

performance criteria for assessing the performance of optimizers. Chapter 6

explores the optimization process in further detail.

3.2.4 Information Restrictions

The set PF contains all iterative stochastic optimizers, including many

that are uncomputable. Optimizers in PF have full, direct access to the ob-

jective function. For example, suppose two different fitness functions f and

g are equal on a given trajectory but have distinct global optima. Then no

optimizer should be able to distinguish between them on the basis of that tra-
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jectory. But PF is largely composed of optimizers that do indeed make such

a distinction, and therefore PF does not capture the primary intuitions about

how a stochastic optimizer should work. These intuitions can be restored by

defining a property that characterizes optimizers that only consider the fitness

evaluations of the population history and do not distinguish between functions

that are equal on a given population history. Such an optimizer will be termed

trajectory-restricted:

Definition 3.2.1. An optimizer G is trajectory-restricted if G [t, f ] = G [t, g]

whenever f(x) = g(x) for every x ∈ X appearing in t.

Let Otr [X,µ] be the subset of PF [X,µ] such that every element in Otr

is trajectory-restricted. Elements of Otr can only use information obtained

from evaluations of the function. This fact excludes gradient-based optimiz-

ers, which can distinguish functions with equivalent fitness evaluations if they

have different gradients. However, it does not exclude optimizers that use an

estimated gradient computed from the function evaluations. Also, the vast

majority of evolutionary and Monte Carlo methods are trajectory-restricted.

Nonetheless, whereas PF is too large, Otr is too small; it excludes meth-

ods that use information other than just the function evaluations. In order

to include gradient-based methods inter alia, optimizers must be allowed to

receive information from the function evaluation that can then be fed into the

gradient function. Indeed, gradient methods are not the only optimizers that

receive information from the objective function. Expectation maximization
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proposes new model parameters based on the statistics of its current model

and may not even evaluate the current estimated log likelihood. Even some

evolutionary methods, such as novelty search, make use of statistics gathered

during function evaluation [125]. The information used by these algorithms

can be realized as a finite trajectory over one-dimensional Euclidean space,

that is, as an element of T [R]. Such a trajectory can be a sequence of error

signals or a fixed set of statistics, or whatever else is required. Each optimizer

that makes use of such information would then be associated with a function

I : RX ×X → T [R] so that I (f, x) is the desired information signal.

Definition 3.2.2. An optimizer G is information-restricted if there exists an

information signal I : RX × X → T [R] such that G [t, f ] = G [t, g] whenever

I(f, x) = I(g, x) for every x ∈ X appearing in t.

Let Oir [X,µ] be the subset of PF [X,µ] such that each optimizer in

Oir is information-restricted. Then Oir is the set of optimizers that rely on

evaluation-dependent information. The particular function I associated with

an optimizer G is termed its information function. Because each optimizer

is allowed to select the information it will require, the particular information

function varies with each information-restricted optimizer.

The class of information-restricted optimizers is a superset of the class

of trajectory-restricted optimizers, since for any G ∈ Otr the information func-

tion I(f, x) = f(x) makes G information-restricted as well, that is, Otr ⊆ Oir.

Unfortunately, the information function I does not lend itself to easy analysis,
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and without further restrictions on I, an optimizer could craft I to evaluate a

whole series of points in addition to x. Since the eventual goal is to compare

optimizers based on the number and outcome of evaluations, the opacity of

the information function I will introduce complications. Most but not all of

the analysis in this dissertation will pertain only to Otr rather than the larger

Oir. However, when possible, results will also be given for Oir.

3.2.5 Computability of Optimizers

Neither information restrictedness nor trajectory restrictedness can ac-

count for perhaps the most important practical consideration: computability.

In order to keep the discussion focused, some common details of computability

will be ignored. The theory works with R and other infinite spaces directly,

even though in practice elements of these spaces cannot be represented in a fi-

nite and discrete computer. It will be assumed that reasonable approximations

such as floating point numbers are used for R, and fixed elements of the search

space X will be assumed to have a workable finite and discrete representation.

In determining what makes an optimizer computable, one need only

consider computable objective functions, since uncomputable objectives will

render computable optimization impossible. An objective function f is com-

putable if there exists a Turing machine that takes a representation of any

element x ∈ X as an input and halts with f(x) on its tape. The objective

function is polynomially (or exponentially) computable if it is computed by a

Turing machine that halts in time polynomial (or exponential) in the size of

88



x. An information function I (as in the prior section) is computable if there

is a Turing machine for I that, given any computable objective function f ,

takes as input a Turing machine that computes f and an element x ∈ X and

halts with I(f, x) on its tape. An information function is polynomially (or

exponentially) computable if it is computed by a Turing machine that halts

in time polynomial (or exponential) in the size of the input. Notice that the

computability of an information function is defined based only on computabil-

ity with respect to computable inputs; the same principle will be required of a

computable optimizer. Only information-restricted optimizers will be consid-

ered for this purpose. These definitions of computable functions are standard

in computation theory [188].

Before giving a definition for a computable optimizers, it is necessary

to consider what an optimizer computes. Optimizers as defined here produce

a trajectory in the search space one point at a time by sampling a probability

distribution. Thus computability of an optimizer is equivalent to the com-

putability of the sampling operation. The following definitions are introduced

here in the spirit of standard computation theory.

Definition 3.2.3. A Turing machine M approximately samples a probability

distribution Q over a measure space (X,F) if, given error ε > 0 as input, M

halts in finite time with an element x ∈ X on its tape, and if for any A ∈ F,

|PM (x ∈ A)−Q(A)| < ε. M is called a polynomial (or exponential) sampler

if it halts in time polynomial (or exponential) in 1/ε.
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Definition 3.2.4. An information-restricted optimizer G ∈ Oir [X,µ] is com-

putable if its information function I is computable and if there exists a Tur-

ing machine M such that when M is given a Turing machine that computes

I, a Turing machine that computes an objective f , and a finite trajectory

t ∈ T [X,µ], then M halts and outputs a second Turing machine M ′ that

approximately samples G [t, f ]. The optimizer G is polynomially (or exponen-

tially) computable (1) if there exists a Turing machine M that computes it

in time polynomial in the size of the representation of t and the size of the

Turing machines for I and f , and (2) if the output M ′ of M is a polynomial

(or exponential) sampler for all inputs to M .

Although the definition requires a good deal of text, its intent is simple.

A computation procedure for an optimizer G requires a representation of the

objective f , a representation of the information function, and a trajectory t

of previously evaluated points. Given these items, the procedure produces a

module that can sample from G [t, f ] within a given tolerance ε. The optimizer

G is computable if all of its parts are, and its efficiency is evaluated with respect

to the size of its inputs and the stringency of the tolerance.

Now let Oco
ir be the set of all computable information-restricted optimiz-

ers, and similarly for Oco
tr . Let Opoly

ir be the set of all polynomially computable

information-restricted optimizers, and again similarly for O
poly
tr .

Note that the distinction between polynomially computable and gener-

ally computable optimizers is an important one. While it is tempting to disre-
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gard optimizers that are not polynomial, several interesting optimizers in the

literature are not polynomial. For instance, the Bayesian Optimization Algo-

rithm, which builds successive Bayesian networks that model the correlations

among the most successful evaluation points, is necessarily non-polynomial, be-

cause even a greedy structure search in a Bayesian network is non-polynomial.

Other optimizers, such as curiosity search [177] or some instances of expec-

tation maximization, require an internal optimization loop. These techniques

may be non-polynomial if the internal optimization is non-polynomial or is

invoked exponentially many times. A non-polynomial optimizer can still be

feasible to run provided that the inputs are of small to moderate size. Thus

non-polynomial optimizers should not be disregarded.

It is also important to note that the spaces of computable optimizers

can be much smaller than corresponding spaces that include non-computable

optimizers. A computable optimizer must have a representation as a finite

program, and there are only countably many finite programs. By contrast,

the cardinality of spaces like Otr is typically much larger.

With the basic spaces of optimizers defined, we turn now to consider

how these optimizers may be employed for the purpose of optimization, and

what general operators are available on this space.

3.3 Algebraic Operations

Optimizers can be combined or altered algebraically to form a new

optimizer in several ways. In this section, some mechanisms for algebraically
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combining operators are discussed.

3.3.1 Convolution

The first operator will be termed convolution due to its similarity to

the convolution of two functions. In this case, the two optimizers being con-

volved represent the substructure of a third optimizer, and may or may not

be practical optimizers on their own. The convolution operator, denoted by ?,

is defined by the equation

(G1 ? G2) [t, f ] (A) =

∫
X

G2 [t ∪ x, f ] (A) G1 [t, f ] (dx) . (3.1)

Convolution performs the intuitive function of applying two probability dis-

tributions in sequence. First, a point is sampled from G1, and then a point is

sampled from G2 given the outcome of sampling G1. In fact, the entire pro-

cess of stochastic optimization described in the previous sections boils down

to the successive application of the convolution operator, so that if (Zn) is

generated by G, then (Z2n) is generated by G ? G. It is even possible to write

Zn ∼ (Fn
m=1G) [∅, f ] when Z ∼ Gf , where Fn

m=1G represents n successive ap-

plications of convolution. When two or more convolution operators are used,

convolution is assumed to be left associative, e.g. G1 ?G2 ?G3 = (G1 ? G2) ?G3.

Because convolution is not necessarily commutative, right association is not

equal to left association, and so the postfix notation (GFn
m=1) will indicate

chained right associations, e.g. G1 ? (G2 ? G3). The description of evolution-

ary algorithms in particular can be substantially simplified by the use of the

convolution operator.
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The convolution of two computable optimizers is computable. The con-

volution of two polynomial optimizers is polynomial. Polynomially many con-

volutions of polynomial optimizers can be done in polynomial time. More inter-

estingly, convolution does not preserve information-restrictedness or trajectory-

restrictedness in general. When two information-restricted optimizers are con-

volved, then the internal point x in Equation 3.1 is hidden from the algorithm’s

progress. Consider the case of convolving two trajectory-restricted optimizers

G1 and G2. To compute the convolution, a point x is sampled first from G1[t, f ],

and then a new point y is sampled from G2 [t ∪ x, f ]. Then, the next point

will be sampled from (G1 ? G2) [t ∪ y, f ] with the point x suppressed. Thus if

f(x) 6= g(x), then it is possible that (G1 ? G2) [t, f ] 6= (G1 ? G2) [t, g] even if

f(y) = g(y) for all y ∈ t. Therefore G1 ? G2 is not trajectory-restricted. A

similar line of reasoning holds for information-restricted optimizers.

Since convolutions will be used to construct evolutionary algorithms ex-

plicitly, and because evolutionary algorithms are generally trajectory-restricted,

it is worth it to consider when a convolution may be trajectory-restricted. The

simplest way to preserve the trajectory restriction is to disallow evaluation of

the internal points. Such an optimizer will be termed objective-agnostic:

Definition 3.3.1. An optimizer G ∈ PF is objective-agnostic if G [t, f ] =

G [t, g] for all f, g ∈ RX .

Proposition 3.3.1. If G1 is a trajectory- (or information-) restricted opti-

mizer and G2 is an objective-agnostic optimizer, then G1 ?G2 is trajectory- (or

information-) restricted.
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Proof. Let t ∈ T, f, g ∈ RX with f(x) = g(x) for all x ∈ t. Let G1 ∈ Otr and

let G2 be objective-agnostic. Let G ≡ G1 ? G2. Then

G[t, f ](A) =

∫
x

G2[t ∪ x, f ](A)G1[t, f ](dx) (3.2)

=

∫
x

G2[t ∪ x, g](A)G1[t, g](dx) (3.3)

= G[t, g](A) (3.4)

The conclusion for information-restricted optimizers follows by choosing G1 ∈

Oir with information function I1. Then choose f, g ∈ RX so that I1(f, x) =

I1(g, x) for all x ∈ t. Repeating the same equations as above shows G ∈ Oir

with information function I1.

Notice that an objective-agnostic optimizer is trivially trajectory-restricted

and information-restricted, since it cannot depend on a single evaluation of the

objective function. However, it can depend on the trajectory. The mutation

operators for evolutionary algorithms that will be defined in Chapter 4 are all

objective-agnostic.

Objective-agnostic optimizers are not the only case in which information-

restrictedness can pass through convolution. The most general case occurs

when the second optimizer is agnostic to the objective only on the last step of

the trajectory.

Definition 3.3.2. An optimizer G ∈ PF is said to be one-step objective-

agnostic if for all x ∈ X, all t ∈ T, and all f, g ∈ RX , G[t ∪ x, f ] = G[t ∪ x, g]

whenever G[t, f ] = G[t, g].
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Proposition 3.3.2. If G1 and G2 are both trajectory- (or information-) re-

stricted optimizers, and G2 is also one-step objective-agnostic, then G1 ? G2 is

trajectory- (or information-) restricted.

Proof. Repeat the proof of Proposition 3.3.1 mutatis mutandis.

Recombination operators in genetic algorithms will be constructed as

one-step objective-agnostic optimizers in Chapter 4.

3.3.2 Trajectory Truncation

Define trajectory truncation by the symbol / so that

(/G) [t ∪ x, f ] = G [t, f ] , (3.5)

with the base case (/G) [∅, f ] = G [∅, f ]. This operator can be applied to the

same optimizer more than once. Let /kG represent the optimizer resulting

from k ≥ 0 applications of trajectory truncation, with /0G ≡ G. Notice that

the result of trajectory truncation is always one-step objective-agnostic. The

trajectory truncation operator will be used extensively as part of the formal-

ization of population-based optimizers. Discussion of further tools for handling

population-based optimizers is deferred to Chapter 4.

3.3.3 Convex Combination

Optimizers can be combined convexly to form new operators using the

basic operations of pointwise addition and pointwise scalar multiplication.
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Used by themselves, these two operations are not closed on PF, but their

convex combinations are closed. Define pointwise scalar multiplication so that

(αG) [t, f ] (A) ≡ α (G [t, f ] (A)) for α ∈ R. Then it is clear that αG is not

a member of PF for α 6= 1, since αG[t, f ](X) = α and so αG[t, f ] is not a

probability distribution.

Define pointwise addition so that (G1 + G2) [t, f ](A) ≡ G1[t, f ](A) +

G2[t, f ](A). Again, it is clear that G1 + G2 /∈ PF, but the operation is well-

defined nonetheless. Pointwise addition and pointwise scalar multiplication

are closed on a larger space that will be examined shortly.

There is a case in which these operations can be used to form a new

optimizer in PF. Let α ∈ [0, 1] and consider G = αG1 + (1− α)G2. Then

G [t, f ] is always a probability distribution, so G ∈ PF. More generally, choose

α1, . . . αn in [0, 1] such that
∑

i αi = 1, and suppose that G1, . . . ,Gn are opti-

mizers. Then G =
∑

i αiGi is a convex combination of G1, . . . ,Gn, and G ∈ PF.

So PF is closed under convex combination.

Convex combinations preserve the four optimizer properties introduced

so far: computability, computational complexity, trajectory-restrictedness and

information-restrictedness. Convex combinations are mixture distributions

over optimizers. To sample a convex combination formed by G =
∑

i αiGi, first

sample the probability vector α to select the index i. Then sample Gi [t, f ], and

the result is a sample from G [t, f ]. Since sampling a probability vector is poly-

nomially computable (to a suitable approximation error), G will be computable

if and only if Gi is computable for all i such that αi > 0, and G will be poly-
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nomial if the Gi are. Similar arguments show that information-restrictedness

and trajectory-restrictedness are preserved as well. Thus convex combination

is closed over these four properties.

To emphasize, PF, Oir, Otr, Oco
ir , Oco

tr , O
poly
ir , and O

poly
tr are all convex

spaces, i.e. each of these spaces are closed under convex combinations. For

any G1, . . . ,Gn contained in any one of these spaces, all convex combinations

also lie inside the same space.

Given two optimizers, the set of all their convex combinations forms

a line that blends smoothly between them. Such a line exists between any

two optimizers in PF. For any two optimizers in one of the convex subspaces

of PF, the line between these optimizers does not leave the subspace at any

point.

In actual usage, a convex combination of optimizers can be viewed

as a sequence of choices among the combined optimizers. Let A,B ∈ PF,

and let C = αA + (1 − α)B for a fixed α > 0. Then a history of C is the

sequence of choices made by C at each time step. This may be written as

e.g. AAABABBB . . . , and the set of all histories of C may be regarded as

the set of optimization strategies available to C. This conception of convex

combinations of optimizers evokes game theory, and in fact optimization using

multiple optimizers may be regarded as a game-theoretic game played with

goal of optimizing the optimization process. This set of ideas will be explored

more thoroughly in Chapter 10.
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3.4 Measure-Valued Operators: a Normed Vector Space

Pointwise scalar multiplication and pointwise addition are vector oper-

ations. They satisfy the standard requirements for vector operations, namely,

commutativity and invertibility of addition, the existence of an identity, and

the distributivity of multiplication over addition. Thus optimizers in PF are

vectors, but in what vector space? In this section, it will be shown that PF is a

closed, convex subset of a normed vector space, and computable, information-

restricted, and trajectory-restricted optimizers are likewise closed, convex sets

inside of vector subspaces of this vector space. Convex combinations have

already been discussed briefly. The existence of the norm provides a context

for approximating one optimizer by a sequence of optimizers. Thus the struc-

tures discussed here are not superfluous; they make it possible to think about

optimization in a new way.

In order to define the vector space containing PF, consider first the

space of finite signed measures. Such a measure is a set-valued function defined

over a σ-algebra that is additive on disjoint sets. It may take on both positive

and negative values, but must be finite on every set in the σ-algebra. Denote

by M [X] = M [X,Bτ ] the space of all finite signed measures on (X,Bτ ).

The space M [X] is a Banach space, a complete, normed vector space. 1 The

standard norm for M [X] is the total variation norm, given as the largest

1A vector space provides a high degree of structure, including vector addition and sub-
traction as well as scalar multiplication. A norm assigns an absolute magnitude to each
element in the space and can be used to generate a distance metric. A space is complete if
it contains all of its limit points.
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absolute measure assigned to any set in the σ-algebra, ||µ||M ≡ supA∈Bτ |µ (A)|.

3.4.1 The Normed Vector Space MF

The space of probability measures P [X] on (X,Bτ ) has already been

encountered. P [X] is a closed, convex subset of M [X], with the implication

that probability measures are vectors that can be added and subtracted or

convexly combined. To see this, note that the limit of probability measures is

a probability measure (implying that the set is closed) and that any convex

combination of probability measures is a probability measure. It should be

noted that P [X] is only a subset and not a vector subspace of M [X], since

the pointwise sum of two probability measures is not a probability measure.

Although all probability measures have a total variation norm of 1 by defi-

nition, the difference of two probability measures is well defined, non-trivial,

and exists in M [X]. This difference defines a distance metric on probability

measures, given by

d (P,Q) = ||P−Q||M = sup
A∈Bτ

|P (A)−Q (A)| (3.6)

for probability measures P and Q. Intuitively, the distance between two prob-

ability measures is determined by locating the set to which the two measures

assign the largest difference in probability mass and taking the absolute dif-

ference in probability between the two on that set.

Now define the functional space

MF = MF [X,µ] =
{
G : T [X]× RX →M [X]

}
. (3.7)
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The space MF0 contains PF, but it also contains many other objects as well.

An element in MF0 is a function that produces a finite signed measure over the

search space when given any finite trajectory and any objective function. This

space will serve as the basic vector space from which subspaces and subsets of

optimizers will be carved out. Define vector operations in MF0 pointwise as

for PF, i.e. for G1,G2 ∈MF0 and α ∈ R,

(G1 + G2) [t, f ] = G1 [t, f ] + G2 [t, f ] , (3.8)

(αG1) [t, f ] = α (G1 [t, f ]) , (3.9)

where vector addition and scalar multiplication on the right are drawn from

the vector space structure of M [X]. Because of this, the vector operations

satisfy the required associative and distributive properties. The zero vector

for MF0 is the function that returns the zero measure on all inputs. So MF0

is a vector space. In fact, MF0 is just the closure of PF under the operations

of pointwise scalar multiplication and addition.

The next step is to find a norm for MF0 so that the distance between

any two optimizers can be compared. A norm can be created from

||G||MF = sup
t∈T,f∈RX

||G [t, f ] ||M. (3.10)

The function || · ||MF satisfies all properties of the norm with the exception

that it is not bounded on MF0. However, the subset of MF0 on which it is

finite forms a vector space that contains PF. To this end, define

MF ≡ {G ∈MF0 : ||G||MF <∞} .
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Then MF is a normed vector space with norm || · ||MF.

Theorem 3.4.1. MF is a normed vector subspace of MF0 under || · ||MF.

Proof. The vector space structure of MF0 has already been discussed. To see

that || · ||MF is a norm, note that for G ∈MF, α ∈ R,

||αG||MF = sup
t,f
||αG||M = |α| ||G||MF.

Additionally, if G 6= 0, then there must exist some t, f such that ||G [t, f ] || > 0

and so ||G||MF > 0 as well. For the triangle inequality,

||G1 + G2||MF = sup
t∈T,f∈RX

||G1 [t, f ] + G2 [t, f ] ||M (3.11)

≤ sup
t∈T,f∈RX

||G1 [t, f ] ||M + ||G2 [t, f ] ||M (3.12)

≤ sup
t∈T,f∈RX

||G1 [t, f ] ||M + sup
t∈T,f∈RX

||G2 [t, f ] ||M (3.13)

= ||G1||MF + ||G2||MF <∞ (3.14)

So || · ||MF is indeed a norm.

MF is a vector subspace because it contains the zero vector and is closed

under vector addition and scalar multiplication. In particular, ||0||MF = 0 <∞

and closure under linear operations follows from the properties of the norm.

It may be asked whether MF is complete and therefore Banach. The

answer is no; it is easy to create sequences in MF with an unbounded norm in

the limit. However, this fact will not be particularly restrictive for the purpose

of analysis, since the subset of population-based optimizers is a closed subset

of MF.
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Returning to the goal of this section, the following proposition holds.

Proposition 3.4.2. PF is a closed, convex subset of MF.

Proof. First of all, if G ∈ PF then ||G||MF = 1 <∞, so PF ⊆MF.

To show that PF is closed, let ||Gn − G||MF → 0 for {Gn} ⊆ PF. Then

for all t, f , ||Gn [t, f ]− G [t, f ] ||M → 0, and for all A ∈ Bτ ,

G [t, f ] (X) = lim
n

Gn [t, f ] (X) = 1, (3.15)

G [t, f ] (A) = lim
n

Gn [t, f ] (A) ≥ 0. (3.16)

That is, G [t, f ] is a probability measure, so G ∈ PF.

To establish convexity, let G1,G2 ∈ PF, and let α ∈ [0, 1]. Set G =

αG1 + (1− α)G2. Then for all t, f , and A,

G [t, f ] (X) = αG1 [t, f ] (X) + (1− α)G2 [t, f ] (X) = 1, (3.17)

G [t, f ] (A) = αG1 [t, f ] (A) + (1− α)G2 [t, f ] (A) ≥ 0, (3.18)

and therefore G ∈ PF.

3.4.2 Vector Subspaces of MF

Elements of MF are “optimizers” only in a loose formal sense. Signed

measures cannot be sampled, and thus the majority of objects in MF do

not serve the purpose of optimization. Thus when a distinction is needed,

elements of MF will be termed as generalized optimizers. The space MF is
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useful because it permits a structural analysis of PF. In order to further this

analysis, the properties of PF can be carried over to MF.

The definitions of trajectory-restrictedness and information-restrictedness

carry over verbatim to elements of MF. A generalized optimizer G is trajectory-

restricted if G[t, f ] = G[t, g] whenever f(x) = g(x) for all x ∈ t. The optimizer

G is information-restricted if there exists an information function I such that

G[t, f ] = G[t, g] whenever I(f, x) = I(g, x) for all x ∈ t. Then let MFtr be

the class of trajectory-restricted generalized optimizers, and let MFir be the

class of information-restricted generalized optimizers. Clearly, Otr ⊆MFir and

Oir ⊆MFir.

It is more difficult to extend computability to generalized optimizers,

since it does not make sense to compute a signed measure. However, an

abstract definition may be reached through closure under vector operations,

and an abstraction will suffice for this analysis.

Definition 3.4.1. A generalized optimizer G ∈ MF is computable if any one

of the following conditions hold:

• G ∈ PF and G is computable, or

• ∃α ∈ R and ∃C ∈MF with C computable such that G = αC, or

• ∃C1,C2 ∈MF, both computable, such that G = C1 + C2.

Define a generalized optimizer to be polynomially computable if it can

be constructed in a similar fashion from linear operations over a base of poly-
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nomially computable members of PF. Define MFco to contain computable

generalized optimizers, and MFpoly to contain polynomially computable gen-

eralized optimizers. The properties of computability, trajectory-restrictedness,

and information-restrictedness each define a proper vector subspace of MF.

Proposition 3.4.3. The following subsets of MF are proper vector subspaces:

MFir,MFtr,MFco,MFpoly.

Proof. It should be clear that there exist optimizers in PF that are neither

information-restricted, trajectory-restricted, or computable. As an example,

consider the omniscient optimizer that outputs a true global optimum at every

time step. It is not information- (or trajectory-) restricted, and if it were

computable, it could solve the halting problem by optimizing over functions

that map each Turing machine to a boolean indicating whether it halts. Thus

all of the subsets under consideration are proper.

In addition, the zero vector is trivially information and trajectory-

restricted. It is also computable, being the scalar product of 0 with any

computable optimizer in PF. By definition, computable and polynomially

computable generalized optimizers are closed under vector operations, so MFco

and MFpoly are both vector subspaces of MF. Also, as was discussed in Sec-

tion 3.3.3, Otr and Oir are both closed under the vector operations, and repeat-

ing those arguments from MFtr and MFir leads to the conclusion that each of

these is a vector subspace of MF.

104



In addition, the intersection of any two vector subspaces is a vector

subspace, and thus MFco
ir = MFir

⋂
MFco is a vector subspace. The same is

true for other intersections, similarly denoted by MFco
ir , MFco

tr , MF
poly
ir , and

MF
poly
tr . In light of the discussion in Section 3.3.3, it is then clear that each of

the optimizer classes Oir, Otr, O
co, and Opoly as well as their intersections are

convex subsets of their respective analogues in MF.

The final question to be answered in this section is whether these convex

subsets are closed under the norm || · ||MF. The answer is yes. For the sake of

simplicity, write MF∗∗ so that ∗ varies over co, poly, ir, tr, and their various

combinations, and let O∗∗ be the relevant convex subset of MF∗∗.

Proposition 3.4.4. O∗∗ is norm-closed in MF∗∗ and MF.

Proof. The set of probability-valued functions PF is a closed subset of MF,

and MF∗∗ is a vector subspace of MF. thus O∗∗ = PF
⋂

MF∗∗ is closed in MF∗∗

as a consequence of elementary function analysis (the intersection of a closed

set and a vector subspace is closed).

It is somewhat surprising that this result is so easily obtained, since it

is not immediately clear how to prove directly that the limit of computable op-

timizers is computable, or that the limit of information-restricted optimizers

is also information-restricted (a direct proof of norm closure for trajectory-

restricted optimizers is easier). However, the result is intuitive. For example,

choose two optimizers, G1 computable and G2 non-computable. Consider the

line between them, parameterized by α ∈ [0, 1]. Notice that αG1 + (1 − α)G2
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is non-computable for all choices of α other than one. That is, the boundary

between computability and non-computability is sharp, and there are innu-

merably more non-computable optimizers than there are computable ones.

3.5 Conclusion

The main conclusion from the detailed analysis in this chapter is that

stochastic optimizers are a closed and convex subset of a normed vector space.

It is worthwhile to consider the implications of this result. Most importantly,

optimizers are vectors and between any two optimizers there exists an en-

tire range of optimizers given by the convex combinations of the two opti-

mizers at the endpoints. That is, given G1,G2 ∈ O and α ∈ (0, 1), then

G ≡ αG1 + (1− α)G2 ∈ O. Also, G is easily computable whenever G1 and G2

are computable. The optimizer G is computed by flipping a coin with bias α at

each generation to decide whether G1 or G2 will be used to generate the next

population. The fact that G is computable does not imply that G is a good

algorithm. And yet, as will be seen in Chapter 8, under certain performance

criteria, there may exist fitness functions where G is better than either G1 or

G2.

Furthermore, given any two optimizers, it is possible to compute a

meaningful distance between the two, ||G1 − G2||MF. In practice, the distance

between two optimizers is not nearly so important as the difference in their

performance on one or more fitness functions. This topic will be taken up

again in Chapter 7, where performance criteria will be used to analyze these
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performance differences.

The definitions and concepts presented in this chapter form the basis for

future exploration of the nature and performance of optimizers. For example,

the next chapter shows that this formalism is in fact sufficient to describe

all common evolutionary algorithms. Chapter 5 studies which optimizers are

continuous using this formalism, which leads to the conclusion in Chapter 7

that the performance of an optimizer on an objective changes continuously

with either the optimizer or the objective. Finally, Chapter 9 extends the No

Free Lunch theorems to arbitrary measure spaces using the concepts presented

here. Thus the explicit formalization of optimizers as mathematical objects

makes it possible to prove powerful theorems that aid in assessing the value

of practical optimization methods.
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Chapter 4

A Unified View of Population-Based

Optimizers

In the previous chapter, stochastic optimizers were formalized as func-

tions from a prior trajectory to a probability distribution over the next eval-

uation points. These optimizers were described as proposing one evaluation

point at a time. In evolutionary algorithms, evaluation points are generated in

batches for parallel evaluation rather than one point at a time. Such optimizers

will be termed population-based optimizers. The best-known population-based

optimizers are evolutionary algorithms. The goal of this effort is to produce a

unified analytic approach to evolutionary computation that relates this field

to general methods of iterative optimization.

4.1 Population-Based Optimizers

In this chapter, population-based optimizers will be built up from

stochastic optimizers like those in the last chapter. This section lays out

the goals and definitions that will guide this process.
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4.1.1 Motivation and Goals

From a formal perspective, the introduction of populations to be eval-

uated in parallel changes the nature of an optimizer in one respect only: a

population-based optimizer must be able to generate an entire population

without depending on evaluations of earlier members of the same popula-

tion. Parallelization is an implementation detail that can be applied to any

optimizer with appropriate dependencies.

Since the most common population-based approaches are evolutionary

algorithms, the terminology used here will be drawn from that field as well.

Each batch will be termed a population, and successive populations will be

referred to as generations. A particular evaluation point may be referred to as

an individual, and the objective function may be called a fitness function, all

following the lexicon of evolutionary algorithms based on extended Darwinian

analogies.

A population-based optimizer is nonetheless a stochastic optimizer and

can be identified with an element in PF, usually in Oco
tr . The choice to study

PF rather than starting out with populations was made because it allows for

a direct comparison among optimizers with different population sizes as well

as comparison with typologically distinct approaches to optimization. It also

makes it possible to study optimizers with dynamic population sizes, although

this dissertation will not evaluate such methods further. Rather, a population-

based optimizer will be assumed to have a fixed population size K; that is, it

will generate batches of K evaluation points using the same information.
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Many evolutionary algorithms can be built up from modular compo-

nents using the convolution operator from the last chapter. This process is

analogous to traditional analyses using genetic operators. These components

can be defined individually, and their modular structure can be useful for devel-

oping general theorems. Selection, recombination and mutation will be studied

as component classes that can be used to abstractly characterize evolutionary

algorithms. This dissertation proposes that an evolutionary algorithm can

be identified with the convolution of selection, recombination, and mutation

operators.

To solidify the claim, equations will be presented that define the most

common genetic algorithms and evolution strategies using this modular ap-

proach. Similar analysis will be performed for some quasi-evolutionary meth-

ods that will highlight some of the ways in which these methods both conform

to and deviate from the standard evolutionary computation model.

4.1.2 Formalities

A population-based optimizer G with population size K > 0 can be

represented as a sequence of K separate optimizers G1, · · · ,GK ∈ PF (not

necessarily distinct), each of which is used to generate one individual per

population. Then a trajectory can be broken up into populations, with one

optimizer assigned to each slot in the population.

This choice of representation requires tools and notation to convert

between trajectories of evaluation points and population histories. Thus one
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may write G [t, f ] = Gk(t) [t, f ], where k(t) ≡ 1+(|t| mod K) is the index of the

individual in the population currently being constructed. The function k(t)

will be used repeatedly below. A population is an element in the product space

XK consisting of K copies of the search space X. A trajectory t ∈ T[X] can

be broken up into a history of populations H = h1, h2, h3, · · · with hi ∈ XK

using the mapping hi,k = t(i−1)K+k+1, recalling that trajectories are indexed

with superscripts. Let H(t) be the history of complete populations in the

trajectory t, so that H(t) ignores any elements in t with index greater than

b|t|/Kc. Then H(t) is a trajectory over populations, i.e. H(t) ∈ T
[
XK
]
. To

complete the setup, let traj(H) convert a population history H ∈ T
[
XK
]

to

a trajectory in T [X] via the mapping traj(H)j = Hbj/Kc,1+(j mod K). Then

traj(H(t)) = t if and only if the length of t is a multiple of K, i.e. |t| = Kb|t|/

Kc; otherwise, it truncates the end of t at the last population boundary. The

notation G[H(t), f ] will be used to mean G[traj(H(t)), f ] when this notation

is clear from the context.

A population-based optimizer is distinguished by the fact that it re-

spects the population boundary, and new populations can only be gener-

ated based on information available from prior populations. That is, to be

a population-based optimizer, an optimizer must be able to evaluate points

in parallel. This restriction can be represented in terms of an information

function as was done for the set Oir.

Definition 4.1.1. An optimizer G ∈ PF is a population-based optimizer of

population size K if there exists an information function I : RX ×X → T[X]
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such that G [t, f ] = G [t, g] whenever I(f, x) = I(g, x) for all x ∈ traj(H(t)). If

I(f, x) = f(x), then G is also trajectory-restricted.

This definition might seem excessive at first, since one might imagine

it sufficient to require G [t, f ] = Gk(t) [H(t), f ] for some G1, · · · ,GK , but such

a conceptualization is inaccurate, since populations may be generated from a

joint distribution. For example, although an optimizer may not generate the

kth member of the population based on the objective evaluation of the (k−1)th

member, it may need to inspect the identity of the (k − 1)th member, either

to avoid duplication (e.g. tabu search), to promote population diversity, or to

alter its probability distribution in some other way.

Let PBOK be the set of population-based optimizers of size K. Then

PBOK ⊂ Oir. Also, PBOK ⊆ PBOnK for n ≥ 1. Following the conventions

adopted thus far, let PBOK,tr be the set of trajectory-restricted population-

based optimizers (which includes most evolutionary algorithms). Let PBOco
K

be the set of computable population-based optimizers of size K, and so on.

Notice that PBOK and its just-mentioned subsets extend naturally to MF via

closure under vector operations and that these extensions form proper vector

subspaces of MF. Thus once again PBOK and its subsets form closed, convex

sets inside of vector subspaces of MF.

4.1.3 Constructive Operators

Evolutionary algorithms will be built up through constructive opera-

tions and analyzed through the building blocks of these operations. In this
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section, a population-based optimizer G ∈ PBOK is associated with K optimiz-

ers G1, . . . ,GK , with G[t, f ] = Gk(t)[t, f ], where k(t) is the population indexing

function from the previous section. One generation of G samples each of the

Gk in turn.

Expanding based on the definitions, the probability density of a par-

ticular population P ∈ XK given a prior trajectory t and an objective f is

PG (dP | t, f) =
K∏
k=1

Gk

[
t ∪

(
k−1⋃
j=1

Pj

)
, f

]
(dPk) . (4.1)

Notice that G[t, f ](dx) is a conditional probability over trajectories and/or

fitness functions and can be written as G[t, f ](dx) = PG (dx | t, f) with its

usual meaning. The concatenation over Pj in Equation 4.1 reflects the fact

that the population is sampled jointly, and if Equation 4.1 is rewritten as

PG (dP | t, f) =
K∏
k=1

PGk

(
dPk | t ∪

(
k−1⋃
j=1

Pj

)
, f

)
, (4.2)

then it is clear that Equation 4.1 is just an application of Bayes’ rule to the

probability of the population.

Quite often, evolutionary algorithms generate each individual of the

next population independently of the others. In this case, the joint distribu-

tion over individuals in the population factorizes, and such an optimizer is

termed factorial. In some evolutionary algorithms, population members are

not only independent but also identically distributed. Such algorithms are

termed factorially homogeneous, and the distribution from which each indi-

vidual is drawn is termed the factorial base of the optimizer.
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Definition 4.1.2. An optimizer G ∈ PBOK is factorial if there exist G1, . . . ,GK ∈

PF such that PG (dP | t, f) =
∏K

k=1 Gk [t, f ] (dPk)

Definition 4.1.3. An optimizer G ∈ PBOK is homogeneous if there exists

G′ ∈ PF such that PG (dP | t, f) =
∏K

k=1 G
′
[
t ∪
(⋃k−1

j=1 Pj

)
, f
]

(dPk), and G′ is

the base of G.

Definition 4.1.4. An optimizer G ∈ PBOK is factorially homogeneous if

there exists G′ ∈ PF such that PG (dP | t, f) =
∏K

k=1 G
′ [t, f ] (dPk), and G′ is

the factorial base of G.

The following proposition is then sufficient to construct factorial and

factorially homogeneous population-based algorithms using the trajectory-

truncation operator. Its proof follows immediately from the definitions above.

Proposition 4.1.1. An optimizer G ∈ PBOK is factorial if and only if there

exist G1, . . . ,GK ∈ PF such that G[t, f ] = /k(t)Gk(t)[t, f ] = Gk(t)[H(t), f ], and

factorially homogeneous if and only if G[t, f ] = /k(t)G1[t, f ] = G1[H(t), f ].

In sum, given a suitable set of optimizers G ⊆ Oir, a non-factorial

population-based optimizer can be written as G = Gk(t), a factorial one as G =

/k(t)Gk(t), and a factorially homogeneous one as G = /k(t)G1. This technique

will be used to construct common evolutionary algorithms in the next section.

4.1.4 Examples: Random Walkers

A simple example of a population-based optimizer should help to make

these concepts concrete. Consider the case of K parallel biased random walkers
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in the search space Z. Given a starting point x, a biased random walker flips

a weighted coin to decide either to advance one step to x+ 1 with probability

p or to go backwards one step to x − 1 with probability 1 − p. Thus a single

random walker can be represented for |t| > 0 as

RW<p, x> [t, f ](Z|t|+1) =


1− p if Z|t|+1 = t−1 + 1
p if Z|t|+1 = t−1 − 1
0 otherwise,

(4.3)

with RW < p, x > [∅, f ](Z1) = δx (Z1) to start at x. The variables < p, x >

indicate that this biased random walker is parameterized by the weight of the

coin and the starting point. Parameterized optimizers will be used extensively

from this point. Since the random walker is easily computable and never looks

at the objective evaluation, it is clear that RW ∈ PBOco
1 . A population of K

random walkers can be constructed in several ways. Because such a population

never evaluates the objective function, it is trivial that any such population is

contained in PBOco
K .

Factorial and Homogeneous Independent Paths. Choose K random

walkers, each with identical bias p and starting at zero. Let each walker ignore

every other walker, so that the K walkers follow K independent paths. This

optimizer is given by

PRW<p> [t, f ] = /KRW<p, 0> [t, f ]. (4.4)

Each walker rewinds the path t to its last decision t−K using trajectory trun-

cation, and then continues its own path. This optimizer is homogeneous,

because each individual in the population is sampled from the same base
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optimizer (/KRW). However, PRW is not factorially homogeneous because

/iRW<p, 0>6= /jRW<p, 0>unless i = j.

Homogeneous Dependent Paths. Choose K random walkers, each with

bias p and starting at zero. Rather than rewinding paths, each walker builds

on the path determined by the previous walker. This optimizer is in PBOK . It

is homogeneous, but it is uninteresting because it is equivalent to RW<p, 0>.

Dependent Paths. Choose K random walkers, each with a different bias pi,

each starting at zero. Again, each walker builds on the path determined by

the previous walker, but in this case the walker uses separate weighted coins

for different members of the population.

PRW<p1, . . . , pK> [t, f ] = RW<pk(t), 0> [t, f ]. (4.5)

Thus this optimizer maintains a single random path through the search space

but uses K different weighted coins in a cycle. This optimizer is neither fac-

torial nor homogeneous.

Independent Paths. Choose K random walkers, each with a different bias

pi, each starting at zero. Let each walker ignore every other walker, so that

the K walkers follow K independent paths. This optimizer is given by

PRW<p1, . . . , pK> [t, f ] = /KRW<pk(t), 0> [t, f ]. (4.6)

Each walker rewinds the path t to its last decision t−K using trajectory trun-

cation, and then continues its own path. The walkers are independent and

non-homogeneous, since they use different biases. Because the walkers are

independent of each other, this optimizer is factorial.

116



4.1.5 Example: Simulated Annealing

The four population-based optimizers in the last section illustrate sim-

ple construction procedures. However, they are weak as optimizers because

they do not take objective evaluations into account. This section develops sim-

ulated annealing as an example that does utilize objective evaluations. This

example is informative because it contains meaningful substructure and is a

well-known and commonly used optimizer in its own right.

Recall that simulated annealing consists of a sequence of objective eval-

uations. At each time step, there is an accepted solution x. At each time step,

a new solution y is proposed. The objective value f(y) is computed, and y

replaces x as the accepted solution with probability

A(y, x, f, T ) = exp

(
1

T
[f(x)− f(y)]

)
∧ 1, (4.7)

where the infix operator ∧ indicates the minimum of its arguments, so that y

is always accepted if f(y) < f(x). Simulated annealing can thus be seen as

a population-based algorithm of size two, with each population consisting of

the accepted and proposed solutions.

In addition, simulated annealing requires a proposal distribution that is

used to generate y from the accepted solution x. The proposal distribution de-

pends on the search space. For this example, let X = Rd, i.e. a d-dimensional

Euclidean space. Then a suitable proposal distribution is a the multivariate

Gaussian distribution, N 〈µ,Σ〉. Suppose for this example that the covariance

matrix is fixed to the identity, although most instances of simulated annealing
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dynamically alter the covariance matrix to keep the acceptance probability

close to 0.23. Let the trajectory t track the accepted solution and the pro-

posed solution in alternation, so that each point tn in the trajectory is the

accepted solution at the nth time step if n is odd, and the proposed solution if

n is even. Then set µ = t−1, the last accepted solution in the trajectory. Then

the proposal distribution is given by

P[t, f ] = N<t−1, I > . (4.8)

Given a proposed y and an accepted solution x, simulated annealing

performs a Bernoulli trial to determine whether to accept y or keep x. Let

B 〈p, y, x〉 be a Bernoulli distribution that produces y with probability p and

x with probability 1− p. Then the acceptance step for simulated annealing is

an optimizer given by

A[t, f ] = B
〈
A(t−1, t−2, f, T (|t|/2)), t−1, t−2

〉
, (4.9)

recalling that t−1 contains the proposal and t−2 the accepted solution. The

temperature T (n) is assumed to be a function of the length of the trajectory,

commonly T (n) = 1/ log n.

Simulated annealing can thus be viewed as a population-based opti-

mizer SA of size 2 with SA1 = A and SA2 = P. The starting population

(t1, t2) is initialized randomly, and thenceforth SA1 and SA2 are used in alter-

nation to accept and propose solutions.

The optimizer SA is neither factorial nor homogeneous, but it is information-

restricted. As defined in the prior paragraph, SA ∈ PBOco
2 , since only SA1 = A
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depends on the objective evaluations and SA2 = P does not. The order of these

two steps is important to this construction, because if the proposal step was

performed first SA would violate the definition of PBO2 by relying on the

objective evaluation of the first member of the population to generate the sec-

ond before the population was completely constructed. While this distinction

seems arbitrary in the case of simulated annealing, it captures the difference

between a batch optimizer and a one-step-at-a-time optimizer. The distinction

is computationally relevant, because a population-based optimizer meeting the

definition of PBOK can compute any necessary function evaluations in K par-

allel processes, whereas the same is not true for all members of Otr.

However, this arbitrariness captures a relevant fact about simulated an-

nealing, namely, that it does not match well with our natural intuitions about

a population-based algorithm. In fact, any evaluation of the performance of

simulated annealing would not change if the optimizer had been defined as

SA = A ? P. In this case, SA ∈ Oco
tr = PBOco

1,tr, a computable trajectory-

restricted optimizer. By contrast, P ? A /∈ Oco
tr , even though it generates

almost identical trajectories as A ? P, because it must evaluate the objective

during sampling. The fact that A ? P ∈ Oco
tr but P ?A /∈ Oco

tr is simply a quirk

of the chosen formalism. A formalism that resolves this oddity would be more

complex to describe and analyze. In such a formalism, one could abandon

information-restrictedness in favor of a treatment based solely on computabil-

ity, but analytically, it is easier to work with information-restrictedness than

computability.
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The profusion of variables, operators, and symbols in this example may

seem unnecessary at first. After all, it is possible to write pseudocode for

simulated annealing with less effort than it took to describe SA. However, the

formalism makes it possible to compare simulated annealing directly with other

optimization routines in a way that pseudocode does not allow. For instance,

the classic evolutionary strategy known as the (1 + 1)–ES is the norm-limit of

SA as the temperature goes to zero, as is shown in Theorem 4.2.3.

In addition, the example of simulated annealing has made use of sev-

eral components and techniques that will be used in defining evolutionary

algorithms. The proposal distribution P plays the role of a mutation opera-

tor in evolutionary methods, randomly altering a previously evaluated point.

The acceptance optimizer A mirrors the role of selection in evolutionary meth-

ods. The convolution A ? P is analogous to the exact form of an evolutionary

algorithm, combining selection and variation in sequence. In fact, by the for-

mal definitions that will be given in the next section, simulated annealing

is an evolutionary algorithm. Conversely, one might say that evolutionary

algorithms are stochastic Monte Carlo optimization routines. It makes no dif-

ference which category subsumes the other. The fact is that there is no formal

difference between Monte Carlo optimization and evolutionary optimization,

something that only becomes clear when evolutionary algorithms are formally

analyzed. 1 With this goal in mind, the discussion now turns explicitly to a

1In existing literature evolutionary computation is occasionally referred to as a form
of Monte Carlo optimization, but this statement is intuitively rather than formally de-
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formalization of evolutionary algorithms.

4.2 Evolutionary Algorithms

In this section, the most common evolutionary algorithms are repre-

sented in the formal framework of the previous section. This process demon-

strates that the formalization in this chapter and the preceding one do apply

to complex practical algorithms. Also, these definitions will be used repeat-

edly in Chapters 5 and 7 to prove that the performance of most evolutionary

algorithms is continuous as the fitness function changes.

4.2.1 Characteristics of an Evolutionary Algorithm

The core characteristics of an evolutionary algorithm are based on an

analogy with Darwinian principles and include competition within a popu-

lation, preferential selection of competitive individuals, reproduction among

selected individuals, and random variation of selected individuals. These four

processes can be realized into evaluation, selection, recombination, and mu-

tation phases. Selection and recombination occur at the level of populations.

Variation occurs at the level of the individual. In formal terms, an evolu-

tionary algorithm can be identified as a convolution of three components, one

each for selection, recombination, and mutation processes. Evaluation of the

fitness function precedes selection. Recombination may be vacuous (asexual

rived. The conclusion follows by formalizing evolutionary algorithms mathematically, be-
cause Monte Carlo algorithms have always been described mathematically.
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reproduction), in which case the algorithm is represented by a convolution of

selection and mutation, much as simulated annealing was defined in the last

section (SA = A ? P).

Each of the phases of an evolutionary algorithm can be described as

an optimizer, just as the acceptance phase and proposal phase of simulated

annealing were separated out into two different components. Thus the first

step in formalizing evolutionary algorithms is to define what principles make

an optimizer work as a selection rule, a recombination operator, or a mutation

operator. Viewed independently, the optimizers representing each phase are

not effective optimizers by themselves in the general case. A selection rule

alone is totally ineffective, since it cannot propose new solutions beyond what

has already been evaluated. Mutation operators implement a blind random

search. Recombination reconfigures evaluated points. In small, discrete spaces,

selection plus recombination can be very effective at exploring the space given a

sufficiently diverse initial population, but in large spaces, substantial mutation

is required to fully explore the space.

4.2.2 Selection, Recombination, and Mutation

An evolutionary algorithm will be defined as the convolution of selec-

tion, recombination and mutation. These three phases may be thought of as

intermediate steps, each of which creates a full population and hands it off

to the next phase. So selection chooses K points from among the previously

observed points. Recombination invokes one or more additional selection rules

122



to tack on extra parents and then merges these parents with a crossover rule;

this merged output of K individuals is then handed off to the mutation oper-

ator, which alters each individual independently. These three stages will now

be discussed rigorously one at a time.

Selection in evolutionary algorithms is a filtering task, characterized as

follows: Given a set of previously observed individuals, select a group of K in-

dividuals to form the basis of the next population. Therefore, the selection pro-

cess must place zero weight on previously unobserved individuals. Only mem-

bers of the population history can be selected. Given a trajectory t ∈ T, define

the previously observed individuals in t as P (t) = {x ∈ X : ∃n s.t. x = tn}.

Taking populations into account, a selection rule is an optimizer that places

zero probability mass on any proposed population that would expand P (t).

Definition 4.2.1. An optimizer S ∈ PBOK is a selection rule if S [t, f ] (A) = 0

whenever ∃x ∈ A s.t. P (t ∪ x) 6= P (t).

It may seem strange to a practitioner of evolutionary algorithms that

the selection rule is allowed to select any member of P (t) and not just the

members of the last population (P (H(t)−1)). But there are a number of

evolutionary methods that select members of populations prior to the last

population, such as elitist selection. Methods that store the locally best in-

dividual (such as evolution strategies) also need the flexibility to select from

previous generations. Furthermore, several recently proposed techniques such

as novelty search [125], curiosity search [177], and the evolutionary annealing
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method proposed in Chapter 11 store members from each population in an

archive, making them available for selection.

Recombination combines some number of selected individuals as par-

ents to form a hybrid child. Although traditional recombination methods

in genetic algorithms utilize only two parents, other methods use an arbitrary

number of parents. In evolution strategies, for example, intermediate crossover

averages components across several solutions. A recombination operator first

selects the parents for each member of the population and then invokes a

crossover rule to combine the parents. The number of selected parents (usu-

ally just two) is said to be the order of the crossover rule and the recombination

operator. Parent selection for an nth order operator stacks n populations on

top of the current trajectory. A crossover rule consumes these n populations

and leaves a single merged population in their place.

The key feature of a crossover rule is that it should combine only the

selected parents. It should therefore be independent of all other components

of the input trajectory. It should also ignore the objective value of the se-

lected parents, deferring such judgments to the selection operators. From

the perspective adopted in this dissertation, for the kth member of the pop-

ulation the selected parents in a crossover rule of order n are just the kth

members of the previous n populations in the trajectory. Define the trajec-

tory parents(t, n, k,K) ≡
⋃n
i=1H(t)−i,k, recalling that H(t) is the population

history of t, negative indices count backwards from the end of the history,

and the double index chooses the kth member of the −ith population. Then
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parents(t, n, k,K) is the reverse ordered list of the parents available to the

crossover rule.

Definition 4.2.2. An objective-agnostic optimizer C ∈ PBOK is a crossover

rule of order n if there exist C1, . . . ,CK ∈ Oir such that C[t, f ] = Ck(t)[t, f ] and

for all k = 1, . . . , K, t1, t2 ∈ T, Ck [t1, f ] = Ck [t2, f ] whenever parents(t1, n, k,K) =

parents(t2, n, k,K). That is, a crossover rule is independent of all but the se-

lected parents.

Such a crossover rule is factorial as defined. It would be possible to

define crossover rules to be non-factorial, so that later crossovers depend on the

results of earlier ones, but it does not seem necessary. As it is, this definition of

crossover accepts a wide range of instantiations that do not necessarily match

the concept of crossover in a traditional genetic algorithm. This intuition will

be restored with the introduction of crossover masks in Section 4.2.3. With

crossover rules defined, the definition of a recombination operator can now be

given.

Definition 4.2.3. An optimizer R ∈ PBOK is a recombination operator of

order n if there exists a sequence of n− 1 selection rules S1, . . . , Sn−1 ∈ PBOK

and a crossover rule C ∈ PBOK of order n such that

R = /S1 ? (/2S2 ? (· · · ? (/n−1Sn−1 ? C))) .

Operationally, each of the selection rules Si are selected in order, with

the previous selection hidden by the trajectory-truncation operator. Finally,

125



the crossover rule is invoked to combine the selected points, including the

first point selected by an initial selection rule outside of the recombination

operator. 2 The convolution is performed with right association so that the

results of selection are stacked together and not consumed until the crossover

rule is reached. Note that there is only one possible recombination operator

of order 1, and it vacuously reproduces the selected population, representing

asexual reproduction.

Mutation in evolutionary algorithms alters a single member of a pro-

posed population. Thus a mutation operator is factorial, altering each member

of a proposed population independently. Mutation must also be objective-

agnostic; it cannot be aware of the fitness of the point it is mutating. In

addition, a mutation operator can only vary the individual member of the

population that has been proposed to it. That is, a mutation operator must

ignore every member of the trajectory except the one that is being mutated.

Conversely, a mutation operator cannot simply ignore the individual it is mu-

tating, and so a condition must be included stating that the mutation operator

must depend on the object being mutated for at least some trajectories.

Definition 4.2.4. An optimizer V ∈ PBOK is a mutation operator if V is

factorial and objective-agnostic and for all 1 ≤ i ≤ K, the following two

conditions hold:

2The initial selection rule could have been pushed inside the recombination operator,
but keeping it outside makes the formal definition of an evolutionary algorithm appear
more natural
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• ∀t1, t2 ∈ T, Vi [t1, f ] = Vi [t2, f ] whenever H(t1)
−1,i = H(t2)

−1,i, and

• ∃t1, t2 ∈ T s.t. H(t1)
−1,i 6= H(t2)

−1,i and Vi [t1, f ] 6= Vi [t2, f ].

A quasi-evolutionary algorithm will be defined as the convolution of a

selection rule, a recombination operator and a mutation operator. Recall that

the recombination operator contains one or more selection rules and a crossover

rule. The recombination operator may also be of order one, in which case it

simply copies the initial selection rule. A working definition for a strict evolu-

tionary algorithm will be defined based on crossover masks in Section 4.2.3.

Definition 4.2.5. An optimizer E ∈ PBOK is a quasi-evolutionary algorithm

if it is not objective-agnostic and if there exist a selection rule S, a recombi-

nation operator R of order 1 or greater, and a mutation operator V such that

E = S ? R ? V.

Proposition 4.2.1. By implication, E ∈ PBOK is also a quasi-evolutionary

algorithm if it is not objective-agnostic and there is a selection rule S and a

mutation operator V such that E = S ?V, in which case E has a recombination

operator of order 1.

Intuitively, a quasi-evolutionary algorithm first samples one or more

selection rules to propose a new parent population consisting of the selected

individuals, then recombines the parent population to form a new child popula-

tion, and finally samples a mutation operator to alter the selected individuals.
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Because crossover and mutation were defined to be objective-agnostic, it fol-

lows from Proposition 3.3.1 that a quasi-evolutionary algorithm is information-

or trajectory-restricted if and only if all of its selections are.

The definition of a quasi-evolutionary algorithm and its parts were cho-

sen to exclude algorithms that do not match standard intuitions of how an

evolutionary algorithm works. These definitions are restrictive, primarily be-

cause the crossover rule and the mutation operator must be objective-agnostic.

Otherwise, any population-Markov3 optimizer M that is not objective-agnostic

would be a quasi-evolutionary algorithm, since M could be used as a Kth or-

der crossover rule, with K selection rules each of which simply pass along one

member of the prior population and a vacuous mutation operator that does

nothing. The definitions above preclude this possibility.

Now that a formal definition of a quasi-evolutionary algorithm and its

components has been given, it is possible to state explicit formulae for common

genetic algorithms based on the selection, crossover, and mutation methods

that they use. Additionally, further definitions will be proposed that will be

used to develop a formal definition a traditional evolutionary algorithm.

4.2.3 Genetic Algorithms

Modern genetic algorithms mix and match a variety of selection, crossover,

and mutation components to form an optimization routine. This section will

3Defined in the next section.
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review the most common among these components, along with the way in

which they are assembled.

With rare exceptions, selection in genetic algorithms is typically re-

stricted to the members of the last population, so that a genetic algorithm

unfolds as a sequence of populations, with each population generated directly

from the prior population. An optimizer G ∈ PBOK will be termed population-

Markov if it depends only on the last population, that is, if G[t1, f ] = G[t2, f ]

whenever H(t1)
−1 = H(t2)

−1.

Proposition 4.2.2. An evolutionary algorithm is population-Markov if and

only if its recombination operator and selection rule are, and a recombination

operator is population-Markov if and only if each of its subordinate selection

rules is.

Genetic algorithms are population-Markov in general. The most com-

mon selection rules historically are proportional selection, tournament selec-

tion, and ranking selection.

In proportional selection, members of the prior population are selected

independently proportional to their fitness in the previous population. Ordi-

narily, the fitness function is assumed to be positive, and genetic algorithm is

maximizing the fitness and so prefers larger fitness values. To use proportional

selection for minimization, a function g > 0 is introduced so that g(t, f(·)) is

intended to be positive and increasing as f becomes more optimal. This func-

tion g will be called the modulating function of proportional selection. If it is
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desired to maximize f and f > 0, then g(t, x) = |x| will prefer the minimal

values of −f . Proportional selection with this choice of modulating function

will be termed standard proportional selection or roulette wheel selection. A

more neutral choice is g(t, x) = exp(−x); the similarity of this choice with the

acceptance probability for simulated annealing should not be missed, and will

return in Chapter 11. Given a modulating function g, proportional selection

is given explicitly by

PS 〈g〉 [t, f ] ({y}) ∝ NH(t)−1 (y) [g(t, f (y))] , (4.10)

where NP (y) is the number of times the individual y appears in the population

P . Then NP is nonzero for at most K points, so the normalization can be

computed by summing over the prior population H(t)−1.

Proportional selection is highly sensitive to the magnitude of variation

in the fitness function and so can become trapped in steep local minima. Tour-

nament selection chooses members of the prior population according to their

rank in the population in order to maintain diversity within the population.

Like proportional selection, tournament selection is factorial and so chooses

each member of the prior population based on the same distribution. This

distribution selects the best member of the last population with probability

q. If the best member is not selected, the second best member is chosen with

probability q, and then the third, and the fourth, and so on. If the popu-

lation is exhausted, the selection wraps back around to the best individual.

The parameter q is referred to as the selection pressure since high values of q
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force selection to predominately favor the best individuals in the population.

Tournament selection is given explicitly by

TS 〈q〉 [t, f ] ({y}) ∝ (1− q)R(y,f,H(t)−1) , (4.11)

where R (y, f, P ) ∈ N∪{∞} is the rank of the individual y in the population P

under the fitness function f , with 0 being the best rank, and R (y, f, P ) =∞

if y does not appear in P , so that the probability of such y being selected

is zero. In case of ties, assume later members of the population are ranked

higher. Again, TS is nonzero for at most K points so that the normalization

is easily computed.

Like tournament selection, ranking selection chooses individuals accord-

ing to their rank in the prior population, but does so using proportional selec-

tion over the rank.Define

rt,fq (x) =

{
2− q + 2 (q − 1) K−1−R(x,f,H(t)−1)

K−1 if x ∈ H(t)−1

0 otherwise
(4.12)

Then linear ranking selection is given by

RS 〈q〉 [t, f ] ({y}) ∝ rt,fq (x), (4.13)

where q ∈ [1, 2] is the selection pressure. Notice the similarity to proportional

selection. Ranking selection is proportional selection in which the fitness has

been replaced with the rank in the population. Non-linear ranking selection

can be represented in a similar fashion but with more complex detail.

One final aspect of selection in genetic algorithms is elitism. Elitism

protects the best evaluation point so far from being removed from the popula-

tion. Elitism can be beneficial to a genetic algorithm because it prevents the
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algorithm from forgetting the best individual. Given an objective function f ,

let best(P, f) ∈ X be the point in the population P with most optimal fitness

on f . Then elitist selection alters an entire genetic algorithm GA ∈ PBOK by

preserving best(H(t)−1) as the first member of the population, so that

E 〈GA〉 [t, f ] =

{
δbest(H(t)−1) if k(t) = 1
GA[t, f ] otherwise,

(4.14)

where δx is the Dirac delta here and below. Importantly, elitism is not a selec-

tion rule when defined this way, since it not only selects the best individual,

but preserves it from alteration as well.

The distinguishing characteristic of a genetic algorithm is undoubtedly

recombination with two parents (sexual reproduction). Standard crossover

rules of order 2 include one point crossover, multipoint crossover, and uniform

crossover. Most often, the same selection rule is often used to select both

parents. Sometimes a strongly selective rule is used to choose the “father”

while a more uniform selection rule is used to select the “mother”. Either way,

the “child” is created to combine properties from the father and the mother.

Because crossover rules are specific to the search space, examples will

only be given for the case in which the search space X is a d-dimensional vector

space, X = Y d, such as X = Rd (Euclidean space) or X = {0, 1}d (binary

space). In this case, many second-order crossover rules can be determined

by a random binary vector M ∈ {0, 1}d which will be termed the crossover

mask. If Mi = 1, then the child copies the ith attribute of the father. If

Mi = 0, then the child copies the ith attribute of the mother. Denote by 1
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the vector in {0, 1}d whose entries are all one, and let x ⊗ y be the vector

that is the componentwise product of vectors x and y. For a trajectory t,

let p(t) be the selected father and m(t) the selected mother, so that p(t) =

parents(t, 2, k(t), K)−1 and m(t) = parents(t, 2, k(t), K)−2. Define a random

variable Ct by

Ct = M ⊗ p(t) + (1−M)⊗m(t). (4.15)

Then given a distribution PM over M , a masked crossover rule is just the

distribution of Ct and can be written as

C 〈PM〉 [t, f ](A) =
∑

z∈{0,1}d
P (Ct ∈ A |M = z) PM (z) , (4.16)

Single point, multipoint, and uniform crossover can be defined by spec-

ifying PM . For uniform crossover, the choice of mask is uniformly random,

UC[t, f ] = C
〈

Uniform
(
{0, 1}d

)〉
. (4.17)

For single point crossover, a random index i ∈ {1, . . . , d} is chosen, and the

mask is set so that Mj = 1 for j ≤ i and Mj = 0 for j > i. In multi-

point crossover, a fixed number of random indices i1, . . . , in are chosen and

then sorted. M then alternates between series of zeros and a series of ones,

starting with ones and with switches occurring at each of the ij. Without stat-

ing further details, let SC denote single-point crossover and let MC represent

multipoint crossover.

Masked crossover best captures the characteristic of a traditional ge-

netic algorithm, and an evolutionary algorithm will be defined as a quasi-
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evolutionary algorithm with a masked crossover rule. A genetic algorithm will

be identified as an evolutionary algorithm that is also population-Markov.

Definition 4.2.6. An optimizer G ∈ PBOK is an evolutionary algorithm if it

is a quasi-evolutionary algorithm with a masked crossover rule. Additionally,

G is a genetic algorithm if it is also population-Markov.

This definition encompasses most traditional evolutionary algorithms

and excludes more recent developments that still conform to the definition of

a quasi-evolutionary algorithm as defined above. Once again, a crossover rule

of order one may be used, so that every quasi-evolutionary algorithm with a

vacuous crossover rule is also an evolutionary algorithm.

A mutation operator is even more dependent on the search space and

can be almost any distribution. The most common mutators, however, are

Bernoulli mutation in binary spaces and Gaussian mutation in Euclidean

space, with Cauchy distributions also used for Euclidean space. In discrete

or combinatorial spaces, mutation distributions typical involve random struc-

tural operators.

First, consider Gaussian mutation in X = Rd. The mean of the Gaus-

sian is simply the point being mutated (t−1) and the covariance is a function

of the prior points evaluated, often a constant. Then Gaussian mutation with

a covariance-generating function Σ is given by

N 〈Σ〉 [t, f ] = N
(
t−1,Σ(H(t))

)
, (4.18)
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where N (µ,Σ) is the normal distribution and the symbol N is overloaded to

represent Gaussian mutation as well.

When the search space is binary, X = {0, 1}d, Bernoulli mutation at

rate p is given by

B 〈p〉 [t ∪ z, f ] ({y}) =
∏
j

p|yj−zi,j | (1− p)(1−|yj−zi,j |) . (4.19)

Bernoulli mutation is the standard mutation for genetic algorithms with binary

encodings, whereas Gaussian mutation is the standard mutation for real vector

encodings.

Putting all of these pieces together, a basic genetic algorithm with

single-point crossover, proportional selection, and a binary encoding can be

written as

SGA 〈p〉 = (PS ? ((/PS) ? SC)) ?B 〈p〉 , (4.20)

which is Goldberg’s simple genetic algorithm with a mutation rate of p [77].

A common choice of genetic algorithm for searching in Euclidean space is to

use ranking selection with uniform crossover and Gaussian mutation, namely,

RGA 〈q, σ〉 = (RS〈q〉 ? ((/RS〈q〉) ? UC)) ?N 〈σI〉 , (4.21)

where q ∈ [1, 2] is the selection pressure and σ is a small constant rate of

mutation. In both cases, the resulting algorithms are formally evolutionary

algorithms, since they are composed of a population-Markov selection rule, a

recombination operator with masked crossover, and a mutation operator.
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Most standard genetic algorithms can be written down by mixing and

matching the components described in the section along with domain-specific

mutation operators, as was done in Equations 4.20 and 4.21. More esoteric ge-

netic algorithms could also be represented in similar fashion with the definition

of additional components.

4.2.4 Evolution Strategies

Evolution strategies differ from genetic algorithms primarily in the

choice of selection and mutation operators, and in the fact that crossover

is rarely used in evolution strategies, and is used with different crossover rules

if so. Additionally, traditional evolution strategies also adapt their algorithm

parameters dynamically. Standard evolution strategies are denoted as either

(µ, λ)–ES or (µ+ λ)–ES. In this notation, µ is the number of parents, and

λ is the number of children. The parents are always the µ best members of

the last population, so if K = 10 and µ = 3, then the parents are the top

three members of the last population by fitness. A (µ+ λ)–ES has population

size K = µ + λ, and in each generation, the parents are retained unchanged

from the prior generation, and λ new solutions are sampled from the parents.

A (µ, λ)–ES has a population size K = λ > µ; it discards the parents and

replaces them with the children at each time step. The simplest evolution

strategy is the (1 + 1)–ES, which is equivalent to simulated annealing at zero

temperature. The most commonly used is probably the (10, 100)–ES, which

tends to find solutions to basic benchmark problems with reasonable speed
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and accuracy.

Selection in evolution strategies first sorts the prior population by rank

and then selects the next population. Ranking is performed by

R [t, f ] ({y}) = δk(t)
(
R(y, f,H(t)−1) + 1

)
. (4.22)

The λ children are then selected uniformly from among the top-ranked µ mem-

bers of the last population in one of two ways.

U 〈µ〉 [t, f ]({y}) =
1

µ

µ∑
i=1

δH(t)−1,i(y) (4.23)

U+ 〈µ〉 [t, f ]({y}) =

{
H(t)−1,k(t) if k(t) ≤ µ

U 〈µ〉 [t, f ]({y}) k(t) > µ
(4.24)

The selection rule U is used for so-called “comma” selection, where the par-

ents are discarded and only the children remain in the population. The al-

ternative version U+ is for “plus” selection, where both parents and children

remain in the new population. Selection in evolution strategies is given by

ESS 〈µ〉 ≡ R ? U 〈µ〉 for “comma” selection, and ESS+ 〈µ〉 ≡ R ? U+ 〈µ〉 for

“plus” selection. This two-part decomposition is somewhat arbitrary. While

ESS 〈µ〉 and ESS+ 〈µ〉 are well-defined, unique elements in PBOK for a given

λ, the decomposition R ? U is just one way of expressing it, just as 1 + 3 and

2 + 2 are two different ways of expressing 4.

Evolution strategies often do not recombine selected points, but when

they do, they often use higher-order crossover rules. The resulting algorithms

are termed either as a (µ/ρ+ λ)–ES or a (µ/ρ, λ)–ES, where ρ is the order of

the crossover. Two crossover rules are commonly used: intermediate crossover
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and dominant crossover. Dominant crossover is a higher order generalization

of uniform crossover to ρ parents. Intermediate crossover averages the parent

components. Like the crossover methods used for genetic algorithms, these

two methods assume that the search space has a product space structure.

Additionally, intermediate crossover requires that the search space be a vector

space with addition and scalar multiplication. Intermediate crossover is easy

to express as a point distribution on the average of the parents. If

average(t) =
1

ρ

ρ∑
i=1

H(t)−i,k(t), (4.25)

then intermediate crossover is given by

IC 〈ρ〉 [t, f ] ({y}) = δaverage(t) (y) . (4.26)

Dominant crossover can be expressed by generalizing the idea of crossover

masks so that the mask ranges from 1 to ρ, i.e. M ∈ {1, . . . , ρ}d. Fur-

ther, let p(i, t) be the ith parent on the trajectory t with order ρ, p(i, t) =

parents(t, ρ, k(t), K)−i. Also, let M ⊗i p(i, t) denote the point that is zero for

each component where M 6= i and equal to p(i, t) when M = i. Then the

crossover random variable can be redefined to

Ct =

ρ∑
i=1

M ⊗i p(i, t). (4.27)

And then if PM = Uniform
(
{1, . . . , ρ}d

)
, dominant crossover is given by

DC 〈ρ〉 [t, f ] (A) =
∑

z∈{1,...,ρ}d
P (Ct ∈ A |M = z) PM (z) (4.28)

138



The final element is mutation. As with genetic algorithms, the type of

mutation is customized to the search space, and sometimes to the objective.

Most often, evolution strategies are employed in Rd, and Gaussian mutation

is used. One of the main differences between genetic algorithms and evolution

strategies, however, is the level of effort expended to adapt the mutation pa-

rameters over the course of optimization. Sometimes, this adaptation occurs

at a global level, so that all elements of the next population are generated

from the same mutation distribution. In this case, let Σ(t) be a matrix-valued

function that takes a trajectory and performs trajectory-specific computa-

tions to produce a covariance matrix for mutation (see e.g [27, 85]). Then the

(µ/ρ, λ)–ES with dominant crossover and Gaussian mutation is an element of

PBOλ

[
Rd
]

and can be written as

ES 〈µ, ρ〉 = ESS 〈µ〉 ? (/ESS 〈µ〉 ? (· · · ? (/ρ−1ESS 〈µ〉 ?DC 〈ρ〉))) ?N 〈Σ(t)〉

(4.29)

Notice that this equation identifies evolution strategies as a formal evolution-

ary algorithm, since it is the convolution of a selection rule, a recombina-

tion operator with masked crossover, and a mutation operator. Notably, this

method fails to meet the formal definition of a genetic algorithm. The covari-

ance function includes some information about previous populations, so this

evolution strategies method is not population-Markov. Also, if intermediate

crossover had been used, then the algorithm would only be a quasi-evolutionary

algorithm by the definitions above. As mentioned, crossover is a relatively re-

cent innovation in evolution strategies, and so this violation may be regarded
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as marking a early trend towards the quasi-evolutionary algorithms analyzed

below.

The characterization in this subsection applies to general evolution

strategies, but does not apply to CMA-ES. Apart from their reliance on a

trajectory-specific covariance matrix Σ(t), modern versions of CMA-ES have

more in common with EDAs than with traditional evolution strategies, and

these methods are handled together in Section 4.3.3.

Rather than having a global adaptation procedure, evolution strategies

often adapt mutation parameters with each point. In this case, the muta-

tion parameters are carried along with the selected point. The point itself is

mutated using the current mutation parameters, and then the mutation pa-

rameters are themselves mutated using a global adaptation scheme. Adaptive

mutation of this form cannot be represented in PBOK [X]. However, if the

mutation parameters range over a space Θ, then adaptive mutation can be

described on an extended state space as an element of PBOK [X ×Θ], where

X×Θ is the Cartesian product. The objective function can be extended to this

product space by defining f̃(x, θ) = f(x). Finally, since X can be embedded in

X × Θ, elements of PBOK [X] can be projected trivially into PBOK [X ×Θ]

using this embedding, and so adaptive evolutionary strategies can be com-

pared directly with non-adaptive ones for theoretical and practical purposes.

The issue of space extension will be explored further in Section 4.3.1.
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4.2.5 The (1 + 1)–ES as the Norm Limit of Simulated Annealing

The standard theoretical example of an evolution strategy is the (1+1)–

ES in Rd. In terms of this dissertation, this optimizer is represented by

ES+ 〈1, 1〉 [t, f ] =

{
ESS+ 〈1〉 if k(t) = 1

ESS+ 〈1〉 ?N 〈σ(t)2I〉 if k(t) = 2
(4.30)

It operates on a population of size two. The first member of the population

is always the current best solution, and the second member is a proposed

replacement mutated from the current best. The function σ(t) is a globally

adaptive parameter that controls the standard deviation of mutation. The

standard deviation is controlled so that it improves approximately 23% of the

proposed solutions.

The description of the (1 + 1)–ES is reminiscent of simulated anneal-

ing. There is an accepted solution and a proposed solution. The proposed

solution is generated from the acceptance probability using Gaussian varia-

tion. The standard deviation of the Gaussian distribution is controlled so that

the running best has a 0.23 probability of being replaced. The only notable

difference is that the (1 + 1)–ES lacks an explicit acceptance probability. In

fact, by gradually reducing the cooling schedule, the (1 + 1)–ES can be shown

to be the norm-limit of SA. While this fact has always been obvious to the

intuition, the formalisms proposed in this dissertation allow it to be proven

as mathematical fact; without the formalism, the result could not be clearly

achieved.
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To obtain this result, redefine simulated annealing using the terminol-

ogy of the last several sections, especially that of Section 4.1.5:

SA 〈T 〉 [t, f ] =

{
B〈A(t−1, t−2, f, T (|t|/2)), t−1, t−2〉 if k(t) = 1

N 〈σ(t)I〉 if k(t) = 2,
(4.31)

where T : N→ R is a cooling schedule for simulated annealing.

Theorem 4.2.3. Suppose Tn is a cooling schedule such that Tn → 0 as n→∞.

Then ||SA 〈Tn〉 − ES+ 〈1, 1〉 ||MF → 0. That is, the (1 + 1)–ES is the limit of

simulated annealing using the norm of PF, assuming both optimizers use the

same initial distribution.

Proof. Assume that the initial population is generated from the same initial

distribution. Fix the objective function f and the trajectory t with |t| > 2 to

represent any non-initial state. First, note that if k(t) = 2, then SA 〈Tn〉 =

ES+ 〈1, 1〉 for all n. Thus the interesting case occurs when k(t) = 1. Consider

the sequence of acceptance probabilities An(t) = A (t−1, t−2, Tn(|t|/2)). As

Tn → 0, either An(t)→ 0 if f(t−2) > f(t−1) or An(t)→ 1 otherwise. Let

B̃n[t, f ] = B
〈
An(t), t−1, t−2

〉
[t, f ],

When k(t) = 1, then SA 〈Tn〉 = B̃n, and for B ∈ Bτ ,

ES+ 〈1〉 [t, f ](B) = ESS+ 〈1〉 [t, f ] =

{
1B(t−1) if f(t−1) ≥ f(t−2)
1B(t−2) otherwise,

where 1B is the indicator function for the set B.

If neither t−1 nor t−2 are in B, then

SA 〈Tn〉 [t, f ](B) = ES+ 〈1〉 [t, f ](B) = 0.

142



If both are in B, then SA 〈Tn〉 [t, f ](B) = ES+ 〈1〉 [t, f ](B) = 1. Thus the only

possible differences are realized when B contains only one of the points. It

suffices to let B contain only t−1 and not t−2, since convergence on B implies

convergence on X \B as a consequence. There are now two cases.

Case 1: f(t−1) ≥ f(t−2). In this case, An(t)→ 1, so B̃n → 1, since B contains

t−1. So

|SA 〈Tn〉 [t, f ](B)− ES+ 〈1〉 [t, f ](B)| =
∣∣∣B̃n[t, f ](B)− 1

∣∣∣→ 0. (4.32)

Case 2: f(t−1) < f(t−2). In this case, An(t) → 0, so B̃n → 0, since B does

not contain t−2. So

|SA 〈Tn〉 [t, f ](B)− ES+ 〈1〉 [t, f ](B)| = B̃n[t, f ](B)→ 0. (4.33)

Thus in either case, since t, f and B were arbitrary, then for ε > 0 there exist

t∗ and B∗ such that for n large,

||SA 〈Tn〉 − ES+ 〈1〉 || < |SA 〈Tn〉 [t∗, f ](B∗)− ES+ 〈1〉 [t∗, f ](B∗)|+ ε

< 2ε, (4.34)

and so the proof holds.

This simple theorem justifies the approach of unifying optimization

algorithms through the formalization of PF because it allows a rigorous com-

parison of two typologically distinct optimization methods, one a Monte Carlo

method and the other an evolutionary method. It also helps to identify oppor-

tunities for new algorithms, as is done with evolutionary annealing in Chap-

ter 11.
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4.3 Quasi-Evolutionary Algorithms

The previous section explored the relationship of evolutionary algo-

rithms to the proposed formalism. This section examines how some of the

natural computation and quasi-evolutionary methods from Chapter 2 can be

formalized.

4.3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is used to search rectangular re-

gions within Rd [62, 107]. To generalize the algorithm somewhat, the formal-

ization will assume that the search space X is a closed rectangular subset of

a vector space. Arbitrary bounded subsets of a vector space (say, Ω ⊆ X)

can be searched in this way through the use of a feasibility region by setting

f(x) =∞ for x /∈ Ω [111].

PSO maintains a population of particles metaphorically representing

a flock of birds. Each particle has a position and a velocity in the search

space, and the particles are ranked by fitness. As with differential evolution,

the population may be viewed as a sequence of slots. PSO stores the best

overall solution (called the global best) as well as the best solution that has

occurred at each slot over all prior populations (the local best). The position

and velocity are often initialized uniformly at random over the search space.

At each generation, the velocity of each particle is shifted towards the position

of both the global best and the local best. The position of the particle is

then updated according to the velocity. For the ith slot of the population, the
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update rules for the velocity vn+1 and the position xn+1 after the nth generation

are

vn+1
i = ωvni + φpU

n
p,ix

n
p,i + φgU

n
g,ix

n
g (4.35)

xn+1
i = xni + vn+1

i , (4.36)

where ω decays the current velocity; xnp,i and xng are the local and global best

positions at the nth generation, respectively; φp and φg control the sensitivity

to the local best and global best solutions; and Un
p,i, U

n
g,i are uniform random

variables on [0, 1]. If the velocity vn+1
i will cause the particle to exit the search

space, then the velocity can be clipped so that the position xn+1
i is on the

boundary of X. Another approach is to allow particles to exit the rectangular

boundary, but to draw them back in by using the feasibility modification to

the objective function. Feasibility guarantees that xng and xnp,i are inside of X,

and as long as |ω| < 1, the particle will eventually be pulled back into the

search space.

The three parameters ω, φp and φg control the algorithm and are arbi-

trary. Studies have shown that if φp = 0, then the optimal settings for ω and φg

over an average of benchmarks occur when ω ∈ [−0.6, 0] and φg ∈ [2, 4] [153].

The use of negative values for the velocity decay ω wreaks havoc with the flock

analogy but is nonetheless effective.

To formalize PSO, the search space must be extended to include the

velocities. Otherwise, there is no way to infer the velocity from the particle

positions, since the velocity is initialized randomly. To this end, let the ex-
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tended search space by Y = X×X with an altered objective f̃(x, v) = f(x). If

the initial velocity is set to zero, as is sometimes done, then the velocities may

be inferred from the particle trajectories and this extension is not necessary.

Let PSO 〈ω, φp, φg, K〉 be an instantiation of PSO with the specified

parameters and population size K. The optimizer PSO will be defined by

constructing a process Z on Y and then setting PSO to be the distribution of

this process so that Z ∼ PSO 〈ω, φp, φg, K〉. Let the vectors u and ` represent

the upper and lower bounds for X. Use the superscript n, i to represent the

state of the ith slot in the nth population, i.e. Zn,i = Z(n−1)K+i+1. Initialize

the process so that Z0,i ∼ Uniform ([`, u]2). At every step, the process consists

of a position and a velocity component, Zn,i = (Xn,i, V n,i). Let the update

rules in Equation 4.35 govern the position variable Xn,i and the velocity V n,i,

with variables Xn
p,i and Xn

g to represent the local and global best. Then PSO

is given by

PSO 〈ω, φp, φg, K〉 [t, f ] (A) = P
(
Z |H(t)|,(|t|modK) ∈ A | Zn = tn ∀n < |t|

)
.(4.37)

PSO can be reduced to the search space X by marginalizing out the velocities

when required in order to compare PSO with other methods.

Formally, PSO is a quasi-evolutionary algorithm by the definition above

with a vacuous mutation operator. PSO can be characterized as using three

selection rules, one that selects the previous position and velocity, one that

selects the global best, and one that selects the local best. The crossover rule

then applies Equation 4.35 to these three items to generate the recombined
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point. Since the recombined point is also the output, the mutation operator

must be vacuous. Thus PSO introduces a unique and complex crossover rule,

but is formally a quasi-evolutionary algorithm. It is not an evolutionary al-

gorithm, since there is no masked crossover rule that implements PSO. It is

also important to note that PSO is not population-Markov, since it depends

on the global and local best solutions at each time step.

4.3.2 Differential Evolution

Like PSO, differential evolution is designed to search a rectangular re-

gion in Rd. Once again, this method can be easily generalized to any search

domain that is a closed rectangular subset of a vector space. Suppose that the

search space X is a subset of a finite-dimensional vector space defined by a

closed rectangular region with upper and lower boundaries u and `.

As mentioned in Chapter 2, Ghosh et al. [74] recently proved that

differential evolution converges to the true global optimum on functions with

two continuous derivatives. The techniques employed by Ghosh et al. are

similar to the techniques employed in this dissertation, and thus their result

provides further evidence that theorems about stochastic optimizers can be

stated and proven in a suitable formalization.

Differential evolution passes through three phases: selection, mutation,

and crossover. Notably, crossover in differential evolution crosses a mutated

vector with the selected vector, and so differential evolution does not meet the

formal definition of an evolutionary algorithm.
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Differential evolution uses a form of selection that will be termed local

best selection. This method selects the best member of the trajectory so far

along each component. Let bi(t) ∈ X be the best solution found so far at the

ith slot along the trajectory t, bi(t) = argmintn,if (tn,i), where the superscripts

indicate the ith member of the nth population, as in the description of PSO

above. Local best selection always selects bi(t) for the ith member of the

population, i.e. with population size K it is the point distribution given by

LBS < K > [t, f ] (A) = P
(
b|t|modK (t) ∈ A

)
. (4.38)

Mutation in differential evolution adds the difference between two mem-

bers of a population to a third member of the population. The vector to which

the difference is added is termed the donor vector, and K donor vectors are

chosen from among the local best vectors in one of three ways. In random mu-

tation, each donor vector may be a chosen uniformly at random from among

the local best vectors. In target-to-best mutation, every donor vector may

be fixed as the global best vector (denoted as t∗ for a trajectory t). In best

mutation, the ith donor vector may be chosen as a particular point along the

line from the ith local best to the the global best vector. Once the donor vector

is selected, then two other distinct vectors are chosen randomly from among

the local best vectors, and the donor vector is moved in direction of their dif-

ference, multiplied by a weighting factor denoted F . These possibilities are
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expressed as

Yrand,i(t) = bR1(t) + F (bR2(t)− bR3(t)) (4.39)

Ytarget,i(t) = bi(t) + F (t∗ − bi(t)) + F (bR1(t)− bR2(t)) (4.40)

Ybest,i(t) = t∗ + F (bR1(t)− bR2(t)) , (4.41)

where R1, R2, and R3 are distinct uniformly random indices between 1 and d,

inclusive, and d is the dimension of the space. Some versions also add a second

difference chosen randomly from among the remaining local best vectors. Let

Y∗ stand for any one of Yrand, Ytarget, or Ybest. Then mutation in differential

evolution can be represented by

DM∗ < F,K > [t, f ](A) = P
(
Y∗,|t|modK(t) ∈ A

)
. (4.42)

Differential evolution recombines the local best vectors with the mu-

tated vectors to create the next population. The two crossover strategies

are termed binomial and exponential. Both schemes can be described using

crossover masks, and each is parameterized by a crossover rate denoted by CR.

Binomial crossover is so named because each mutated component is selected

as a Bernoulli trial with probability CR, i.e. P (Mi = 0) = CR, recalling that

Mi = 0 implies that the “mother” (the mutated vector) is chosen. However,

if Mi = 1 for all i, the sample is rejected, so that at least one mutated com-

ponent is included. Exponential crossover copies a subsequence of adjacent

components from the mutated vector onto the local best vector. A random

index I in 1, . . . , d is chosen along with a random length L also in 1, . . . , d.

Then Mi = 0 if i ≥ I and i < I+L, applying modular arithmetic as necessary.
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Recalling the crossover mask rule C < PM > and letting M [CR] be the

selected crossover mask, differential evolution is thus given by

DE∗<F,CR,K>= LBS<K> ?
(
DM∗<F,K> ? C

〈
PM [CR]

〉)
. (4.43)

As with PSO, DE is also a quasi-evolutionary algorithm according to

the formal definition in this chapter. The convolution DM∗ ? C fits the def-

inition of a fourth-order crossover rule, provided that the vectors t∗, bi, bR1 ,

bR2 , and bR3 are selected by a selection rule. The mutation operator for DE is

vacuous, as it is for PSO. DE is not an evolutionary algorithm, since it does

not use a masked crossover rule. Also, DE is not population-Markov due to

its use of the local best solutions. Indeed, PSO and DE share quite a few

structural similarities, and it is interesting that the proposed formalism draws

them out.

4.3.3 Parameterized Quasi-Evolutionary Methods

Both Estimation of Distribution Algorithms and Natural Evolution

Strategies have an explicit representation as a parameterized probabilistic

model. These methods thus fit into the formalism naturally. Each of them

is described by a distribution π (dx | θ) where θ is drawn from a parameter

space. The parameters θ are reestimated once per generation based on the

population history, so that θ = θ̂(H(t), f) to reflect the dependence of the

parameters on the prior populations and their evaluations. Then all EDA and
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NES instances can be represented by

G 〈π, θ〉 [t, f ](A) =

∫
A

π
(
dx | θ̂(H(t), f)

)
(4.44)

for an appropriate model π and a parameter estimation function θ̂.

Also, both EDAs and NES are quasi-evolutionary algorithms according

to the formalism above. EDAs use truncation selection to choose the best

M members of the prior population. These points are then used to build

a probabilistic model. This model depends only on the selected points and

not on their objective value, so the construction and sampling of the model

are objective agnostic. Therefore, the model-sampling process can also be

described formally as a crossover rule of order M . Thus the EDA consists

of truncation selection, recombination through model-sampling, and vacuous

mutation.

NES and CMA-ES use truncation selection in the same way as tradi-

tional evolution strategies. Just like EDAs, they then build a probabilistic

model from the selected points. However, these methods differ from EDAs

in that they maintain a set of global parameters that are adjusted to fol-

low the gradient of certain metaparameters. Thus NES implementations are

evolutionary algorithms for the same reason that EDAs are, but EDAs are

population-Markov, unlike NES. Neither NES nor EDAs are strict evolution-

ary algorithms, since the model-building process cannot be implemented as a

masked crossover rule.
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4.3.4 Non-Quasi-Evolutionary Algorithms

Under analysis, each of the quasi-evolutionary algorithms studied in

this section has formally satisfied the definition of a quasi-evolutionary algo-

rithm proposed in this chapter. This result is not surprising, since all of these

methods were ultimately inspired by previous work on evolutionary algorithms.

However, it does beg the question of whether a practical trajectory-restricted

optimizer exists that is not formally a quasi-evolutionary algorithm. Under

further consideration, simulated annealing, generating set search, and even

Nelder-Mead4 are also formally quasi-evolutionary algorithms by the criterion

above.

At least one trajectory-restricted algorithm from Chapter 2 is not a

quasi-evolutionary algorithm even by this definition. Gradient-based methods

with estimated gradients are trajectory-restricted, but depend on the raw ob-

jective values of more than one point. Since a selection rule can only choose

one previously observed point, it cannot encode the estimated gradient, which

depends on at least two points, and since a crossover rule and mutation op-

erator must be objective agnostic, they cannot compute the gradient either.

Thus optimizers that are not quasi-evolutionary algorithms do exist under this

definition.

4It is difficult to cast Nelder-Mead into the format of a selection rule, recombination and
mutation. To see how it might be done in d + 1 dimensions, 2d + 2 selection rules can be
used, with d+ 1 rules selecting the simplex endpoints in some fixed order and an additional
d + 1 points selecting the same endpoints in rank order. The if-then rules of Nelder-Mead
can then be implemented within an objective-agnostic crossover rule.
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It is important to consider how to distinguish between algorithms that

fall traditionally within the ambit of evolutionary computation from those

that do not. If the population size K were required to be greater than one,

some versions of generating set search would still be included, since they can

generate a fixed number of points that can be evaluated in parallel. Further,

the (1 + 1)–ES, a traditional evolutionary algorithm, would be excluded under

a certain interpretation and included under another. A quasi-evolutionary

algorithm could be defined as factorial or homogeneous, but then one or more

evolutionary algorithms would be excluded.

When defining evolutionary algorithms, only masked crossover rules

were allowed, which reflect traditional intuitions about evolutionary computa-

tion. As a positive effect, PSO, DE, EDAs, and NES fail to meet the formal

definition of an evolutionary algorithm under this assumption. But intermedi-

ate crossover is excluded by this definition, and along with it some evolution

strategies and even certain forms of neuroevolution, such as NEAT. And yet

even this definition is more inclusive than some might prefer, since other op-

timizers not traditionally included within evolutionary computation could be

expressed as evolutionary algorithms without crossover, such as simulated an-

nealing.

In the final analysis, it is not important to draw a strong distinction

between which algorithms are and are not evolutionary or quasi-evolutionary

algorithms. A formal analysis such as the one undertaken in this dissertation

actually serves to undermine such categorical schemes, as the reasoning in the
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prior paragraph shows. In fact, it is a major benefit that the formal setting

removes the ability to distinguish certain methods categorically, because it

reveals important similarities among these methods along several dimensions

that would not be evident otherwise.

4.4 Conclusion

Population-based optimizers were reviewed in this chapter to show how

these optimizers fit into the formalism adopted in this dissertation. This ex-

ercise demonstrated that methods as diverse as genetic algorithms, evolution

strategies, particle swarm optimization, differential evolution, and estimation

of distributions algorithms all fit within the proposed framework for formal

analysis. In addition, some of the advantages of this approach were demon-

strated by proving that the (1 + 1)–ES method is the limit of simulated an-

nealing with respect to the optimizer norm.

This discussion has also proposed a definition for evolutionary and

quasi-evolutionary algorithms that requires selection, recombination, and mu-

tation, all explicitly defined. These definitions effectively distinguished tradi-

tional evolutionary algorithms from their more recent quasi-evolutionary vari-

ants, but it was not possible to draw a categorical distinction between quasi-

evolutionary algorithms and non-evolutionary methods such as Nelder-Mead

and generating set search. Indeed, it is not clear that such a distinction is

inherently useful, since this formalism aims to provide a single setting within

which all of these algorithms can be compared. It is a confirmation of this
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approach that several algorithms proposed with distinct motives and inspira-

tions bear structural similarities to each other that can be made clear using

the tools provided by this analysis.

The following chapters will not treat population-based optimizers sep-

arately from other optimizers, but the equations and formulae in this chapter

demonstrate effectively that the subsequent results apply equally to evolution-

ary and quasi-evolutionary optimization methods. The next chapter discusses

the continuity of various optimizers, and the chapter after next addresses the

integrability of the optimization trajectory. These results begin an analysis

that will culminate in extended No Free Lunch theorems for optimization and

an explicit definition of the duality between optimizers and random test pro-

cedures in Chapters 9 and 10.
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Chapter 5

Continuity of Optimizers

The two previous chapters presented a formalization of stochastic op-

timizers. Subsequent chapters will leverage this formal setting to show the-

oretically and experimentally how different optimizers perform and how they

use information. In order to obtain these results, this chapter and the next

one will develop the necessary analytic tools. This chapter focuses on conti-

nuity, one of the primary tools of analysis in general. Continuity considers the

question of whether it is reasonable to assume that the output of an optimizer

will be similar when the inputs are similar. In the following chapters, it will

be important to know when optimizers are continuous, and the theorems in

the chapter provide the tools for answering this question. In particular, it will

be shown that most non-deterministic optimizers are continuous on a broad

range of trajectories and objectives.

5.1 Background and Motivation

This chapter studies the continuity of the one-step optimizers from

Chapter 3. These optimizers were defined as functions from a trajectory and an

objective function to a signed measure over the search space. In this context,

156



there are two aspects of continuity that must be considered:

• Given similar evaluation trajectories, will an optimizer G choose similar

evaluation points?

• Given similar objective functions, will G make similar decisions?

The first question pertains to continuity in the trajectory, and the second

question to continuity in the objective function. If both questions can be

answered affirmatively, then G is jointly continuous, or simply continuous.

Continuity is a central topological concept. In topological terms, a

function is continuous if it maps open sets into open sets. An open set is

nothing more than a set that is declared to be open by the topology. A

topology is in fact defined by the sets that it declares to be open, and the open

sets are arbitrary within certain consistency constraints. Thus continuity of a

function is always continuity with respect to a particular topology on each of

the input and output spaces.

The most familiar type of topology is the metric topology, which induces

the epsilon-delta definition of continuity. Under a metric topology, a set A

inside of a metric space X with metric d is open if for every point x ∈ A

there is some ε > 0 such that d(x, y) < ε implies y ∈ A for all y ∈ X. A

function f that maps one metric space (X, dX) to another metric space (Y, dY )

is continuous if for every ε > 0 and every point x there exists a δ = δ(x) > 0

such that for all y with dX(x, y) < δ, it holds that dY (f(x), f(y)) < ε.
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In Chapter 3, MF was introduced as a space of functions from trajecto-

ries and objectives to finite signed measures. In order to address continuity of

optimizers, a topology needs to be specified for the input and output spaces.

The output space is the space of finite signed measures, M[X]. The input

space is the Cartesian product of two spaces: the space of trajectories, T[X]

and the space of objectives, RX . On a fixed objective, an optimizer can be

viewed as a function from T[X] to M[X]. On a fixed trajectory, an optimizer

is a function from RX to M[X]. If neither parameter is fixed, then the opti-

mizer is a function from T[X]×RX to M[X]. Whether or not an optimizer is

continuous depends on the topology assigned to each one of M[X], T[X], RX ,

and T[X]× RX .

The search space X was assumed to be a Hausdorff topological space

with topology τ . The topology τ can be extended to create a topology on

T[X]. A suitable topology for T[X] can be generated from a base of arbitrary

Cartesian products over open sets in τ , i.e.

O = {O ⊆ T[X] | ∃n <∞ s.t. O = O1 × · · · ×On with Oi ∈ τ ∀1 ≤ i ≤ n} .

(5.1)

The standard topology on T[X] is assumed to be the smallest topology on

T[X] in which every set in O is open. If τ is a metric topology with a metric

ρ on X, a metric on T[X] is given by

dρ (t1, t2) = | |t1| − |t2| |+
|t1|∧|t2|∑
i=1

ρ
(
ti1, t

i
2

)
, (5.2)
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where ti1 is the ith element of t1, and |t1| is the length of the trajectory t1.

In this chapter, X is generally assumed to be metric; the metric topology on

T[X] generated by dρ is therefore treated as the standard topology on T[X].

The space RX is a topological space under the topology of pointwise

convergence, for which a sequence of functions {fn}n∈N converges to a function

f if lim fn(x) = f(x) for all x ∈ X. The topology of pointwise convergence

admits a metric in only limited circumstances.1 The basic open sets of this

topology are intervals bounded on either side by functions. That is, for f, g ∈

RX , define f < g to mean that f(x) ≤ g(x) for all x ∈ X and there exists

at least one x0 ∈ X such that f(x) < g(x). The interval I[f, g] is defined by

I[f, g] = {h ∈ RX | f < h < g}, and the topology of pointwise convergence is

the smallest topology containing every interval on RX . A function G on RX

is continuous if G(fn) → G(f) whenever fn → f pointwise. Other topologies

on RX are possible, including a metric topology based on the extended metric

d(f, g) = supx∈X |f(x) − g(x)|. Such topologies are not explored here, since

pointwise convergence is sufficient for the purposes of this chapter.

The space M[X] is a normed vector space as discussed in Chapter 3.

Every norm induces a metric given by d(x, y) = ||x− y||. The metric topology

1By Urysohn’s metrization theorem, the product space RX will be metrizable if it is
Hausdorff, regular, and second countable [8]. In this text, RX with the product topology is
Hausdorff. In many cases, it will also be regular. In order for RX to be second countable
(i.e., the topology is generated from a countable family of sets), X would have to countable,
since R is second countable. If X is only second countable and not countable, then the
product topology has no countable base. Thus, for instance, if X = Rd, then RX is not
metrizable. For an illustrative counterexample in C[X], see [68].
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produced by the norm-induced metric is referred to as the norm topology. The

norm topology on M[X] will be utilized here as a default.

The definition of continuity adopted here is the topological one. For

a trajectory t and an objective f , an optimizer G is continuous in objectives

at t, f if it maps open neighborhoods of f to open neighborhoods of G[t, f ].

Similarly, G is continuous in trajectories at t, f if it maps open neighborhoods

of t to open neighborhoods of G[t, f ]. If G is continuous in objectives and

continuous in trajectories at t, f , then it is jointly continuous at t, f . When

G is described as simply continuous in objectives (or continuous in trajecto-

ries) without qualification, then it is intended to mean that G is continuous in

objectives (or trajectories) everywhere in the space. The following two propo-

sitions translate the requirements for continuity into more familiar language,

assuming X is a metric space.

Proposition 5.1.1. An optimizer G ∈MF [X] is continuous in objectives at f

if for any sequence of objectives {fn}, fn → f implies ||G [t, f ]−G [t, fn] ||M →

0.

Proposition 5.1.2. An optimizer G ∈ MF is continuous in trajectories at t

if for every ε > 0 there exists a δ > 0 such that whenever dρ (t, u) < δ then

||G [t, f ]− G [u, f ] ||M < ε.

If the space X is not metric, then continuity in trajectories remains

well-defined in the topological sense. For now, X will be assumed to be a
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metric space to simplify the arguments in this section, although most of the

results do apply more generally.

The norm topology on M[X] is the most obvious choice for a topology

on M[X]. Other topologies are possible as well, but are not studied in this

dissertation. Occasionally, in order to make the distinction between other

forms of continuity and continuity derived from the norm topology of M[X],

optimizers that are continuous under the norm topology of M[X] may also be

referred to as norm-continuous.

If an optimizer is continuous in objectives, then it can be expected to

perform similarly on similar problems. If an optimizer is continuous in trajec-

tories, then it can be expected to make similar decisions on similar trajectories.

The continuity of an optimizer is not important in itself. However, certain the-

orems can be formulated that apply only to continuous optimizers, and so it

is important to know which optimizers are continuous. For example, in Chap-

ter 7, the continuity of performance criteria will be studied, and it will be seen

that performance criteria are continuous on continuous optimizers, meaning

that continuous optimizers can be expected to have similar performance on

similar problems. The remainder of this chapter develops definitions and the-

orems that establish the conditions under which common optimizers such as

evolutionary algorithms, differential evolution, and stochastic gradient descent

are continuous.
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5.2 Deterministic Optimizers

Most deterministic optimizers are discontinuous in the norm topology.

Given a deterministic optimizer D and an objective f , the asymptotic trajec-

tory proposed by D on f is a unique sequence. Given a particular trajectory t,

denote the unique next point by p(t, f). Then D[t, f ](dx) = δp(t,f)(x). Choose

an objective g 6= f , and then

|D[t, f ]−D[t, g]| (X) =

∫
|D[t, f ](dx)−D[t, g](dx)|

=

{
0 p(t, f) = p(t, g)
2 p(t, f) 6= p(t, g)

. (5.3)

So if p(t, f) 6= p(t, g), it follows that

||D[t, f ]−D[t, g]||M ≥ |D[t, f ]−D[t, g]| (X) = 2. (5.4)

Since g was arbitrary, it is clear that D cannot be continuous in objectives

unless p(t, f) = p(t, g) for all g sufficiently close to f . That is, if fn → f , then

||D[t, f ]−D[t, fn]||M ≥ 2 regardless of n whenever p(t, f) 6= p(t, fn). Using the

same argument with trajectories t, u ∈ T[X] and a single objective f , it can

be found that D is also discontinuous in trajectories under the norm topology

unless p(t, f) = p(u, f) for all u close to t. Thus most deterministic optimizers,

including Newton and quasi-Newton methods as well as simplicial methods

and basic generating set search (without a randomized search heuristic), are

norm-discontinuous.

It is possible to construct a space of deterministic optimizers in which

some deterministic optimizers are continuous. This can be done by starting
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with the function p(t, f) above, which is a function from T[X]×RX to X. Call

the space consisting of all such functions DF. Then DF is isomorphic with the

set of deterministic optimizers in MF through the isomorphism D[t, f ](dx) =

δp(t,f)(x). Deterministic optimizers are continuous in objectives under the given

topology for X if p(t, fn)→ p(t, f) in τ whenever fn → f . Newton and quasi-

Newton methods are continuous in objectives over DF with this topology, and

are also continuous in trajectories on continuously differentiable objectives.

5.3 Evolutionary Algorithms

As discussed in Chapter 4, an evolutionary algorithm can be repre-

sented as a convolution of selection, recombination, and variation processes,

E = S ? R ? V. Evolutionary algorithms can be continuous or discontinu-

ous, depending on the details of the genetic operators. Mutation operators

are independent of objectives and therefore trivially continuous in objectives.

Typically, mutation operators are continuous in trajectories as well, as with

Bernoulli or Gaussian mutation. Crossover rules are likewise independent of

objectives and therefore continuous over objectives. In order to determine

when evolutionary algorithms as a whole are continuous, more work is re-

quired. Cases where evolutionary algorithms are continuous or discontinuous

will be addressed with general theorems in this section. These results can then

be used in conjunction with the results of Chapter 7 to conclude when the per-

formance of evolutionary algorithms changes continuously with the objective.

That is, these results will make it possible to determine when similarity of
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objectives permits us to conclude that a particular algorithm will perform

similarly on both objectives.

5.3.1 Continuity of Convolution

Since evolutionary algorithms have been formalized as a convolution of

optimizers, a study of the continuity of evolutionary algorithms can benefit

from discovering whether convolution preserves continuity. The two theorems

below demonstrate two distinct cases in which a convolution can be continuous.

First, a convolution A ? B is continuous if both optimizers are continuous.

Second, a convolution may be continuous if the right side is continuous and

the left side generates convergent samples. These theorems will be stated for

all of MF and not just PF, and so the concept of bounded magnitude must be

introduced first.

Definition 5.3.1. An optimizer G ∈ MF is of bounded magnitude if there

exists a number M <∞ such that ||G[t, f ]||M ≤M for all t, f .

An optimizer of bounded magnitude cannot grow without bound on

some sequence of objectives or trajectories, which is important because other-

wise such a sequence could be used to create a discontinuity during convolution,

even when two continuous optimizers are being convolved. Any optimizer in

PF is of bounded magnitude, with ||G[t, f ]||M ≤ 1, so that this condition is

satisfied trivially for the optimizers of interest.
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Theorem 5.3.1. Let S,V ∈ MF. Then S ? V is continuous in objectives (or

trajectories) at t, f if both S and V are continuous in objectives (or trajectories)

at t, f and of bounded magnitude.

Proof. Assume that S and V are continuous in both objectives and trajectories.

Suppose ||S[u, g]||M ≤ M < ∞ and ||V[u, g]|| ≤ M for all u, g. Let fn → f ,

tn → t. Let A ∈ Bτ . Fix ε > 0. Then

|S ? V [tn, fn] (A)− S ? V [t, f ] (A)| (5.5)

=

∣∣∣∣∫
X

V [tn ∪ x, fn] (A)S [tn, fn] (dx)− V [t ∪ x, f ] (A)S [t, f ] (dx)

∣∣∣∣ (5.6)

≤
∣∣∣∣∫
X

V [tn ∪ x, fn] (A)S [tn, fn] (dx)− V [t ∪ x, f ] (A)S [tn, fn] (dx)

∣∣∣∣(5.7)

+

∣∣∣∣∫
X

V [t ∪ x, f ] (A)S [tn, fn] (dx)− V [t ∪ x, f ] (A)S [t, f ] (dx)

∣∣∣∣ (5.8)

≤
∫
X

|V [tn ∪ x, fn] (A)− V [t ∪ x, f ] (A)| |S [tn, fn] (dx)| (5.9)

+

∫
X

|V [t ∪ x, f ] (A)| |S [tn, fn] (dx)− S [t, f ] (dx)| (5.10)

<
ε

2

1

M
|S [tn, fn]| (X) + M |S [tn, fn]− S [t, f ]| (X) (5.11)

<
ε

2
+
ε

2
= ε. (5.12)

To obtain Equation 5.11, use the fact that V is continuous on the left side and

the fact that V is of bounded magnitude on the right. To obtain Equation 5.12,

note that S is bounded in magnitude by M and that S is continuous. For Equa-

tion 5.11, continuity is sufficient to imply that there exists an N independent

of x such that

|V [tn ∪ x, fn] (A)− V [t ∪ x, f ] (A)| < ε

2

1

M
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for all n > N because dρ(tn ∪ x, t ∪ x) = dρ(tn, t) for all x ∈ X, using dρ from

Equation 5.2. This justification can be extended to general topological spaces;

the details are not included here.

The proof above holds for jointly continuous S and V; continuity in

either objectives or trajectories separately can be proven by repeating the

equations above with tn = t or fn = f as needed.

Theorem 5.3.1 can be applied to evolutionary algorithms to deduce

continuity based on the continuity of the selection rules, the crossover rule,

and the mutation operator. There is a problem with this approach, however,

since most selection and crossover rules are discontinuous in some sense. The

following proposition and its corollaries explicitly specify the chain of deduc-

tions.

Proposition 5.3.2. Every crossover rule or mutation operator is continuous

in objectives.

Proof. Let C be a crossover rule. By the definition of a crossover rule, C[t, f ] =

C[t, g] for all t, f, g, and so it is trivial that C is continuous in objectives. The

same argument holds for mutation operators as well.

Corollary 5.3.3. A recombination operator is continuous in objectives at t, f

if its selection rules are continuous in objectives at t, f .

Proof. Let R be a recombination operator. Then R = /S1 ? (· · · ? (/nSn ? C))

for selection operators S1, . . . , Sn and a crossover rule C. Each component is
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in PBOK and is therefore of bounded magnitude. The crossover rule C is

continuous in objectives, as are the selection rules. By a recursive application

of Theorem 5.3.1, R is continuous in objectives.

Corollary 5.3.4. An evolutionary algorithm is continuous in objectives at t, f

if its selection rules are continuous in objectives at t, f .

Proof. Let E be a evolutionary algorithm. Then E = S ? R ? V where R is a

recombination operator and V is a mutation operator. Plainly, V is continuous

and of bounded magnitude (since V ∈ PBOK , a subset of PF, which contains

only probability measures). S is continuous by assumption. Furthermore, R

is continuous (and of bounded magnitude) by the previous corollary. Two

applications of Theorem 5.3.1 to S ? R ? V complete the proof.

The previous theorems provide several tools to show that evolutionary

algorithms are continuous in objectives if their selection rules are continuous

in objectives. A stronger conclusion is possible using a different approach,

described next.

5.3.2 Sample Convergence and Continuity

Selection and recombination in evolutionary algorithms typically can

only choose from a finite set of points. The parents must come from the prior

generation, and there are only finitely many ways that the parents can be

recombined. Selection and crossover are often norm-discontinuous for the same

reason that deterministic optimizers are norm-discontinuous; convergence of
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the selected points does not imply norm-convergence in || · ||M. In evolutionary

algorithms, mutation varies the recombined point, spreading it out so that

after mutation, any point in the search space can be generated. The mutation

process restores continuity under certain conditions even when the selection

and crossover rule are not continuous. These concepts are stated formally in

the following definition and theorem.

Definition 5.3.2. An optimizer G ∈MF is sample convergent in trajectories

at t, f if

1. there is a trajectory ut,f ∈ T[X] s.t.{y ∈ ut,f} has full measure on G[t, f ],

2. tn → t implies ∃utn,f as in the prior statement, and utn,f → ut,f , and

3. tn → t implies G[tn, f ]({uitn,f})→ G[t, f ]({uit,f}) for all 1 ≤ i ≤ |ut,f |.

If the above statements hold when tn → t is replaced with fn → f , then G is

sample convergent in objectives at t, f .

The name sample convergent is chosen to reflect the fact that a sample

from a sample convergent optimizer converges along a sequence of trajectories

or objectives. That is, if Yt,f ∼ G[t, f ] for all t, f , then Ytn,fn converges in dis-

tribution to Yt,f when tn, fn → t, f . Sample convergence is not just important

for evolutionary algorithms; for example, it can also be used to show when

stochastic gradient descent is continuous.
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Theorem 5.3.5. Suppose G ∈ MF. If G can be written as A ? B where A

and B are both of bounded magnitude, A is sample convergent in objectives

(or trajectories) at t, f , and B is continuous in objectives (or trajectories) at

t, f , then G is continuous in objectives (or trajectories) at t, f .

Proof. Without loss of generality, suppose A is sample convergent in both

objectives and trajectories and that B is continuous in both objectives and

trajectories. Fix ε > 0 and suppose A ≤M and B ≤M . The optimizer G can

be written as

G[t, f ](A) =

|ut,f |∑
i=1

A[t, f ]({uit,f}) B[t ∪ uit,f , f ](A). (5.13)

To reduce notation, let N = |ut,f |, p(i, t, f) = A[t, f ]({uit,f}), and νi,t,f (A) =

B[t ∪ uit,f , f ](A). Then the above can be restated as

G[t, f ](A) =
N∑
i=1

p(i, t, f) νi,t,f (A). (5.14)

Suppose now that tn → t and fn → f . Because A is sample convergent,

it follows that p(i, tn, fn) → p(i, t, f). Also, νi,tn,fn(A) → νi,t,f since B is
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continuous. But then

|G[t, f ](A)− G[tn, fn](A)| ≤
N∑
i=1

|p(i, t, f)νi,t,f (A)− p(i, tn, fn)νi,tn,fn(A)|

≤
N∑
i=1

|p(i, t, f)νi,t,f (A)− p(i, t, f)νi,tn,fn(A)|

+
N∑
i=1

|p(i, t, f)νi,tn,fn(A)− p(i, tn, fn)νi,tn,fn(A)|

=
N∑
i=1

|p(i, t, f)| |νi,t,f (A)− νi,tn,fn(A)|

+
N∑
i=1

|νi,tn,fn(A)| |p(i, t, f)− p(i, tn, fn)|

≤ M
N∑
i=1

[ ε

2NM
+

ε

2NM

]
= ε (5.15)

where the next to last line follows from the convergence of p and ν mentioned

above and from the bounded magnitude of A and B. Thus G is continuous in

both objectives and trajectories. To show G is only continuous in objectives

or trajectories separately, repeat the above steps with tn = t or fn = f .

Corollary 5.3.6. An evolutionary algorithm is continuous in objectives at t, f

if its selection rules are sample convergent in objectives at t, f .

Proof. It has already been shown that crossover rules and mutation operators

are continuous in trajectories. Suppose that E is an evolutionary algorithms

with standard decomposition E = S ? R ? V. Then

S ? R = S ? (/S1 ? (· · · ? (/nSn ? C)))
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for selection operators S1, . . . , Sn and a crossover rule C. C is continuous in

objectives, and S1, . . . , Sn are sample convergent in objectives, as is S. All

components are in PF, and thus of bounded magnitude. Recursive application

of Theorem 5.3.5 yields that R is continuous in objectives. Theorem 5.3.1

implies that E is continuous as well.

The next theorem shows that masked crossover rules are sample con-

vergent if they have sample convergent selection rules. Since most crossover

rules are masked crossover rules, this fact implies that the continuity of most

evolutionary algorithms depends on the sample convergence of the selection

rule.

Theorem 5.3.7. The convolution of a selection rule and a recombination

operator with a masked crossover rule is sample convergent in objectives (or

trajectories) at t, f if its selection rules are also sample convergent in objectives

(or trajectories) at t, f .

Proof. Suppose X is a d-dimensional vector space, so that a masked crossover

rule can be applied. Let S be a selection rule that is sample convergent in both

trajectories and objectives. Let R be a recombination operator with a masked

crossover rule. Then S?R = S?(/S1 ? (· · · ? (/n−1Sn−1 ? C<PM>))) for sample

convergent selection rules S1, . . . , Sn−1 and a masked crossover rule C<PM>of

order n. Assume for now that each selection rule is sample convergent in both

objectives and trajectories. Let S0 = S to simplify the notation that follows.
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For all t, f there is a trajectory ui,t,f for each selection rule Si with i =

0, . . . , n−1 such that Si[t, f ]({y ∈ ui,t,f}) = 1. There are nd possible crossover

masks, and each selection rule can only select one of |ui,t,f | points. Thus there

are exactly nd
∏

i |ui,t,f | < ∞ points that can result from recombination, and

these points may be enumerated within a trajectory ũt,f , where the order of

enumeration is independent of t and f . To be specific, for each position k in

ũt,f there is a crossover mask mk and an index to a selected parent pi,k for

each selection rule i such that mk and (pi,k)
n
i=1 depend solely on the position

k and not on t, f . Recalling Equation 4.15, ũkt,f =
∑n

i=1m
k ⊗i u

pi,k
i,t,f , and

S ? R[t, f ]({y ∈ ũt,f}) = 1.

Suppose tn → t and fn → f . Then ui,tn,fn → ui,t,f for each selection

rule Si. Let x = ũkt,f , the kth element of the trajectory ũt,f . Then x is generated

from a particular crossover mask m determined by the position k. Suppose m

has the value j in the `th component, i.e. m` = j. Then x` =
(
ukj,t,f

)
`
. Let

xn = ũktn,fn . Then because the enumeration order was fixed, xn` =
(
ukj,tn,fn

)
`
.

Since uj,tn,fn → uj,t,f , it follows that xn` → x`. But k, j, and ` were arbitrary,

so it follows that ũtn,fn → ũt,f .

Again, suppose tn → t and fn → f . Let m be the crossover mask for

ukt,f , and let yi = u
pi,k
i,t,f be the point selected on t, f by the ith selection rule at

the kth position in the enumeration. Observe that

S ? R[t, f ]({ũkt,f}) = PM(m)
∏
i

Si[t, f ]({yi}). (5.16)

Let yni = u
pi,k
i,tn,fn

be the point selected on tn, fn by the ith selection rule at the
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kth position in the enumeration and note that (1) yni → yi, (2) ũktn,fn → ũkt,f ,

and (3) the particular mask m is a function of the position k independent of

t, f . Since PM(m) is independent of t, f and Si[tn, fn]({yni }) → Si[t, f ]({yi})

for all i, it follows that S ? R[tn, fn]({ũktn,fn}) → S ? R[t, f ]({ũkt,f}). Therefore

S ?R is pointwise convergent. To show that S ?R is only convergent in either

trajectories or objectives, repeat the above with fn = f or tn = t.

Corollary 5.3.8. An evolutionary algorithm with a masked crossover rule

is continuous in trajectories (or objectives) at t, f if its mutation operator

is continuous in trajectories (or objectives) at t, f and its selection rules are

sample convergent in trajectories (or objectives) at t, f .

Proof. Let E = S ? R ? V be an evolutionary algorithm with its standard

decomposition. Then S ? R is sample convergent by Theorem 5.3.7, and so E

is continuous by Theorem 5.3.5.

As a final piece of the puzzle, proportional selection is sample conver-

gent on C[X] under certain conditions. 2 Recall that PS 〈g〉 from Equation 4.10

is generalized proportional selection with a modulating function g, so that each

point y from the prior population H(t)−1 is selected proportionately to g ◦ f ,

where f is the objective function. The theorem below and its corollary proves

that the simple genetic algorithm.

2C[X] ⊆ RX consists of all continuous real functions and their pointwise limits, including
functions with jump discontinuities or point discontinuities.
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Theorem 5.3.9. Proportional selection with modulating function g is sample

convergent on all trajectories and all objectives in C[X] if and only if g is

continuous on the image of f .

Proof. To make the proof simpler, use unnormalized proportional selection,

UPS<g> [t, f ] (B) =
K∑
k=1

g(t, f
(
H(t)−1,k

)
)1B(x), (5.17)

noting that H(t)−1 is a sequence that may repeat points.

Suppose tn → t and fn → f . Without loss of generality, suppose fn is

continuous, as we may, since continuous functions are dense in C[X]. Clearly,

the set Pt,f = {y ∈ H(t)−1} has full measure on UPS[t, f ] for all t, f , and

H(tn)−1 → H(t)−1 in XK (or in T[X]). It remains to show that

UPS[tn, fn](
{
H(tn)−1,k

}
)→ UPS[t, f ](

{
H(t)−1,k

}
)

for all k.

∣∣UPS[tn, fn](
{
H(tn)−1,k

}
) − UPS[t, f ](

{
H(t)−1,k

}
)
∣∣

=
∣∣g(t, fn

(
H(tn)−1,k

)
)− g(t, f

(
H(t)−1,k

)
)
∣∣ (5.18)

Now fn is continuous and fn → f , so for any ε > 0,

∣∣fn (H(tn)−1,k
)
− f

(
H(t)−1,k

)∣∣ ≤ ∣∣fn (H(tn)−1,k
)
− fn

(
H(t)−1,k

)∣∣
+
∣∣fn (H(t)−1,k

)
− f

(
H(t)−1,k

)∣∣
<

ε

2
+
ε

2
< ε. (5.19)

Since g is continuous, the desired conclusion follows by normalizing UPS.
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Corollary 5.3.10. The simple genetic algorithm SGA of Equation 4.20 is

jointly continuous in trajectories and objectives.

Proof. Recall that SGA<p>= (PS<|x|> ? ((/PS<|x|>) ? SC)) ? B<p>, where

the objective is assumed to be negative (for minimization). The search space

is {0, 1}d with the discrete topology (i.e. all sets are open), and therefore

C[{0, 1}d] = RX . The function g(x) = |x| is continuous, and so PS< |x|>

is sample convergent everywhere by Theorem 5.3.9. The Bernoulli mutation

operator B<p> is jointly continuous. Single-point crossover SC is a masked

crossover rule, so Corollary 5.3.8 implies that SGA is jointly continuous every-

where.

Genetic algorithms in any space are jointly continuous on all trajecto-

ries and objectives in C[X] when they use masked crossover and proportional

selection with a continuous modulating function. For example, a real-coded

genetic algorithm with proportional selection, uniform crossover, and Gaussian

mutation is continuous in this way.

Proportional selection (also called roulette wheel selection) is no longer

commonly used as a selection rule because of its sensitivity to numeric values,

its requirement of a negative fitness function, and its inability to prefer more

refined solutions near an optimum. It has been replaced by tournament selec-

tion and ranking selection. Whereas roulette wheel selection makes a genetic

algorithm continuous, tournament and ranking selection are discontinuous at

some points. The following sections identify these discontinuities, leading up
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to a full characterization of when exactly the more commonly used selection

rules are continuous.

5.3.3 Sample Divergence and Discontinuity

In the previous section, sample convergence was used to show that many

genetic algorithms are continuous on a large set of objectives. In this section,

similar proofs will be used to demonstrate a converse result, that selection

rules whose samples diverge are a source of discontinuities in the optimizer.

The concept of sample divergence is defined next, followed by the converse of

Theorem 5.3.5.

Definition 5.3.3. An optimizer G ∈ MF is sample divergent in trajectories

at t, f if

1. there is a trajectory ut,f ∈ T[X] s.t.{y ∈ ut,f} has full measure on G[t, f ],

2. tn → t implies ∃utn,f as in the prior statement, and utn,f → ut,f ,

3. tn → t implies G[tn, f ]({uitn,f}) 9 G[t, f ]({uit,f}) for some 1 ≤ i ≤ |ut,f |.

If the above statements hold when tn → t is replaced with fn → f , then G is

sample divergent in objectives at t, f .

Theorem 5.3.11. Suppose G ∈ MF. If G can be written as A ? B where A

and B are both of bounded magnitude, A is sample divergent in objectives (or

trajectories) at t, f , and B is continuous in objectives (or trajectories) at t, f ,

then G is discontinuous in objectives (or trajectories) at t, f .
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Proof. Without loss of generality, assume that A is sample convergent in both

objectives and trajectories at t, f and that B is continuous in both objectives

and trajectories at t, f . Suppose tn → t and fn → f . Fix A ∈ Bτ . Adopt

notation for G as in Equation 5.14. Then there is some i such that p(i, tn, fn) 9

p(i, t, f), i.e. |p(i, tn, fn)−p(i, t, f)| = c1 > 0. Also, let c2 =
∑N

i=1 νi,t,f (A) > 0.

||G[t, f ]− G[tn, fn]||M ≥ |G[t, f ](A)− G[tn, fn](A)|

=

∣∣∣∣∣
N∑
i=1

p(i, t, f)νi,t,f (A)− p(i, tn, fn)νi,tn,fn(A)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

[p(i, t, f)− p(i, tn, fn)] νi,t,f (A)

+
N∑
i=1

p(i, tn, fn) [νi,t,f (A)− νi,tn,fn(A)]

∣∣∣∣∣
≥

∣∣∣c1c2 − c1c2
2

∣∣∣ =
c1c2

2
> 0, (5.20)

where the factor c1c2
2

is introduced because of the continuity of ν. Thus

||G[t, f ]−G[tn, fn]||M does not converge for ε < c1c2, and G is discontinuous at

t, f .

Theorem 5.3.7 stated that a masked crossover rule preserves sample

convergence from its selection rules. An analogue to this theorem is true;

masked crossover also preserves sample divergence. The following Theorem

and Corollary can be proven in a similar way to Theorem 5.3.7 and its corol-

laries, and so the proofs are omitted.
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Theorem 5.3.12. A recombination operator with a masked crossover rule is

sample divergent in objectives (or trajectories) at t, f if all of its selections

rules are sample divergent in objectives (or trajectories) at t, f .

Corollary 5.3.13. An evolutionary algorithm with a masked crossover rule is

discontinuous in objectives (or trajectories) at t, f if all of its selection rules

are sample divergent in objectives (or trajectories) at t, f and its mutation

operator is continuous in objectives (or trajectories).

5.3.4 Discontinuities of Specific Selection Rules

Theorem 5.3.9 showed that generalized proportional selection is sample

convergent where the modulating function is continuous on the image of the

objective function. The next result shows the opposite. Proportional selection

is sample divergent when the composition of the modulating function and the

objective is discontinuous.

Theorem 5.3.14. Proportional selection with modulating function g is sample

divergent in objectives and trajectories at t, f whenever its modulating function

g is discontinuous on the image of f at the evaluation point H(t)−1,k(t) in the

prior population of t.

Proof. Let k = k(t), and let xk = H(t)−1,k be a discontinuity point of g(t, f(·))

in accordance with the assumptions. Suppose tn → t and fn → f but

g(tn, fn(xk)) 9 g(t, f(xk)). As in the proof of Theorem 5.3.9, use unnor-

malized proportional selection. Also as in that proof, PS<g> meets the basic
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requirements of sample divergence (or convergence), i.e. ut,f = H(t)−1 and

Pt,f = {y ∈ H(t)−1} has full measure. Let xnk = H(tn)−1,k. The goal is now

to demonstrate that PS[tn, fn]({xnk}) 9 PS[t, f ]({xk}). It is not difficult to do

so, because

|PS[tn, fn]({xnk}) −PS[t, f ]({xk})|

= |g(tn, fn (xnk))− g(t, f (xk))|

= |[g(tn, fn (xnk))− g(tn, fn (xk))]

+ [g(tn, fn (xk))− g(t, f (xk))]| , (5.21)

and whether or not g(tn, fn(·)) is continuous at xk, this sum can be bounded

below by a constant greater than zero. Therefore PS is discontinuous at t, f .

The proof of Theorem 5.3.14 can be leveraged to conclude that tourna-

ment selection and ranking selection are also sample divergent on the majority

of objectives on certain trajectories. The following definition will make explicit

the trajectories on which this discontinuity occurs.

Definition 5.3.4. A trajectory t ∈ T[X] is of ambivalent fitness at degree K

on an objective f if there exist points x, y ∈ H(t)−1 for population size K with

x 6= y but f(x) = f(y). Otherwise, the t is of unambivalent fitness at degree

K on f . The trajectory t is ambivalent at full degree if K = |t|; the degree

may be omitted if clear from the context.

179



Notice that a monotonic objective can never produce a trajectory of ambivalent

fitness.

Theorem 5.3.15. Tournament selection (Equation 4.11) and ranking selec-

tion (Equation 4.13) are both sample divergent in objectives at every objective

on trajectories of ambivalent fitness at the degree of the selection rule.

Proof. Let R(y, f, P ) be the ranking function of Section 4.2.3. Define unnor-

malized tournament selection by UTS 〈q〉 [t, f ]({x}) = h1(x), where

h1(x) = (1− q)R(x,f,H(t)−1). (5.22)

Similarly, define unnormalized ranking selection by URS 〈q〉 [t, f ] ({x}) = h2(x),

where

h2(x) = rt,fq (x). (5.23)

In either case, the functions h1 and h2 can be substituted for g(t, f(·)) verbatim

in the proof of Theorem 5.3.14 to obtain that tournament selection and ranking

selection are sample divergent at the discontinuities of h1 and h2. Now h1 and

h2 are continuous functions of R(x, f,H(t)−1), and thus their discontinuities

are exactly the discontinuities of R.

Let f be any non-monotonic objective and let t be a trajectory of

ambivalent fitness on f at the degree of the selection rule, so that there are

two points y and z in H(t)−1 with y 6= z and f(y) = f(z). Next, construct fn

so that fn(z) = f(z) + 1
n

and fn(x) = f(x) for all x 6= z. Then fn → f , and

R(z, fn, H(t)−1)−R(y, fn, H(t)−1) > 0

180



is a positive constant independent of n, i.e. y is ranked higher than z, and

thus has a lower index in the ranked population. But according to the disam-

biguation rule in Section 4.2.3,

R(z, f,H(t)−1)−R(y, f,H(t)−1) < 0,

that is, y is ranked lower than z at the limit and has a higher index in the

population. Therefore R is discontinuous in objectives at t, f , and by conse-

quence tournament and ranking selection are discontinuous in objectives at

t, f as well. If the tie-breaking procedure is reversed, the proof still holds by

using fn(z) = f(z)− 1
n

instead.

These discontinuities are not as serious as they appear at first. In

fact, both tournament selection and ranking selection are sample convergent in

objectives on trajectories that are not of ambivalent fitness. On most objective

functions, these optimizers do not produce trajectories of ambivalent fitness.

In fact, such trajectories will have measure zero unless the objective function

has a plateau. Even on functions with many small plateaus, trajectories of

ambivalent fitness will rarely be encountered.

Theorem 5.3.16. Tournament selection and ranking selection are both sam-

ple convergent on objectives in C[X] at trajectories that are of unambivalent

fitness.

Proof. As in the proof of Theorem 5.3.15, tournament and ranking selection

are sample divergent at exactly the points where R is discontinuous. Let
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f ∈ C[X], and let t be a trajectory that is of unambivalent fitness on f at the

degree of the selection rule. Assume fn → f . Then there is an n such that

R(x, fn, H(t)−1) = R(x, f,H(t)−1) since the population size K is finite, and

any finite set of points in R can be separated by disjoint open sets. But then

R is continuous on f at t, and therefore tournament and ranking selection are

sample convergent by a repetition of the proof of Theorem 5.3.9 with h1 and

h2 from the proof of Theorem 5.3.15 replacing g(t, f(·)).

The previous two proofs determine when tournament and ranking se-

lection are sample convergent or divergent in objectives. They depended on

the fact that fitness ranking is inherently discontinuous on trajectories of am-

bivalent fitness.

An analysis of truncation selection will complete this survey of continu-

ity in evolutionary algorithms. Truncation selection, used by evolution strate-

gies and estimation of distribution algorithms, also depends indirectly on the

rank. A truncation selection rule in PBOK places probability one on the best

T members of the last population, with 1 ≤ T < K. In Section 4.2.4, evolu-

tion strategy selection was defined as ESS and ESS+. Both of these selection

rules are truncation selection rules. All truncation selection rules are sample

divergent in objectives on all monotonic objectives due to the discontinuity in

the ranking function that was exploited in the proof of Theorem 5.3.15. The

following proposition and its corollary can be proved using the same strategy

as for Theorem 5.3.15.
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Proposition 5.3.17. A truncation selection rule is sample divergent in objec-

tives on trajectories of ambivalent fitness, and is sample convergent on objec-

tives in C[X] at trajectories of unambivalent fitness.

Corollary 5.3.18. Evolution strategies in Rd with intermediate or dominant

crossover and Gaussian mutation are continuous in objectives at t, f if f ∈

C[X] and t is of unambivalent fitness on f ; they are discontinuous in objectives

on trajectories of ambivalent fitness.

The principles from the theorems above are not restricted to evolu-

tionary algorithms. Sample convergence is an important and useful concept

that can be used to demonstrate the continuity or discontinuity of quasi-

evolutionary algorithms and even stochastic gradient descent, as is done in

the next two sections.

5.4 Quasi-Evolutionary Algorithms

Quasi-evolutionary algorithms can be described in terms of selection,

crossover, and mutation operators, but they typically use much more complex

crossover mechanisms. The techniques for determining the continuity of evo-

lutionary algorithms were described in at a general level in Section 5.3 so that

the same techniques can be applied to demonstrate the discontinuity of the

most popular quasi-evolutionary algorithms with respect to objectives. This

section develops this result for the parameterized model-building methods and

the class of locally improving optimizers, which includes differential evolution.
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5.4.1 Parameterized Methods

In Chapter 2, the class of parameterized quasi-evolutionary methods

was introduced. These methods include estimation of distribution algorithms

(EDAs) and natural evolution strategies (NES), which subsumes Correlated

Matrix Adaption (CMA-ES). The most popular methods in this class are dis-

continuous in objectives on trajectories of ambivalent fitness, but are mostly

continuous elsewhere. When they arise, the discontinuities are due to the use

of truncation selection.

An EDA with truncation selection can be represented as the convolution

of a truncation selection rule and a model sampler. The model sampling

procedure typically does not depend on the objective, but only on the selected

members of the population. For this reason, the model sampler is continuous

in objectives, and so the EDA can be shown to be continuous or discontinuous

in objectives by applying Theorem 5.3.5 or Theorem 5.3.11, depending on

whether the trajectory in question is of ambivalent fitness. The same logic

also holds for Natural Evolution Strategies, including CMA-ES.

The proofs in Section 5.3 were developed abstractly. A proof that is

specific to a known algorithm may be help to make the meaning of these results

more concrete. With this goal in mind, this section shows directly that the

Bayesian Optimization Algorithm (BOA), a popular EDA, is discontinuous

in objectives. To this end, let BOA 〈T,K〉 ∈ PBOK represent BOA with a

truncation size of T . BOA 〈T,K〉 builds a directed graphical model from the

best T individuals out of a population of size K by employing a greedy hill-
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climbing search through graph structures using the K2 metric [89, 154–156].

For this example, a binary space is assumed, X = {0, 1}d.

Proposition 5.4.1. BOA 〈T,K〉 is discontinuous in objectives on X = {0, 1}d

when 1 < T < K.

Proof. Let fn(x) = 1
n
δ1(x0) with δ as the Kronecker delta and x0 the first bit of

x, and let f(x) = 0. Then fn → f . Note that for any x ∈ X, fn(x) = 1
n

if x0 =

1 and fn(x) = 0 if x0 = 0. But f(x) = 0 for all x. Let A ≡ {x ∈ X : x0 = 1}

and let B ≡ {x ∈ X : x0 = 0}. Let t be a trajectory of length K, and let t

have exactly T elements in A and K − T elements in B. The T elements in A

are more optimal on fn than the elements in B because BOA builds a model

out of the best T elements. Then for some fixed ε > 0 determined by the

smoothing procedure for model estimation,

BOA 〈T,K〉 [t, fn] (A) = 1− ε. (5.24)

But on f all elements in t are equally optimal. Now assume without loss of

generality that truncation selection prefers elements in B over elements in A, so

that the model constructed by BOA for f should produce elements from B with

approximate probability K−T
K

, i.e. BOA 〈T,K〉 [t, f ](A) ≈ K−T
K
6= 1− ε.

This proof shows how discontinuities can appear in algorithms such

as BOA. Notice that the discontinuity in the proof above exists because the

objective function was chosen to be identically zero, which implies that all

trajectories are of ambivalent fitness. Like other EDAs, BOA is continuous in

objectives on trajectories of unambivalent fitness.
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5.4.2 Differential Evolution and Locally Improving Optimizers

In Sections 5.3 and 5.4.1, optimizers that depend on the objective

rank of evaluation points have been repeatedly shown to be discontinuous in

objectives exactly on trajectories of ambivalent fitness. Differential evolution

also depends on the objective rank but in a different way from the previously

analyzed optimizers, and thus a different type of continuity proof is required.

To generalize the result, consider population-based optimizers with

population size K that depend only on the local best solutions for each mem-

ber of the population. Given a trajectory t, define the best running popula-

tion by best (t, f) ∈ XK so that t is treated as K separate trajectories, and

best (t, f) stores the best individual along each of these trajectories. Formally,

best(t, f)k = argmax{H(t)n,k : 1≤n≤|H(t)|}f
(
H(t)n,k

)
, where H(t)n,k is the kth

individual in the nth population derived from the trajectory t. To resolve am-

biguities, let best(t, f) take on the value corresponding to the largest n. Such

optimizers will be termed locally improving.

Definition 5.4.1. An optimizer G ∈ MF is locally improving if G [t1, f ] =

G [t2, f ] if and only if best (t1, f) = best (t2, f).

As an aside, the space of locally improving optimizers forms a vector subspace

of MFtr, because the locally improving property is trajectory-restricted and is

preserved by vector operations.

In all but the simplest search domains, locally improving optimizers are

continuous in objectives on trajectories satisfying an analogue of the unam-
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bivalent fitness requirement of the previous sections. The following definition

extends the definition of ambivalent fitness to account for the structure of

locally improving optimizers.

Definition 5.4.2. A trajectory t ∈ T[X] is of componentwise ambivalent fit-

ness on an objective f at degree K if for some k with 1 ≤ k ≤ K, there

exist m,n such that (1) H(t)m,k 6= H(t)n,k, (2) f
(
H(t)m,k

)
= f

(
H(t)n,k

)
,

and (3) f
(
H(t)n,k

)
≤ f

(
H(t)i,k

)
for all i. Otherwise, t is of componentwise

unambivalent fitness on f at degree K.

The main concept is the same as in Theorem 5.3.15. Any objective

function can be modified to add a mode (or even a plateau) of arbitrary size

along trajectories of ambivalent fitness, and when this is done, the vector

best(t, f) changes discontinuously with the objective function as the added

mode becomes arbitrarily small. The proof is given next.

Theorem 5.4.2. Every locally improving optimizer in MFir [X] is continuous

in objective functions at t, f if and only if t is of componentwise unambivalent

fitness on f at full degree.

Proof. Let G ∈ MFtr [X] be locally improving with population size K. First,

let t be of componentwise ambivalent fitness on f at the appropriate degree.

Let k be the component of the vector best(t, f) along which ambivalent fitness

occurs, and let y, z be the two distinct points along the kth slot of t with y 6= z

and f(y) = f(z). Let fn(x) = f(x) for all x 6= z. Let fn(z) = f(z) + 1
n
.

Plainly, fn → f .
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Then best(t, f)k = z but best(t, fn)k = y because of the requirement

that y and z are the best points in t and because of the disambiguation rule

adopted for interpreting best. Therefore G [t, f ] 6= G [t, fn]. In fact, because

best(t, fn)k is the same regardless of n, there is a constant ε > 0 such that

||G [t, fn] − G [t, f ] ||M = ε independent of n, and therefore G is discontinuous

in objectives at t, f . If the disambiguation rule were reversed, then reversing

the order of the two populations in t would carry the proof.

If, on the other hand, t is of componentwise unambivalent fitness, then

for each population slot k, the fitness of the points along the trajectory t at the

kth slot can be separated by disjoint open sets, one for each point. Therefore

for n large, best(t, f) = best(t, fn). Therefore G [t, f ] = G [t, fn], and G is

continuous in objectives at t, f .

This theorem makes it clear exactly when a locally improving optimizer

is continuous in objectives. These facts will be employed in the next two

chapters to conclude that the performance of locally improving optimizers is

continuous. That is, these optimizers perform similarly on similar objectives.

5.5 Stochastic Gradient Descent

The concept of sample convergence is not only useful for assessing the

continuity of evolutionary and quasi-evolutionary methods. Returning briefly

to quasi-Newton methods, a sample convergence argument can be used to

conclude that stochastic gradient descent is continuous in objectives on all
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continuously differentiable objectives.

Stochastic gradient descent in Rd commonly adds a Gaussian noise

factor to the gradient. Let g(x, f, n) be the gradient update of x on an objective

f after n steps,

g(x, f, n) = x− ηnf ′(x), (5.25)

where ηn is a decreasing learning rate. Define stochastic gradient descent by

SG 〈σ〉[t, f ] = N
(
g(t−1, f, |t|), σ2

)
(5.26)

where N(µ, σ2) is the normal distribution with mean µ and variance σ2. Then

SG may be rewritten as a convolution,

SG 〈σ〉 = G ?N 〈σ〉 , (5.27)

where G is deterministic gradient descent, G[t, f ]({g(t−1, f, |t|)}) = 1, and

N 〈σ〉 is the Gaussian mutation operator of Chapter 4.

Because f is continuously differentiable, G is sample convergent in ob-

jectives on t, f . N 〈σ〉 is trivially continuous in objectives. By Theorem 5.3.5,

SG is continuous in objectives at t, f whenever f is continuously differentiable.

5.6 Conclusion

This chapter has provided tools to assess the continuity of various op-

timizers with respect to both objectives and trajectories. Continuity is an

important analytical tool because, as the next two chapters will show, contin-

uous optimizers perform similarly on similar objectives.
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The next chapter addresses what happens when the optimizer is run for

several steps on a particular objective. In this context, continuity in objectives

is more important than continuity in trajectories, since the optimizer controls

the trajectory but not the objective. Because the continuity of optimizers is

important for analyzing optimizer performance, this chapter has reviewed the

continuity of a variety of optimizers discussed in previous chapters.

Deterministic optimizers have been shown to be discontinuous every-

where in objectives, although because of their singular nature, deterministic

optimizers will still have continuous performance if they are sample convergent.

Evolutionary and quasi-evolutionary methods are continuous in objec-

tives on trajectories of unambivalent fitness. With the exception of locally

improving optimizers such as differential evolution, continuity can only be ex-

pected of these optimizers for objectives that are not too chaotic, i.e., that

reside in C[X]. In the next chapter, trajectories of ambivalent fitness will be

shown to have measure zero when the optimizers are run on a sufficiently large

search space, so that these optimizers are continuous almost everywhere with

respect to themselves on C[X].

The concept of sample convergence or divergence has proven to be

theoretically important for stochastic optimizers in general, even though it

only applies to singular optimizers. This importance derives from the fact that

most popular stochastic optimizers can be decomposed into a convolution of a

singular optimizer and a nonsingular one, as was done for stochastic gradient

descent.
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A final question about continuity is the following: When does continuity

of an optimizer imply continuity on the stochastic process generated by that

optimizer? This question is addressed in the next chapter, along with an

analysis of the long-running behavior of optimizers in general.
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Chapter 6

The Optimization Process

In the previous chapter, the continuity of optimizers was explored in

terms of how the distribution over the next evaluation point changes when the

objective or the trajectory changes. However, optimizers are typically run by

calling the same optimizer successively to generate a sequence of evaluation

points. In order to analyze optimizer performance in the next chapter, it will

be necessary to analyze the random process that is generated by running the

optimizer on a fixed objective function. This optimization process was briefly

introduced in Section 3.2.3. In this chapter, it will be analyzed in detail,

paving the way for an analysis of optimizer performance in Chapter 7 and

an extension of the No Free Lunch theorems to infinite-dimensional spaces in

Chapter 9.

6.1 Construction of the Optimization Process

When a stochastic optimizer G ∈ PF is run on a particular objective

f , it is initialized with the empty trajectory, and G[∅, f ] is sampled to obtain

a random evaluation point Z1. This point is added to the trajectory, and

G[(Z1), f ] is sampled to get Zn. The process continues iteratively, so that
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Zn+1 ∼ G[(Zm)nm=1, f ] for each n. In this way, an infinite random process

Z = (Zn)∞n=1 can be generated. It is not immediately obvious that this infinite

process exists or is well-defined. The goal of this section is to construct an

infinite random process whose finite-dimensional distributions correspond to

the joint distributions over a subset of the Zn. The process generated in this

way is termed the optimization process of an optimizer G on an objective f .

The construction of the optimization process is performed using the

Kolmogorov Extension Theorem [105, 112]. This procedure may seem overkill

at first since XN is a countable space, but this same method will be used again

later to construct function priors over the potentially uncountable space of

objective functions in Chapter 9.

First, the optimization process is an infinite sequence lying in the space

XN. A suitable σ-algebra for XN is thus required; it can be built from cylinder

sets on X. An n-dimensional cylinder set on XN is a set of the form

A =
{
z ∈ XN : zki ∈ Ai, 1 ≤ i ≤ n

}
(6.1)

for an index set k = (k1, . . . , kn) and some Ai ∈ Bτ for i = 1, . . . , n. That

is, an n-dimensional cylinder set restricts the values taken on by an infinite

sequence at exactly n components. As in [105], let C be the field containing all

cylinder sets on XN, and denote by B[XN] the smallest σ-algebra containing

C. B[XN] is sufficient to support the optimization process.

It remains to construct a probability measure for the optimization pro-

cess on an optimizer G ∈ PF and a given objective f . Such a measure can be
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created by patching together a consistent family of finite-dimensional distri-

butions. The following definitions are taken from Karatzas and Shreve [105]:

Definition 6.1.1. Let T be the set of finite sequences k̃ = (k1, . . . , kn) of

distinct nonnegative integers, where the length n of the sequence ranges over

the positive integers. Suppose that for each k̃ of length n there is a probability

measure Qk̃ on (Xn,Bτn), where τn is the product topology on τ . The collection

{Qk̃}k̃∈T is a family of finite-dimensional distributions.

The family {Qk̃} is said to be consistent if it satisfies the following two

conditions:

(1) if ˜̀ = (ki1 , . . . , kin) is a permutation of k̃ = (k1, . . . , kn), then for any

Ai ∈ Bτ ,

Qk̃(A1 × · · · × An) = Q˜̀(Ai1 × · · · × Ain). (6.2)

(2) if k̃ = (k1, . . . , kn) with n ≥ 1, ˜̀= (k1, . . . , kn−1), and A ∈ Bτn−1 , then

Qk̃(A×X) = Q˜̀(A). (6.3)

By the Kolmogorov Extension Theorem, a consistent family of finite-

dimensional distributions guarantees that a probability measure P on
(
XN,B[XN]

)
exists such that

Qk̃(A) = P
({
x ∈ XN : (xk1 , . . . , xkn)

})
(6.4)

for all A ∈ Bτn and k̃ = (k1, . . . , kn) [50, 105, 112, 113].
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The final step of the construction is to define Qk̃. Suppose k̃ = (k1, . . . , kn)

is ordered so that ki < kj when i < j. Then define

Qk̃(A) =

∫
Xk1−1

∫
A1

. . .

∫
Xkn−kn−1−1

∫
An

kn∏
i=1

G
[
xi−11 , f

]
(dxi) (6.5)

by integrating over the first kn steps of the optimizer, restricted to the set A

where required by the index set k̃. Here and below, the notation xnm refers to

the trajectory in T[X] formed by concatenating xm, . . . , xn, or to the empty

trajectory if n < m. If k̃ is not ordered, define Qk̃ to meet the first consistency

requirement above. That is, let ˜̀ be the ordered permutation of k̃ and set

Qk̃ = Q˜̀. The family {Qk̃} also satisfies the second requirement of consistency.

If k̃ = (k1, . . . , kn) with n ≥ 1, ˜̀ = (k1, . . . , kn−1), and A ∈ Bτn−1 , then the

final integrals in Equation 6.5 are equal to one, and so

Qk̃(A×X) =

∫
Xk1−1

∫
A1

. . .

∫
Xkn−1−kn−2−1

∫
An−1

kn∏
i=1

G
[
xi−11 , f

]
(dxi)

= Q˜̀(A). (6.6)

Thus {Qt̃} is a consistent family.

As a consequence, there exists a probability measure satisfying Equa-

tion 6.4. This measure governs the long-running outcome of the optimization

process. For an optimizer G and an objective f , denote this measure by Gf .

The notation Gf will also be used with equivalent meaning. Any random pro-

cess Z distributed according to Gf is termed an optimization process of G on

f , and G is said to generate Z on f .

Equation 6.5 gives the probability of an arbitrary cylinder set un-

der Gf . The marginal distribution of Zn at any particular point in time
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can be stated more succinctly as Zn ∼ Fn
i=1G. Conditional on (Zm)n−1m=1,

Zn ∼ G
[
(Zm)n−1m=1 , f

]
. If g is a functional on XN, then EGf [g(Z)] is the ex-

pected value of the functional g(Z) with respect to Gf .

The space generated by infinitely extending one-step optimizers is con-

sidered next, followed by discussion of how these long-running optimizers may

be integrated and whether they are continuous in objectives.

6.2 The Space of Long-Running Optimizers

In the previous section it was shown that for each optimizer G ∈ PF and

each objective f , there is a probability measure Gf that governs the infinite

optimization sequence generated by G. By examining Equation 6.5, it can

be seen that the finite-dimensional distributions of a generalized optimizer

G ∈MF are also well-defined and consistent. Thus generalized optimizers can

also be infinitely expanded, but the signed measure Gf that results may not

be finite.

For any G ∈MF that expands to a finite signed measure on any objec-

tive, consider the mapping f 7→ Gf . This mapping will be termed the infinite

expansion of G, and it will be represented simply as Gf or Gf . Thus the nota-

tion Gf can refer either to a measure over sequences for a specific f , or to the

infinite expansion of G for a specific f . The infinite expansion contains all of

the information necessary to run an optimizer G on an objective f .
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Definition 6.2.1. For any vector subspace X ⊆MF, let

A [X] =
{
f 7→ Gf : f ∈ XR,G ∈ X, and∀h,∀A, |Gh(A)| <∞

}
be the space of infinite expansions of X that result in a finite signed measure

on
(
XN,B[XN]

)
. If Gf ∈ A [X], Gf is a function from XN to M[XN].

The space of infinite expansions will be referred to as the space of long-

running optimizers to distinguish it from MF and its subsets, which sample

one point at a time. Long-running optimizers will be used in Chapter 9, where

A will be shown to be in duality with the space of function priors, extending

and formalizing a result by Wolpert and Macready [218].

It is worthwhile to explore the relationship between MF and A[MF].

Given any G ∈ MF that expands to a finite measure, it is clear that the

infinite expansion Gf ∈ A[MF] is unique. The opposite does not hold true.

Given Gf ∈ A[MF], there is not a unique optimizer corresponding to it. There

may even be uncountably many optimizers in MF that expand to Gf . To see

why, consider the following pseudo-optimizer:

G[t, f ](A) = Gf
(
Z|t|+1 ∈ A | Z1 = t1, . . . , Z|t| = t|t|

)
. (6.7)

If there were a unique G corresponding to Gf , Equation 6.7 would define it.

However, there is a major problem that prevents such a correspondence. There

may be uncountably many sequences that have Gf measure zero, and thus

there may also be uncountably many optimizers G ∈ MF that extend to Gf

that differ only on trajectories with Gf -measure zero. In order to obtain a
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one-to-one correspondence between long-running optimizers and one-step-at-

a-time optimizers, it is necessary to take the quotient space of MF consisting

of equivalence sets on MF that are equal Gf -almost surely, i.e. that are equal

everywhere except on a set of trajectories that has Gf -measure zero.

In general, a property holds Gf -almost surely (Gf -a.s.) if there is some

subset A of XN such that Gf (A) = 1 and the property holds on A. In the

following text, Gf will sometimes be treated as though it were a measure over

trajectories in T[X]. In this vein, a set of trajectories T ⊆ T[X] corresponds

to the set of sequences in XN that infinitely expand any trajectory in T . The

set T ⊆ T[X] is described as having Gf -measure zero if the set of all sequences

that infinitely expand it has Gf -measure zero. Also, if a property holds for all

trajectories except on a set of Gf -measure zero, then this property is said to

hold Gf -a.s.

The space of long-running optimizers is a vector space under pointwise

addition and scalar multiplication. The vector structure of A[MF] is distinct

from the vector structure of MF because addition and multiplication in A are

taken on measures over sequences, whereas addition and multiplication in MF

are taken on measures over points. Thus if Gf = αAf , it does not follow that

G = αA. Nor does Gf = Af + Bf imply that G = A + B. In fact, such

equalities hold only for trivial optimizers. There is also a norm for A, given

by ||Gf ||A = suph∈XN ||Gh||M. The vector subspace of long-running optimizers

for which ||Gf ||A is finite is a normed vector space. The infinite extensions of

PF reside in this normed space.
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6.3 Increasing Information and Stopping Times

This dissertation focuses on the space PF, which consists of optimizers

that sample from probability measures. The optimization process and its per-

formance are therefore analyzed using the terminology and tools of stochastic

processes. This section reviews background material necessary for understand-

ing these concepts, particularly filtrations and stopping times. Filtrations

capture the notion of increasing information, studied in Chapters 10 and 11.

Some performance criteria in Chapter 7 will depend on integrating over stop-

ping times. In particular, the No Free Lunch Theorems of Chapter 9 explicitly

refer to the density of a stopped optimization process. These concepts will be

defined in this section.

6.3.1 Filtrations and Information

One of the most important intuitions underlying the theory of stochas-

tic processes is the concept of the σ-algebra as an information source. The

σ-algebra has been referenced throughout this dissertation, yet up to this

point these objects have been treated as arcane technical artifacts. In fact,

the σ-algebra plays an intuitive role as a mediator of information. Let F be a

σ-algebra. The distinct sets within the F represent observable events. Points

that cannot be separated by sets in F are unobservable by any F-measurable

random variable. For example, suppose that x, z are distinct points in a mea-

surable space (X,F), and that every A ∈ F that contains x also contains z.

Suppose Y is an arbitrary F-measurable random variable. Then no observa-
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tion of the state of Y can ever distinguish whether the state x or the state z

has occurred; the σ-algebra F does not contain that information.

This dissertation has assumed that the search domain is a topological

space (X, τ), and an optimizer applied to a particular objective and a particu-

lar evaluation history is a Borel measure, i.e. a measure on the Borel σ-algebra

over τ , Bτ . Because the Borel σ-algebra contains all of the τ -open and τ -closed

sets, it is the smallest set of information such that the boundary of every open

and closed set is observable. That is, a Borel σ-algebra has sufficient infor-

mation to determine when a trajectory within the search space has entered or

exited a closed set.

The optimization process is B[XN]-measurable. As the optimization

process unfolds, it generates information about which sequences in XN are pos-

sible. Each step of the optimizer restricts one component of the sequence. The

future steps of the optimizer can never be distinguishable by the optimization

process, even though these future steps are B[XN]-measurable. Every prefix

of the optimization process is therefore measurable with respect to a smaller

σ-algebra that contains only the information generated up to the present. The

sequence of such σ-algebras for any process is termed the natural filtration of

the process.

A filtration represents a sequence of increasing information. As more

information is acquired, more events become observable. Formally, a filtration

on a measurable space (X,F) is a sequence of σ-algebras {Fn}n∈N such that

Fn ⊆ Fn+1 ⊆ F for all n. A stochastic process Y = (Yn)n∈N is adapted to
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the filtration {Fn} if Yn is an Fn-measurable random variable for all n. The

natural filtration of a process is the smallest filtration to which it is adapted,

and it encapsulates the information that the process has acquired at each point

in time. Filtrations on the search domain will play a key role in Chapter 11,

where a filtration will be constructed in order to direct the optimization process

towards the global optimum.

Denote by Zn the natural filtration of the optimization process on(
XN,B[XN]

)
. Then each Zn is Zn-measurable. For any objective function

f , the stochastic process En = f(Zn)− f ∗ is the error process of the optimizer

on f , recalling that f ∗ is the minimum of f . The error process is adapted

to Zn. It will be explored in more detail in the next chapter as a means of

assessing the performance of an optimizer.

6.3.2 Stopping Times

A random time of a discrete stochastic process on (X,F) is a random

index of the process that is F-measurable. That is, if T is a random time, then

the sets {T ≤ n} and {T > n} are elements of F for all n. Given the entire

process, the value of the random time can be determined exactly. Given only

a prefix of the process, it is not necessarily possible to know whether or not

the random time has passed at the current time.

A stopping time of a process Y with respect to a filtration {Fn} is a

random time that is measurable with respect to the filtration for each value

it takes on. That is, if S is a stopping time, {S ≤ n} ∈ Fn for all n. With a
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stopping time, it is possible to determine when the stopping time has occurred

based on the value of the process up to the current time.

In the next chapter, stopping times will be used as criteria for deciding

when to measure the performance of an optimizer. They will also show up

again in Chapter 9 in the proof of the No Free Lunch Identification Theorem

(Theorem 9.3.7), which depends on an integral of the optimization process up

to a stopping time.

A stopping time need not be finite. In that case, {S =∞} is an element

of F, but does not usually appear in any of the Fn. If the stopping time is

finite on a particular sequence in the state space, then it is said to hit on that

sequence. One cannot always determine whether a stopping time will hit on a

particular sequence given only a finite number of components. The possibility

that S =∞ must always be considered.

For any stopping time S of a process Y , there is a random variable YS

representing the value of the process at the stopping time. The variable YS is

measurable with respect to the σ-algebra FS ≡ {A ∈ F : A ∩ {S ≤ n} ∈ Fn ∀n}.

Suppose that S is a stopping time of the optimization process Z. S is

a function over sequences, i.e. S = S(x) for x ∈ XN; it will also be written

as a function over trajectories, S = S(t), when it is possible to do so, i.e.,

when S(t) ≤ |t|. The quantity ZS is a random variable on ZS representing the

evaluation point on which S hits. We need to know how to integrate over the

joint probability of the sequence Z1, . . . , ZS. Let Hn be the set of trajectories
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on which S has hit by time n, i.e. Hn = {t ∈ T[X] : |t| = S(t) = n}. Let

H =
⋃
nHn, the set of finite stopping trajectories for S. If S <∞ Gf -almost

surely, i.e. Gf ({S =∞}) = 0, then the joint distribution of Z1, . . . , ZS is given

by

Gf (A) =
∞∑
n=1

∫
Hn∩A

n∏
i=1

G[ti−11 , f ](dti) (6.8)

for any A ∈ ZS. For any functional hS that is finitely determined by S, i.e.

hS(Z) = hS(Z1, . . . , ZS), the expected value of hS is given by

EGf [hS(Z)] =
∞∑
n=1

∫
Hn

hS(t)
n∏
i=1

G[ti−11 , f ](dti). (6.9)

In this equation, a stopping time has been used to reduce an integral over

infinite sequences in XN to an integral over finite trajectories in T[X]. This

reduction is useful because there are significantly more mathematical tools

available to deal with infinite sums than with infinite products. Also notice

that once the functional is finitely determined as in Equation 6.9, the results of

Theorems 6.4.2 and 6.4.4 below can be applied to demonstrate the continuity

of EGf [hS(Z)] in objectives and optimizers.

6.4 Continuity of the Optimization Process

In order to analyze optimizer performance, it will be important to an-

swer the following question: When does continuity of an optimizer imply that

the optimization process generated by that optimizer is continuous? Specif-

ically, suppose fn → f , and let G ∈ PF be continuous in objectives. Does

Gfn → Gf in the norm topology of A[MF]? Because the optimization process
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is infinite, it may be possible for Gfn to diverge from Gf even if G is continuous

everywhere. Thus it is not possible to extend continuity in MF to the norm

topology of A.

It is possible to prove that the continuity of an optimizer on sufficiently

many trajectories implies that the long-running optimizer results in similar

average values for finitely-determined random variables of the optimization

process:

Definition 6.4.1. A random variable Y (Z) defined over the optimization pro-

cess is finitely determined if there exists a fixed m < ∞ such that Y (Z) =

Ỹ (Z1, . . . , Zm).

It will be shown that for any optimizer G ∈ MF that is continuous

Gf -a.s.,

EGfn [Y (Z)]→ EGf [Y (Z)], (6.10)

for any finitely-determined random variable Y . The condition of finiteness

is needed because the infinitesimal differences between Gfn and Gf can cause

divergence of the integral after infinitely many time steps.

Notice the use of the expectation operator E even though the optimizer

G was stated to be in the space MF. In this case, the operator E is used to

signify an integral over the whole space XN, and Gf need not be a probability

measure. The symbol E is used nonetheless because the focus of the text is on

probability measures.
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The space of random variables on
(
XN,B[XN]

)
is the set of functionals

on h ∈ XN → R whose backward projections are B[XN]-measurable, that is,

h−1(A) ∈ B[XN] for every A in the Borel σ-algebra on R. These random

variables will be written either in lower case as h(Z) or in upper case as H(Z).

If written in upper case, the argument may be omitted, e.g. H = H(Z).

If g(Z) is a random variable of this sort, then EGf [g(Z)] integrates over

X countably many times. But if g is finitely determined, it depends on only

finitely many components in XN. The remaining (infinitely many) steps can

be integrated out. Such a variable is said to be finitely determined. If xm1

is the trajectory formed by taking the first m components of x ∈ XN and

g(x) = g(x1, . . . , xm), m integrals are required, since

EGf [g (Z1, . . . , Zm)] =

∫
XN
g(x1, . . . , xm)

∞∏
k=1

G
[
xk−11 , f

]
(dxk) (6.11)

=

∫
Xm

g(x1, . . . , xm)
m∏
k=1

G
[
xk−11 , f

]
(dxk)

×
∞∏

j=m+1

∫
X

G
[
xj−11 , f

]
(dxj) (6.12)

=

∫
Xm

g(x1, . . . , xm)
m∏
k=1

G
[
xk−11 , f

]
(dxk) . (6.13)

Along any particular trajectory t, the optimization processes of Gf and

Gfn cannot move far apart when G is continuous in objectives on the trajectory

t. If EGf [h(Z)] depends on finitely many optimization steps, then for large n,

EGf [h(Z)] must be close to EGfn [h(Z)] as well if G is continuous in objectives

at f . In fact, G need not be continuous at every trajectory; it is enough

205



if G is continuous at f on a large enough set of trajectories. In this case,

“large enough” means that G must be continuous in objectives at f for a set

of trajectories that has full measure on Gf . That is, G must be continuous

Gf -a.s.

For the evolutionary and quasi-evolutionary algorithms of Chapter 5,

trajectories of ambivalent fitness (Definition 5.3.4) must have zero probability

of occurring when G is run. The only trajectories on which many evolutionary

and quasi-evolutionary algorithms are discontinuous are the trajectories of

ambivalent fitness. If G is a population-based algorithm with population size

K, the following theorem gives the condition under which G will be continuous

Gf -a.s. on f . Basically, the optimizer must place probability zero on points

that would extend a trajectory ambivalently.

Theorem 6.4.1. Let f be an objective, and let G ∈ PBOK be an optimizer that

is continuous in objectives on t, f for all trajectories t of unambivalent fitness

on f . Let At be the set of points in X for which t ∪ x is of ambivalent fitness

on f . Then G is continuous Gf -a.s. on f if G[t, f ](At) = 0 for all trajectories

t of unambivalent fitness on f .

Proof. The proof is by induction on the length of the trajectory. Every tra-

jectory of length 1 is of unambivalent fitness. Suppose that trajectories of

length n − 1 are unambivalent with probability one. Let t be an arbitrary

trajectory of length n − 1. Let U = X \ At so that G[t, f ](U) = 1. That is,

extensions of t to length n are unambivalent with probability one. Since t was
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arbitrary, trajectories of length n are in general unambivalent with probability

one. Therefore trajectories of arbitrary length are of unambivalent fitness on

f with probability one, i.e., G is Gf -a.s continuous.

This theorem is sufficient to prove the Gf -a.s. continuity of evolutionary

algorithms in many cases. For example, if the search domain is d-dimensional

Euclidean space, X = Rd, then a real-coded genetic algorithm with tourna-

ment selection, masked crossover, and Gaussian selection is Gf -a.s. continuous

on objective functions without fitness plateaus, that is, on all objective func-

tions whose level sets have Lebesgue measure zero.

The performance of an optimizer is a function of the optimizer and

the objective on which it is run. Roughly, the overall performance of an

optimizer is the weighted average of its performance on every possible run

of the optimizer. This average can be found be integrating over Gf . It is

important to know whether average performance changes only slightly when

the optimizer or the objective function are altered slightly. The next theorem

shows that if an optimizer is continuous Gf -a.s. in objectives, then the expected

value of finitely determined random variables changes continuously with the

objective. If the performance of an optimizer is assessed after finitely many

optimization steps, this next theorem will imply that the average performance

should not change much if the objective is not changed much.

Theorem 6.4.2. Let G ∈MF be continuous Gf -a.s. at an objective f , and let

fn → f pointwise. Let g (x1, . . . , xm) be a real function on Xm with m < ∞
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fixed, and suppose that EGf |g (Z1, . . . , Zm)| < ∞ and EGfn |g (Z1, . . . , Zm)| <

∞. Then EGfn [g (Z1, . . . , Zm)]→ EGf [g (Z1, . . . , Zm)].

Proof. Fix ε > 0. Assume ||G[t, f ]||M ≤ M < ∞. Suppose J and L are two

index sets of positive integers less than or equal to m. J and L will be termed

complementary if J ∩ L = ∅ and J ∪ L = {1, . . . ,m}. Let K be the set of all

complementary pairs of index sets. There are exactly 2m such pairs. These

complementary sets can be used to state the joint distribution of Z1, . . . , Zm

as a sum.

Let t be an unambivalent trajectory of length at least m < ∞. Recall

that tm1 is the trajectory formed by taking the first m components of t. Then

m∏
k=1

G
[
tk−11 , f

] (
dtk
)

=
m∏
k=1

[(
G
[
tk−11 , f

] (
dtk
)
− G

[
tk−11 , fn

] (
dtk
))

+ G
[
tk−11 , fn

] (
dtk
)]

(6.14)

=
∑
J,L∈K

[∏
j∈J

(
G
[
tj−11 , f

] (
dtj
)
− G

[
tj−11 , fn

] (
dtj
))

×
∏
`∈L

G
[
t`−11 , fn

] (
dt`
)]
. (6.15)

Equation 6.15 expands the product in Equation 6.14 by cross multiplying the

difference with the joint distribution over fn. This sum contains 2m terms, one

for each pair of complementary index sets. With the exception of the comple-

mentary sets given by J0 = ∅, L0 = {1, . . . ,m}, every pair of complementary

index sets in K yields a product in Equations 6.15 with at least one factor of

the form

G
[
tj−11 , f

] (
dtj
)
− G

[
tj−11 , fn

] (
dtj
)
.
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Because m is finite and t is fixed and of unambivalent fitness, it is possible to

choose n so that
∣∣G[tj−11 , f ]− G[tj−11 , fn]

∣∣ < ε
22mMm for each j. Thus each term

in the sum except for the one at J0, L0 is less than ε
2m

, since G is of bounded

magnitude M . Further, the term in the sum at J0, L0 reduces to

m∏
k=1

G
[
tk−11 , fn

] (
dtk
)
,

and therefore for A ∈ Bτm ,∫
A

∣∣∣∣∣
m∏
k=1

G
[
tk−11 , f

] (
dtk
)
−

m∏
k=1

G
[
tk−11 , fn

] (
dtk
)∣∣∣∣∣

≤
∑

J,L∈K\{J0,L0}

∫
A

∏
j∈J

∣∣G [tj−11 , f
] (
dtj
)
− G

[
tj−11 , fn

] (
dtj
)∣∣

< 2m
ε

22mMm
2mMm = ε. (6.16)

Because of the integrability assumptions on g, it follows that

|EGfn [g (Z1, . . . , Zm)]− EGf [g (Z1, . . . , Zm)]| → 0. (6.17)

Corollary 6.4.3. Under the same general assumptions as Theorem 6.4.2, let

A be a set in B[XN] such that for fixed m < ∞, A is independent of Zn for

n > m under Gf and Gfn. Then Gfn (A)→ Gf (A).

Proof. Note that Gf (A) = EGf [1A]. Define g(Z1, . . . , Zm) = EGf [1A | Z1, . . . , Zm].

Because A is independent of Zn for n > m, g(Z1, . . . , Zm) = 1A(Z) by the

definition of conditional expectations. The result follows directly from Theo-

rem 6.4.2.
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If the objective is held constant, but the optimizer is altered slightly, a

similar theorem holds without continuity assumptions. Integrals over finitely

determined random variables change continuously with the optimizer, regard-

less of whether the optimizer is continuous. The next theorem shows that the

average value of a functional under Gnf converges to its average value under

Gf , again if the functional depends on finitely many steps of the optimization

process. This result will be used to demonstrate that performance criteria are

continuous over optimizers.

Theorem 6.4.4. Let G ∈ MF, and let f ∈ XN. Let Gn → G under the

norm || · ||MF. Let g (x1, . . . , xm) be a real function with m < ∞ fixed, and

suppose that EGf |g (Z1, . . . , Zm)| < ∞ and EGnf |g (Z1, . . . , Zm)| < ∞. Then

EGnf [g (Z1, . . . , Zm)]→ EGf [g (Z1, . . . , Zm)]

Proof. Repeat the proof of Theorem 6.4.2, replacing G[tk−11 , fn] by Gn[tk−11 , f ].

Theorem 6.4.2 and 6.4.4 are sufficient to prove the continuity of per-

formance criteria on continuous optimizers, which is done in Chapter 7.

6.5 Conclusion

This chapter discussed the properties of the infinite optimization pro-

cess, which is well-defined for every optimizer in PF. It also briefly introduced

the relevant background in stochastic processes that will be used to estab-

lish the theorems of subsequent chapters. Finally, it has been shown that
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long-running optimizers weakly preserve continuity in the sense that the ex-

pected value of finitely-determined random variables converges when applied

to similar objectives and optimizers. The next chapter develops the analysis

of performance based on the results of this chapter.
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Chapter 7

Performance Analysis

Given a particular objective function to be optimized, it would be use-

ful to know which optimizer will perform best on that objective. Indeed, the

entire purpose of studying the space of optimizers is to provide tools to answer

this very question. To this end, different categories of performance criteria are

analyzed theoretically in this chapter. Many performance criteria are shown to

be continuous and non-linear, implying that similar optimizers perform simi-

larly and that linearly interpolated optimizers may outperform the optimizers

being interpolated. These facts are demonstrated experimentally in Chapter 8.

Further, the categories of performance criteria described in this chapter make

it possible to identify the conditions under which No Free Lunch theorems

hold in infinite-dimensional spaces, to be undertaken in Chapter 9.

7.1 Performance Criteria

This section introduces performance criteria that formalize common

notions of what it means for an optimizer to perform well on an objective. A

performance criterion takes an optimizer and an objective function and outputs

a real number, providing an objectively determined score for each optimizer on
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each cost function. As a convention, this score is required to be nonnegative,

and a value of zero is considered perfect performance.

Most of the performance criteria considered here are defined with re-

spect to the error magnitude at each optimizer step.

Definition 7.1.1. The error sequence E(z) = (En(z))n∈N of a sequence z ∈

XN on an objective f is the sequence on RN given by

En(z) = f(zn)− f ∗ (7.1)

for any f that is bounded below, i.e. f ∗ > −∞. When the objective function

must be stated explicitly, the error sequence may be written as Ef (z) or Ef
n(z).

The error sequence of the optimization process, E(Z), will be termed the error

process. It is adapted to the natural filtration of the optimization process,

{Zn}. The sequence of evaluation points along the optimization process that

corresponds to the sequence of best evaluation points so far will be termed the

running minimum process, denoted by Z∗, with Z∗n = argmin{Zm:m≤n}f (Zm).

That is, Z∗n is the best known solution at time n. Define the minimum error

sequence E∗(z) as the running minimum of the error sequence,

E∗n(z) = min
m≤n

En(z) = f(Z∗n)− f ∗. (7.2)

The minimum error process is the minimum error sequence of the optimization

process, E∗(Z). These definitions will be used to define classes of performance

criteria.
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A performance criterion is defined as the expected value of a positive

functional of the optimization process.

Definition 7.1.2. Let G ∈ PF and f ∈ XR, and let Z = (Zn)n∈N be the

optimization process of G on f . Then a function φ : PF × RX → [0,∞) is a

performance criterion if there exists a function h : XN × RX → [0,∞) with

appropriate measurability properties such that

φ (G, f) = EGf [h(Z, f)] =

∫
XN
h(z, f)Gf (dz) (7.3)

whenever the integrals exist. More generally, φ may be extended to MF using

the integral on the right.

Performance criteria can be used to compare optimizers to each other,

and to analyze how the performance of an optimizer varies as the objective

changes. Ultimately, an analysis of performance should reveal how to select

a particular optimizer for a particular task. This issue will be approached

experimentally in the next chapter and theoretically in Chapters 9 and 10.

The remainder of this section gives examples of possible performance

criteria that correspond broadly to the kinds of results reported in the experi-

mental literature on optimizers. These examples are given in four groups: (1)

evaluation by average error, (2) hitting times for an error bound, (3) proba-

bility of attaining an error bound, and (4) error at a stopping time.
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7.1.1 Evaluation by Average Error

A first approach to evaluating optimizers is to average the magnitude

of the errors the optimizer makes at each time step. This metric combines

the total accuracy along with the speed of convergence, at the risk of dispro-

portionately penalizing optimizers for early errors due to exploration of the

objective. Such a metric is not traditionally reported, but could prove useful,

since it contains information about the convergence speed of the optimizer.

Let f ∈ RX , G ∈ PF, and let Z = (Zn) be the optimization process

generated by G on f . Define a performance criterion by

φw (G, f) = EGf

[
∞∑
n=1

wn |f (Z∗n)− f ∗|

]
, (7.4)

where wn is a sequence of weights that can be used to discount later values.

Three basic choices for wn are (1) wn = 1, which treats all errors equally but

only results in φw finite when G converges on f at a fast enough rate, (2)

wn = 2−n, which places more weight on earlier errors but is finite whenever

the objective is almost surely finite on G[∅, f ], and (3) wn = 1 for n ≤ N for

some fixed N <∞ and zero otherwise, which considers only a finite number of

time steps. Another possible scheme might ignore initial errors up to a finite

time, allowing optimizers to explore more broadly in earlier stages without

penalty.

The function φw using any of the three methods described above has

two primary advantages. First of all, it captures a natural intuition for eval-

uating an optimizer, namely, the magnitude of errors it makes before finding
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a good optimum. Secondly, by taking a sum of these errors, φw measures the

convergence rate of an optimizer. The disadvantage of φw is that it can be

sensitive to the early errors of an optimizer, especially when wn = 2−n. Also,

if wn is set according to either the second or third option above, then later

errors will be ignored, and an asymptotically convergent optimizer that con-

verges late will be outscored by a non-convergent optimizer that attains good

but suboptimal solutions earlier on (which may or may not be a desirable

feature).

One may wish to estimate the value of a performance criterion in order

to evaluate various optimizers. If wn is set according to the first option (wn = 1

for all n), then there is no reliable way to approximate the value of φw through

sample runs. No matter how many times an optimizer converges to the correct

solution, it is always possible that there is a set of sample runs with positive

probability on which the algorithm never reaches the global optimum. In this

case, the integrand is infinite on a set of positive probability, and thus it is

possible to have φw =∞ even if the cumulative error appears small and finite

for all observed runs. In fact, many optimizers of interest will have φw = ∞

on a large number of problems (e.g. most genetic algorithms). Thus setting

wn = 1 for all n is practically undesirable unless one has a proof that an

algorithm converges in probability to the global optimum on all objectives of

interest.

If wn is set according to either wn = 2−n or wn = 1 for n ≤ N , then the

value of φw (G, f) can be estimated using Monte Carlo methods by running
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several instances of the optimizer G on f for a fixed number of iterations. In

the first case, the number of iterations is chosen to satisfy a tolerance, 2−N < ε;

in the second, the number of iterations is simply the bound N . The minimum

error sequence E∗(Z) is non-increasing, and thus φw converges for either choice

of w provided that E∗1(Z) is finite with probability one for all n.

In Chapter 8, results will be reported for both wn = 2−n and wn = 1

for n < N .

7.1.2 Evaluation by Hitting Time

In existing literature, when evaluating a proposed optimizer, the op-

timizer is often run on a benchmark set of problems for which the optima

are known (see e.g. [10, 34, 80]). A common performance criterion for ranking

optimizers is to count the number of points that must be generated before

obtaining a solution whose fitness is within a fixed error from the globally

optimal fitness.

For a fixed error ε > 0, define the hitting time for ε as the first time when

an evaluation point has global error less than ε, i.e. τε ≡ min {n : |f (Zn)− f ∗| ≤ ε}.

Then define a performance criterion by

ψε (G, f) = EGf [τε] , (7.5)

which is the average hitting time for ε over all runs of the algorithm G on the

objective f .

This formula has a serious flaw for non-convergent optimizers. If G
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has a positive probability of failing to attain error less than ε, then ψε = ∞.

Additionally, from the standpoint of approximation, only finite computational

time is available, and thus cases in which τε is large cannot be distinguished

computationally from cases in which it is infinite.

One alternative is to place a finite limit on the stopping time; that is,

for N <∞,

ψNε (G, f) = EGf [τε ∧N ] , (7.6)

where the notation τε ∧ N = min {τε, N} as usual. The criterion ψNε (G, f)

can be estimated reasonably by running G on f several times for at most N

evaluations. This performance criterion also reflects a natural criterion for

comparing optimizers; it measures the average number of steps the optimizer

must be run before it produces a solution correct within error ε. Unlike φw,

ψNε is generally bounded across optimizers and objectives; optimizers will have

ψNε ≤ N on all objectives. Unfortunately, ψε and ψNε are discontinuous over

objective functions, as will be discussed below.

7.1.3 Evaluation by Success Probability

The hitting time tests how long it takes on average to attain an error

threshold ε. However, it does not test how often the threshold is attained.

Define the sets Tε = {τε < ∞} and TNε = {τε < N} to represent respectively

the sequences that asymptotically attain a given error bound and those that

attain it within a fixed number of evaluations. Then the success probability

is the probability of attaining a bound asymptotically, and the finite success
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probability is the probability of attaining the bound within a finite time win-

dow [210]. Each of these are performance criteria given by

σε(G, f) = Gf (Tε), σNε (G, f) = Gf (T
N
ε ). (7.7)

To see that σε and σNε are performance criteria, recall that Gf (A) = EGf [1A(Z)]

where 1A is the indicator set of A, i.e. 1A(x) = 1 if x ∈ A and is zero

otherwise. The finite success probability is the preferred criterion, since σNε

can be estimated experimentally, whereas σε cannot. Notice that σε does not

conform to the convention that lower performance values should be better and

zero should be optimal. The convention is ignored here because the success

probability has an intuitive meaning in its own right. In situations where the

convention is important, the performance criterion 1−σε can be used instead.

Given the finite success probability, it is of interest to know the average

hitting time for sequences that attain the error bound. The average hitting

time on successful trajectories is a performance criterion, given by

ψ̂Nε (G, f) = EGf [(τε ∧N) 1Tε(Z)] . (7.8)

On its own, this quantity is not useful, since it may be zero when the optimizer

fails, i.e. when Gf (T
N
ε ) = 0. However, the pair

(
ψ̂Nε , σ

N
ε

)
disambiguates this

situation, and these two values can be reported together for completeness [10].

7.1.4 Evaluation by Error at a Stopping Time

Optimizers are often tested by running the algorithm for a fixed number

of evaluations and then reporting the final error. As a generalization of this
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type of evaluation, suppose that an optimizer is run until some criterion is

satisfied, not necessarily connected to the number of evaluations. As one

example of why this generalization may be useful, suppose that rather than

stopping after a fixed number of evaluations, one wishes to stop an optimizer

after it uses up a fixed amount of resources, such as CPU cycles or calendar

time. Such a criterion can be modeled as a stopping time, and the error

magnitude at this stopping time is a performance criterion.

Let T be a stopping time equal to the generation in which this resource

limit is first expended, and define a performance criterion by

ζT (G, f) = EGf |f (Z∗T )− f ∗| , (7.9)

so that ζT is the smallest error attained within the allocated resources, where

Z∗n is the running minimum on Zn as above.

One stopping time that will be used extensively is the number of unique

points evaluated. In an environment where function evaluation is expensive,

the objective value of repeated points can be retrieved from a cache. In this

case, it is reasonable to suggest that repeated evaluation points are irrelevant

to overall performance. Given a sequence z ∈ XN, let

Tm(z) = min {n ∈ N | z1, . . . , zn contains m unique points} . (7.10)

Performance criteria based on Tm are used to derive No Free Lunch theorems

in Chapter 9, extending previous results of this type that only applied to

optimizers that never repeat any point.
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Performance criteria defined on this sequence will be studied almost

exclusively from this point, and thus it is worthwhile to define this sequence

independently.

Definition 7.1.3. The sequence of stopping times given by (Tm)∞m=1 is termed

the unique stopping sequence.

As a variation on φw above, one may define the average minimum error

after each unique individual by

φT (G, f) =
U∑

m=L

ζTm (G, f) = EGf

[
U∑

m=L

∣∣f (Z∗Tm)− f ∗∣∣
]

(7.11)

for some lower bound L ≥ 1 and upper bound U < ∞. The criterion φT is

finite whenever E∗TL = f
(
Z∗TL

)
− f ∗ is finite with probability one.

Usually, it is not difficult to estimate ζTm or φT . Most optimizers pro-

duce unique points with some frequency, so that Tm < ∞ almost surely if

m < |X|. In infinite spaces, it is even common to have Tm = m Gf -a.s. If an

optimizer does not produce m unique points, or does so slowly, this property

of the optimizer will generally be known ahead of time either analytically or

constructively. If Tm = ∞, then the set of unique points in the optimization

process is of size at most m− 1, so E∗Tm = E∗Tm−1
and ζTm = ζTm−1 . Thus the

infinite case is easy to handle when it can be identified. It is only difficult

to approximate ζTm when unique points are generated slowly. In this case,

assuming that Tm =∞ will produce an overestimate of the performance crite-

rion. Optimizers that produce unique points slowly are generally undesirable,
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and thus an overestimate of the performance criterion for these optimizers is

not problematic.

A substantial number of performance criteria have now been intro-

duced. The next two sections discuss the mathematical properties of perfor-

mance criteria, such as nonlinearity, decomposability, and continuity.

7.2 Properties of Performance Criteria

It is clear that a wide variety of performance criteria exists. These

criteria can be analyzed in general according to their mathematical properties.

This section examines three such properties that a performance criterion may

possess: (1) nonlinearity, (2) progressive decomposability, and (3) dependence

on the error sequence. The question of continuity in performance criteria is a

larger topic and will be addressed separately in the next section.

7.2.1 Nonlinearity

All non-trivial performance criteria are nonlinear in both arguments.

A performance criterion is trivial if it does not depend on the optimizer, i.e.

φ (G, f) = φ(f), or if it only depends on the first element of the error sequence,

i.e. φ (G, f) = EGf [g (E1 (Z))] for some g.

For a given objective function, the location and nature of the optima

are nonlinear qualities. The location of the global optimum for f + g bears

no general relationship to the location of the optimum for g or f . The error

sequence has Ef+g
n (z) 6= Ef

n(z)+Eg
n(z) for most non-constant f, g. Thus for any
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useful performance criterion φ, including the ones defined above, one expects

that φ(G, f + g) 6= φ(G, f) +φ(G, g) in general. Trivial parameter assignments,

such as, for example, wn = 0 for φw, are ignored here and elsewhere.

Performance criteria are also nonlinear in optimizers as well. For an

n-dimensional cylinder set A restricting the first n coordinates of Z, the prob-

ability that A contains Z for an optimizer G + H is given by

(G + H)f (Z ∈ A) =

∫
A1

· · ·
n

∫
An

n∏
i=1

G + H
[
(Zm)i−1m=1 , f

]
(dxi) . (7.12)

It is thus clear that (G + H)f 6= Gf + Hf except under special circumstances

because of the cross terms under the product. In general, φ(G + H, f) 6=

φ(G, f) + φ(H, f).

The nonlinearity of most performance criteria has an important con-

sequence: It opens the possibility that a convex combination over a bank of

one-step optimizers may outperform any of the given optimizers. Chapter 8

will present some experimental evidence supporting this possibility, and the

topic will be discussed further in Chapter 10.

7.2.2 Progressive Decomposability

Theorems 6.4.2 and 6.4.4 proved that the expected value of a random

variable on the optimization process changes continuously with the objective

if the value of the random variable is determined by a finite number of op-

timizer steps. A progressively decomposable performance criterion can be

broken down into an infinite sum of finitely determined random variables.
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Definition 7.2.1. A performance criterion φ is progressively decomposable if

there exists a sequence of functions hm : Xm × RX → R such that

φ (G, f) =
∞∑
m=1

EGf [hm ((Zn)mn=1, f)] , (7.13)

where (Zn)mn=1 is the vector in Rm formed by taking the first m elements of the

optimization process.

Progressive decomposability means that a performance criterion can be

analyzed as the sum of infinitely many performance criteria that each depend

on the state of the optimizer up to a fixed time step. This fact is used to

prove that performance criteria are continuous in certain cases. Perhaps sur-

prisingly, all of the performance criteria presented thus far are progressively

decomposable.

Proposition 7.2.1. The performance criterion φw is progressively decompos-

able.

Proof. Because all terms are positive, Tonelli’s theorem implies that

φw (G, f) =
∞∑
m=1

wmEGf |f (Z∗m)− f ∗| , (7.14)

which is progressively decomposable with hm(z, f) = wm |f(z∗m)− f ∗|.

Proposition 7.2.2. The performance criteria ψε and ψNε are progressively

decomposable.
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Proof. Rewriting the expected value,

ψε (G, f) =
∞∑
m=1

Gf (|f(Z∗m)− f ∗| ≥ ε) , (7.15)

which follows from Gf (|f(Z∗m)− f ∗| ≥ ε) = Gf ({τε > m}). Then

Gf (|f(Z∗m)− f ∗| ≥ ε) = EGf

[
1(ε,∞) (E∗n)

]
, (7.16)

which concludes the proof for ψε with hm(z, f) = 1(ε,∞)(f(z∗m) − f ∗). The

result follows for ψNε by setting hm(z, f) = 0 for m > N .

Proposition 7.2.3. The performance criterion ζT is progressively decompos-

able.

Proof. Without loss of generality, let f ∗ = 0. The functional ζT can be rewrit-

ten as follows:

ζT (G, f) = EGf [f (Z∗τ )]

=
∞∑
m=1

EGf [f(Z∗τ ) | T = m]Gf ({T = m})

=
∞∑
m=1

EGf

[
f(Z∗m)1{T=m}(Z)

]
. (7.17)

The final line follows because (1) Gf ({T = m}) = EGf [1{T=m}], and (2) {T =

m} and f(Z∗m) are both Zm-measurable, since T is a stopping time. The result

follows with hm(z, f) = f(z∗m)1{t:T (t)=m}(z). Notice that the stopping time T

may depend on f without violating this result.

Proposition 7.2.4. The performance criteria σε and σNε are progressively

decomposable.
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Proof. It is possible to rewrite σε as

σε(G, f) =
∞∑
m=1

Gf ({τε = m}) =
∞∑
m=1

EGf

[
1{τε=m}

]
. (7.18)

Since τε is a stopping time, {τε = m} is Zm-measurable. Let Bε ⊆ Rm be given

by Bf
ε = {x ∈ Rm : |f(xm) − f ∗| ≤ ε and |f(xk) − f ∗| > ε ∀k < m}. Then

hm(z, f) = 1Bfε (z) makes σε progressively decomposable. Letting hm = 0 for

m ≥ N proves that σNε is progressively decomposable as well.

In fact, it is simple to prove that every performance criterion is pro-

gressively decomposable by conditioning on the natural filtration of the op-

timization process, Zm. The propositions above are still useful because they

specify the decompositions hm.

Theorem 7.2.5. Every performance criterion as defined in Definition 7.1.2

is progressively decomposable.

Proof. Given h(z, f), let h1(z, f) = EGf [h(Z, f) | Z1] and define

hm(z, f) = EGf [h(Z, f) | Zm]− EGf [h(Z, f) | Zm−1]. (7.19)

Notice that EGf [h1(Z, f)] = φ(G, f), and for m > 1, EGf [hm(Z, f)] = 0. As a

result,

φ(G, f) = EGf [h(Z, f)] =
∞∑
m=1

EGf [hm(zm1 , f)] (7.20)

A more restrictive property is additive decomposability, when the per-

formance criterion is a linear combination of the minimal error sequence.
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Definition 7.2.2. A performance criterion φ is additively decomposable to

the minimal error sequence, or just additively decomposable, if φ(G, f) =∑∞
m=1wmEGf [f(Z∗)− f(x∗)] for some sequence (wm) of nonnegative real num-

bers.

Of the performance criteria presented in the last section, only φT and

ζTm are additively decomposable. Additively decomposable performance cri-

teria induce a weaker version of No Free Lunch, introduced in Chapter 9.

7.2.3 Dependence on the Error Sequence

The performance criteria specified above all have the property that

they depend primarily on the error sequence. This quality is captured by the

following definition.

Definition 7.2.3. A performance criterion φ is solely dependent on the er-

ror sequence if there is a function h̃ : [0,∞) → [0,∞) such that φ(G, f) =

EGf [h̃(Ef (Z))].

The performance criteria φw, ψε, and σε above are solely dependent

on the error sequence, which can be verified by inspecting their definitions.

Performance criteria that are based on stopping times, such as ζT and φT are

not solely dependent on the error sequence in general, because the value of the

stopping time may change based on factors other than the error, such as the

evaluation cost along a particular trajectory.
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As mentioned above, it can be important to ignore repeated evalua-

tion points when analyzing optimizer performance. A performance criterion is

uniquely dependent on the error sequence if it depends only on the evaluation

of unique points. This property can be determined by using the unique stoping

sequence (Tm) from Section 7.1.4, which yields the index of the mth unique

point of the optimization process. The unique stopping sequence can be used

to pick out the errors at unique points.

Definition 7.2.4. Given the error sequence Ef (z) = (Ef
n(z))n∈N, the unique

error sequence is the subsequence of Ef (z) determined by the unique stopping

sequence (Ef
Tm

(z))m∈N.

Definition 7.2.5. A performance criterion φ(G, f) = EGf [h(Z, f)] is uniquely

dependent on the error sequence, or just uniquely dependent, if h depends only

on the unique error sequence, i.e. h(z, f) = h̃
((
Ef
Tm

)
m∈N

)
. Also, φ is finitely

uniquely dependent if h depends only on a prefix of the unique error sequence

of fixed, finite length.

Of the performance criteria above, only σε, ζTm , and φTm are uniquely

dependent on the error sequence in general. The criterion φw obviously has

one term for each point including the repeated points. The criteria ψε and ψNε

compute the hitting time without excluding repeated points. The finite success

probability σNε is not uniquely dependent even though σε is because it includes

repeated points to determine when N evaluations have been performed.
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Each of the criteria that are not uniquely dependent can be replaced

by a similar criterion that is uniquely dependent by making simple alterations.

For example, the expected hitting time can be modified to ψ̃ε = EGf [τε−Rτε(Z)]

where Rm(z) is the number of repeated points in z up to the mth component.

The unique average error φTm is a uniquely dependent variant of φw, and σTNε

is uniquely dependent as well.

Performance criteria that are finitely uniquely dependent and additively

decomposable induce weak No Free Lunch theorems such as Theorem 9.3.8

under appropriate conditions, as will be seen in Chapter 9. Of the above crite-

ria, ζTm and φTm are finitely uniquely dependent and additively decomposable

whenever Tm <∞.

7.3 Continuity of Performance

Continuous performance criteria are of interest because a continuous

performance criterion must score an optimizer similarly on similar objective

functions. The primary tools to prove the continuity of performance criteria

are Theorems 6.4.2 and 6.4.4.

A performance criterion can be continuous or discontinuous in either

argument. In accordance with the terminology adopted thus far, a perfor-

mance criterion is continuous in objectives if small changes to the objective

result in small changes to the performance. The criterion is continuous in opti-

mizers if small changes to the optimizer do not greatly affect the performance.

Continuity in objectives is examined first.
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7.3.1 Continuity In Objectives

Continuity in objectives is a strong requirement, and it will not be

possible to achieve it for all sequences of objectives. In this section, something

slightly weaker will be proven. Given any sequence fn such that fn → f

uniformly,1 it will be shown that φ(G, fn) → φ(G, f) if G is continuous Gf -

a.s. The following general theorem proves that φ(G, fn) → φ(G, f) when the

progressive decompositions of φ converge in expectation under Gf along a

pointwise convergent sequence fn. It will then be shown that this type of

convergence follows from dependence on the error sequence when fn → f

uniformly.

Theorem 7.3.1. Suppose φ is a performance criterion and G ∈ MF is con-

tinuous Gf -a.s. in objectives. Let (fn)n∈N be a sequence of functions converg-

ing pointwise to f . Suppose additionally that there exist functions hm de-

composing φ as in Equation 7.13 with the property that EGf [hm(Zm
1 , fn)] →

EGf [hm(Zm
1 , f)]. Then φ(G, fn)→ φ(G, f).

Proof. First suppose φ (G, f) < ∞ and φ (G, fn) < ∞ for all n. Fix ε > 0.

Let fn → f . Suppose without loss of generality that f ∗n = f ∗ = 0, since

otherwise the function f−f ∗ and the sequence fn−f ∗n will satisfy this equality.

Theorem 7.2.5 implies that φ is progressively decomposable and so

φ (G, f) =
∞∑
m=1

EGf [hm(Z, f)] . (7.21)

1That is, for any ε > 0 there is an N such that |fn(x)− f(x)| < ε for n > N , and N does
not depend on x.
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Let km(x) = hm(x, f) and km,n(x) = hm(x, fn) and note km,n → km in expec-

tation under Gf by the assumptions on hm. The conditions for Theorem 6.4.2

are met for each term E [km(Zm
1 )] since km,n is finitely determined and G is

continuous. Thus for appropriate N < ∞ and n large, the finiteness of the

integrals implies that

|φ (G, f)− φ (G, fn)| <
ε

2
+

N∑
m=1

|EGf [km (Zm
1 )]− EGfn [km,n (Zm

1 )]|

≤ ε

2
+

N∑
m=1

EGf |km (Zm
1 )− km,n (Zm

1 )|

+
N∑
m=1

|EGf [km,n (Zm
1 )]− EGfn [km,n (Zm

1 )]|

<
ε

2
+
ε

2
= ε (7.22)

and therefore φ (G, fn)→ φ (G, f).

Next, suppose φ(G, f) = ∞. It must be shown that φ (G, fn) → ∞ as

well. Fix 0 < M <∞. There is an N <∞ such that

φ (G, f) ≥
N∑
m=1

EGf [hm(Zm
1 , f)] > M. (7.23)

Since the sum is finite,

N∑
m=1

EGf [hm(Zm
1 , f)] = EGf

[
N∑
m=1

hm(Zm
1 , f)

]
> M. (7.24)

The integrand
∑N

m=1 hm (Zm
1 ) is finitely determined. By Theorem 6.4.2,

EGfn

[
N∑
m=1

hm(Zm
1 , f)

]
→ EGf

[
N∑
m=1

hm(Zm
1 , f)

]
. (7.25)
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Therefore, because hm converges in mean along fn,

EGfn

[
N∑
m=1

hm(Zm
1 , fn)

]
> EGfn

[
N∑
m=1

hm(Zm
1 , f)

]
− ε

2
> M − ε (7.26)

for all n sufficiently large. Letting ε→ 0,

EGfn

[
N∑
m=1

hm(Zm
1 , fn)

]
≥M (7.27)

The lower bound M was arbitrary and hm is positive, so φ (G, fn)→∞.

Finally, suppose that φ(G, fn) → ∞. It must be shown that φ(G, f) =

∞. Fix 0 < M < ∞. There is a number K such that φ(G, fn) > M for all

n > K. For all n > K, there is a number N0 = N0(n) such that

φ (G, fn) ≥
N0(n)∑
m=1

EGfn [hm(Zm
1 , fn)] > M. (7.28)

It is impossible that N0(n)→∞, because this would imply limn φ(G, fn) ≤M .

Thus N0(n) is bounded. Let N be this bound. Then for all n large,

N∑
m=1

EGfn [hm(Zm
1 , fn)] > M. (7.29)

Applying Theorem 6.4.2 again,

EGfn

[
N∑
m=1

hm(Zm
1 , fn)

]
→ EGf

[
N∑
m=1

hm(Zm
1 , fn)

]
. (7.30)

The convergence of hm along fn implies

EGf

[
N∑
m=1

hm(Zm
1 , f)

]
> EGf

[
N∑
m=1

hm(Zm
1 , fn)

]
− ε

2
> M − ε (7.31)

for all n sufficiently large. By taking the limit as ε→ 0, φ(G, f) =∞.
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Corollary 7.3.2. If fn → f uniformly and G is continuous Gf -a.s. in objec-

tives, then φw (G, fn)→ φw (G, f).

Proof. Suppose without loss of generality that f ∗ = 0 and f ∗n = 0. The result

will hold if EGf [hm(Zm
1 , fn)] → EGf [hm(Zm

1 , f)]. For φw, hm(z, f) = wmf(z∗m)

under the assumptions. Because fn → f uniformly, it follows that hm(z, fn)→

hm(z, f) uniformly, which proves that EGf [hm(Zm
1 , fn)] → EGf [hm(Zm

1 , f)].

The desired result follows from Theorem 7.3.1.

The functional ζT is also continuous under the same conditions, provided that

the stopping time T does not introduce discontinuities.

Corollary 7.3.3. Suppose G ∈ MF is continuous Gf -a.s. in objectives, and

let T = Tf (z) be a stopping time such that Tfn(z)→ Tf (z) uniformly on a set

of full Gf -measure whenever fn → f uniformly. Then ζT (G, fn)→ ζT (G, f).

Proof. For ζT , hm(z, f) = f(z∗m)1{t:Tf (t)=m}(z). Because the stopping times are

discrete, there is an N independent of z such that Tfn(z) = Tf (z) Gf -a.s. for

all n > N . Because fn → f uniformly, hm(z, fn) → hm(z, f) uniformly, and

therefore EGf [hm(Zm
1 , fn)] → EGf [hm(Zm

1 , f)]. The result follows by applying

Theorem 7.3.1.

Corollary 7.3.3 begs the question of when T varies uniformly with the

objective f . Importantly, the unique stopping times Tm are independent of

the objective and therefore satisfy the assumptions of the corollary. Thus the

criteria given by ζTm converge on uniform sequences of objectives.
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As another example, for a stopping time that limits the number of

CPU cycles used, it seems reasonable to assume that in most cases the required

number of cycles would change continuously with the objective function. There

are, of course, limiting cases. For example, consider the functions

fn(x) = n−1 exp(−x) sin(nx)

on the interval (0, 1). Then fn → 0, and the zero function is trivial to compute

whereas each fn requires approximately the same time to compute on most

computers. One may expect discontinuities at constant functions. In practice,

however, most of the variation in computational time is due to the choice of

optimization method rather than to small changes in the fitness function.

The performance criteria ψε, ψ
N
ε , σε, and σNε require more stringent

criteria in order to prove convergence, because there exist sequences of objec-

tives fn → f such that fn − f ∗n > ε while f − f ∗ = ε. As a simple example

of discontinuity, let fn(x) = f(x) = 0 on (0, 1), and let fn(x) = ε + n−1 and

f(x) = ε on [1, 2). Let G be uniform over (0, 2). Then fn → f uniformly, but

ψε (G, f) = 1 and ψε (G, fn) =
∑∞

n=1 n2−n = 2. The discontinuity is caused

by objectives with plateaus located at a distance of precisely ε away from the

optimum. This problem does not arise if the trajectories with error ε have Gf

measure zero.

Corollary 7.3.4. Let fn → f uniformly, and let G ∈MF be an optimizer that

is continuous Gf -a.s. Suppose that the set

Zε = {z ∈ XN : |f(xm)− f ∗| = ε for some m}
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has Gf -measure zero. Then φ(G, fn) → φ(G, f) when φ is one of ψε, ψ
N
ε , σε,

or σNε .

Proof. On the set XN \ Zε, it is not possible to have f(z∗m) − f ∗ = ε. Thus

fn(z∗m) − f ∗n must eventually be on the same side of ε as f(z∗m) − f ∗. The

progressive decomposition of ψε is hm(z, f) = 1(ε,∞)(f(z∗m)− f ∗). On XN \Zε,

hm(z, fn) = hm(z, f) for all n > N with N independent of z. The progressive

decomposition of σε is hm(z, f) = 1Bfε (z) with

Bf
ε = {x ∈ Rm : |f(xm)− f ∗| ≤ ε and |f(xk)− f ∗| > ε ∀k < m}.

Once again, hm(z, fn) = hm(z, f) for all n > N on XN \ Zε. Thus in either

case, EGf [hm(Zm
1 , fn)] → EGf [hm(Zm

1 , f)] because Gf (Zε) = 0, and the result

follows from Theorem 7.3.1.

So whenever G is continuous Gf -a.s. and fn → f uniformly, it follows

that φ(G, fn)→ φ(G, f) for the specific performance criteria introduced above.

7.3.2 Continuity in Optimizers

Performance criteria are continuous in optimizers everywhere, without

any of the complications that arose analyzing continuity in objectives. The

following theorem is analogous to Theorem 7.3.1 but with much weaker as-

sumptions.

Theorem 7.3.5. Every performance criterion φ is continuous over optimizers

over all MF.
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Proof. Let φ be a performance criterion. By Theorem 7.2.5, φ is progressively

decomposable. Let Gn → G in MF. Suppose without loss of generality that

f ∗n = f ∗ = 0.

First, let φ(G, f) < ∞ and φ(Gn, f) < ∞. Fix ε > 0. The finiteness

and progressive decomposability of φ imply that there exists an N <∞ such

that

φ (G, f) <
ε

2
+

N∑
n=1

E [hm(Zm
1 , f)] . (7.32)

But now the result follows directly from Theorem 6.4.4. Setting N large,

|φ (Gn, f)− φ (G, f)| <
ε

2
+

N∑
m=1

|EGnf [hm (Zm
1 , f)]− EGf [hm (Zm

1 , f)]|

<
ε

2
+
ε

2
= ε (7.33)

and therefore φ (Gn, f)→ φ (G, f).

Next suppose that φ(G, f) =∞. It must be shown that φ(Gn, f)→∞

as well. Fix 0 < M <∞. Then there is an N <∞ such that

φ (G, f) ≥
N∑
m=1

EGf [hm(Zm
1 , f)] = EGf

[
N∑
m=1

hm(Zm
1 , f)

]
> M. (7.34)

The integrand
∑N

m=1 hm (Zm
1 ) is finitely determined. By Theorem 6.4.4,

EGnf

[
N∑
m=1

hm(Zm
1 , f)

]
→ EGf

[
N∑
m=1

hm(Zm
1 , f)

]
. (7.35)

It follows that for n large,

EGnf

[
N∑
m=1

hm(Zm
1 , f)

]
> M (7.36)
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The lower bound M was arbitrary and hm is positive, so φ (Gn, f)→∞.

Finally, suppose that φ(Gn, f)→∞. It must be shown that φ(G, f) =

∞. Fix 0 < M < ∞. There is a number K such that φ(Gn, f) > M for all

n > K. For all n > K, there is a number N0 = N0(n) such that

φ (Gn, f) ≥
N0(n)∑
m=1

EGnf [hm(Zm
1 , f)] > M. (7.37)

It is impossible that N0(n)→∞, because this would imply limn φ(G, fn) ≤M .

Thus N0(n) is bounded. Let N be this bound. Then for all n large,

N∑
m=1

EGnf [hm(Zm
1 , f)] > M. (7.38)

Applying Theorem 6.4.4 again,

EGnf

[
N∑
m=1

hm(Zm
1 , f)

]
→ EGf

[
N∑
m=1

hm(Zm
1 , f)

]
. (7.39)

Taking the limit in Equation 7.38,

EGf

[
N∑
m=1

hm(Zm
1 , f)

]
≥M (7.40)

Therefore, φ(G, f) =∞.

Theorem 7.3.5 proves that every performance criterion is continuous

in optimizers everywhere. Thus performance always changes smoothly as one

moves from one optimizer to another along a line through MF. Similar opti-

mizers perform similarly on the same objective.
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7.3.3 Sample Convergence and Performance Continuity

The concept of sample convergence was introduced in Chapter 5 (Defi-

nition 5.3.2). In that chapter, sample convergence was used to determine when

certain optimizer convolutions are continuous. However, some optimizers are

sample convergent when considered as a whole. For instance, Newton and

quasi-Newton methods are sample convergent on continuously differentiable

objectives, and Nelder-Mead is sample convergent on trajectories of unam-

bivalent fitness (Definition 5.3.4). The next theorem shows that optimizers

that are sample convergent Gf -a.s. induce convergence of the performance cri-

terion on under the same conditions as Theorem 7.3.1.

Theorem 7.3.6. Suppose φ is a performance criterion and G ∈MF is sample

convergent Gf -a.s. in objectives. Let (fn)n∈N be a sequence of functions con-

verging pointwise to f . Suppose additionally that the functions hm in Equa-

tion 7.13 are continuous in both arguments everywhere.

Proof. First, assume φ(G, f) <∞ and φ(G, fn) <∞ for all n. It follows from

Theorem 7.2.5 that φ is progressively decomposable. Suppose without loss of

generality that f ∗n = f ∗ = 0. Fix ε > 0. By the sample convergence of G,

the first m steps of the optimization process can only generate finitely many

distinct trajectories. So there is a set of trajectories T fm that is finite in size

such that Gf ({Zm
1 ∈ Tm}) = Gf (X

N). Furthermore, there is a similar set T fnm

for each n, and these two sets may be enumerated so that T fn,im → T f,im for

each i. By the definition of sample convergence, Gfn({T fn,im }) → Gf ({T f,im })
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for each i since all of the trajectories are of fixed finite length. Because T fm

and T f,im have full measure under Gf and Gfn , it follows from the progressive

decomposability of φ that

φ (G, f) =
∞∑
m=1

∑
t∈T fm

hm(t, f)Gf ({Zm
1 = t}), (7.41)

and similarly for φ (G, fn).

As in the proof of Theorem 7.3.1, let km(x) = hm(x, f) and km,n(x) =

hm(x, fn) and note km,n → km pointwise by the assumptions on hm. Because

all of the sums are finite, for large n

|φ (G, f)− φ (G, fn)| ≤
∞∑
m=1

∣∣∣∣∣∑
i

km(T f,im )Gf ({T f,im })− km,n(T fn,im )Gfn({T fn,im })

∣∣∣∣∣
≤

∞∑
m=1

∑
i

∣∣km(T f,im )− km,n(T fn,im )
∣∣Gf ({T f,im })

+
∞∑
m=1

∑
i

km,n(T fn,im )
∣∣Gf ({T f,im })− Gfn({T fn,im })

∣∣(7.42)

Also, because T fn,im → T f,im , it follows that

∣∣km(T f,im )− km,n(T fn,im )
∣∣ ≤ ∣∣km(T f,im )− km,n(T f,im )

∣∣+
∣∣km,n(T f,im )− km,n(T fn,im )

∣∣
→ 0 (7.43)

The sums on the right side of Equation 7.42 are finite, so there exists an
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N <∞ such that for all n sufficiently large

|φ (G, f)− φ (G, fn)| <
ε

3
+

N∑
m=1

∑
i

∣∣km(T f,im )− km,n(T fn,im )
∣∣Gf ({T f,im })

+
N∑
m=1

∑
i

km,n(T fn,im )
∣∣Gf ({T f,im })− Gfn({T fn,im })

∣∣
<

ε

3
+

N∑
m=1

∑
i

ε

3NM
+

N∑
m=1

∑
i

ε

3NM

≤ ε, (7.44)

where M = maxm≤N |T fm|. Therefore φ (G, fn)→ φ (G, f).

If φ(G, f) =∞, then for each M <∞ there is an N such that

φ (G, f) ≥
N∑
m=1

∑
t∈T fm

hm(t, f)Gf ({Zm
1 = t}) > M, (7.45)

and the sample convergence of G is sufficient to imply that each term under

the same sum for φ(G, fn) converges to the term in the equation above. As a

result, for any ε > 0

φ (G, fn) ≥
N∑
m=1

∑
t∈T fnm

hm(t, fn)Gf ({Zm
1 = t}) > M − ε, (7.46)

similar to Equation 7.26 in Theorem 7.3.1. Taking the limit as ε goes to zero

and observing that M is arbitrary together imply that φ(G, fn)→∞.

The final case, φ(G, fn) → ∞ =⇒ φ(G, f) = ∞, can be proven by

extending the final case in the proof of Theorem 7.3.1 in analogy with the

prior paragraph.
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Theorem 7.3.6 is stronger than Theorem 7.3.1 because it proves that

most performance criteria are continuous in objectives without requiring the

objective to converge uniformly. In particular, each of the corollaries in Sec-

tion 7.3.1 has an analogue for sample convergent optimizers that is the same in

all respects, except that the sequence fn only needs to converge to f pointwise

rather than uniformly.

Since the vast majority of optimizers are either sample convergent or

almost surely continuous on most objectives, Theorems 7.3.6 and 7.3.1 together

imply that standard measures of performance are generally continuous on all

optimizers and most objectives.

7.4 Conclusion

This chapter introduced a flexible framework for analyzing performance

criteria for optimizers. Specific categories of performance criteria were pre-

sented, most of which correspond to the experimental quantities that are com-

monly reported in the literature. All performance criteria were shown to be

progressively decomposable into sums of finite expectations, and this fact was

leveraged to prove that most performance criteria are continuous subject to

certain conditions.

Up to this point, the properties of performance criteria have been dis-

cussed in the abstract, but the value of these performance criteria can also be

measured experimentally, which is done next in Chapter 8. The experiments

in that chapter will demonstrate concretely the features of the performance
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criteria introduced in this chapter, including continuity and convergence. More

specifically, they demonstrate that in practical terms, certain optimizers ap-

pear to perform better than others on problems of interest using the perfor-

mance criteria defined here.

After that experimental interlude, Chapter 9 will study the important

theoretical question of whether some optimizers are better than others, prov-

ing for the first time the exact conditions under which all optimizers have

equivalent performance. These proofs will rely heavily on the unique stop-

ping sequence and the concept of unique dependence on the error sequence.

The implication of the No Free Lunch Identification Theorem 9.3.7 is that

performance is only equivalent in settings where learning is impossible.
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Chapter 8

Performance Experiments

Several performance criteria were defined and analyzed in Chapter 7.

This chapter reports the results of experiments run to estimate the values of

these performance criteria on a bank of standard optimizers and objectives.

The complete results are provided for reference in tabular form in Appendix A.

They are summarized and discussed below. In addition, the theoretical con-

tinuity of performance criteria is illustrated through several examples. The

final section of the chapter applies principal components analysis to the ex-

perimental performance values in order to visualize the position of the standard

optimizer set in the space of long-running optimizers.

8.1 Experimental Setup

Experiments were performed in real-vector space on a set of twelve stan-

dard benchmarks. The search space was X = Rd with the topology induced

by the standard Euclidean metric, d(x, y) =
∑d

i=1 |xi − yi|2. The benchmarks

were optimized within a benchmark-specific hypercube Q ⊆ Rd, and feasibil-

ity regions were used to prevent the optimizers from escaping the constraints.

That is, for each benchmark f , the experiment was performed with an altered
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objective f̃ given by

f̃(x) =

{
f(x) x ∈ Qf

∞ otherwise
, (8.1)

where Qf is the hypercube constraining f .

8.1.1 Benchmarks

The twelve benchmarks are defined in Table 8.1. These benchmarks

are commonly used to test global optimizers. They cover a broad cross-section

of possible objective functions, including objectives that are convex, multi-

modal, periodic, differentiable, nowhere differentiable, deceptive, and irregu-

larly shaped. All of the optimizers tested were continuous and bounded. The

definitions and descriptions of these benchmarks can be found in the literature

[2, 7, 24, 56, 139, 212]. Notably, two versions of Ackley’s function exist; both are

included in the comparisons. The less common one is termed log-ackley and is

due to [2]. The more common version of the benchmark is exponentiated and

centered and is simply termed ackley.

Each benchmark was tested in five, ten, and 25 dimensions (d = 5, 10, 25),

except that shekel and langerman were tested in five and ten dimensions only

(since they are not defined in 25 dimensions). The feasible region for each

benchmark was a bounded hypercube with the range for each component

shown in the table. The minima for these functions are known, as shown

in Table 8.1 for five dimensions with precision up to 10−4. The actual values

are known up to machine-level precision (10−16), and these more accurate
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values were used for testing the accuracy of the experiments. Heat maps of

the eleven benchmarks with d = 2 are shown in Figure 8.1.

8.1.2 Algorithms

The performance of nine algorithms was measured. These algorithms

were (1) conjugate gradient descent (CG), (2) Nelder-Mead (NM), (3) a gener-

ating set search (GSS), (4) simulated annealing (SA), (5) a real-coded genetic

algorithm (rGA), (6) an evolution strategy (CMA-ES), (7) differential evo-

lution (DE), (8) particle swarm optimization (PSO), and (9) the real-coded

Bayesian Optimization Algorithm (rBOA). As discussed in Chapter 2, these

algorithms cover a broad spectrum of stochastic optimization algorithms and

represent a general sampling of the current state of the art. They are known

to be effective on a wide array of fitness functions and most of them perform

reasonably well on the selected benchmarks. For all of the algorithms, pa-

rameters were set according to the literature where available and hand-tuned

otherwise to optimize performance.

Conjugate gradient descent with estimated gradients was tested using

the publicly available fmin cg implementation from the SciPy package with

its defaults. The Nelder-Mead algorithm was described in Section 2.4.1 and

was implemented in the standard form. GSS was based on the direct search

algorithm described in Section 2.4.2 using the positive spanning set of size

d+ 1 and no search heuristic.

Simulated annealing was run as a single chain with a logarithmic cool-
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ing schedule (Section 2.5.1). It was restarted randomly with probability 0.001

after each point. The rGA method was a standard real-coded genetic algo-

rithm using linear ranking selection with pressure 1.8, uniform crossover, and

Gaussian mutation (Equation 4.21). The mutation variance for rGA was set

to 0.05 for all problems except schwefel and griewank, where it was set to 10.

CMA-ES is the Correlated Matrix Adaption algorithm of Hansen and

Ostermeier (Section 2.7.3) and was tested with four different population sizes:

100, 750, 1250, and 2500 [84] . At each generation, 50% of the population was

used to build an updated normal distribution.

DE [198] was trained with four different parameter settings, one each

with crossover rates 0.2 and 0.9 and learning rates 0.2 and 0.9 (Section 2.7.1).

PSO [62] was trained with both the global and local adaptation rates set to

2.0 (Section 4.3.1). The velocity decay was tested with two different values,

−0.5 and 1.0, following results by Pedersen [153] on optimal parameter set-

tings for PSO. The rBOA method is an Estimation of Distribution Algorithm

(EDA), a class of optimizers introduced in Section 2.7.2. It was implemented

as described by Ahn et al. in [3].

Many optimizers converge quickly to a local optimum, and restarting an

optimizer can be an effective strategy to bootstrap its performance. To demon-

strate this idea, CG, NM, GSS, and CMA-ES were restarted on convergence

to improve performance. Results of this nature have been reported previously

in the literature for CMA-ES [13]. The restarted versions are referred to as

CG-R, NM-R, GSS-R, and CMA-ES-R, respectively. Other methods could
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also benefit from restarting, but these four methods should benefit most, since

they converge quickly.

All algorithms were run on all benchmarks 200 times for each tested

parameter setting. These 200 runs are sufficient to guarantee statistical signif-

icance on the estimated success rates σNε for each algorithm at the 95% level

within ±0.5% [204]. The variance on other performance criteria was large, but

not deleteriously so (see Figures 8.8 and 8.9 for visual examples and the tables

in Appendix A for exact numbers). When a single number is shown as the re-

sult of an experiment, that number represents the best value achieved on any

parameter setting for that algorithm, unless otherwise stated. Experiments

with different parameters are shown separately in Appendix A.

8.1.3 Scaling Factors

The experimental results contain estimates of the error of each algo-

rithm on the benchmarks. The performance criteria ζT and φw are computed

from this error. Because the magnitude of the error depends on the inter-

nal scaling of each objective function, comparisons across benchmarks are

not numerically meaningful without scaling. For example, by multiplying the

scaled error values in Table A.15 by the scaling factors in Table A.1, it would

seem that rGA has its worst performance on schwefel out of all the bench-

marks. However, comparing the performance of all optimizers on schwefel,

rGA does better than all but three other optimizers, two of which benefitted

from restarts. Thus scaling is necessary.
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Figure 8.1: Heat maps for the twelve benchmark functions in two dimensions
(d = 2). The benchmarks whitley and griewank are scaled to show the critical
region. These benchmarks include unimodal, multimodal, periodic, irregu-
lar, and discontinuous functions, resulting in a broad test of an optimizer’s
capabilities 249



Scaling factors were computed by estimating the performance of ran-

dom search on each benchmark. To this end, 10, 000 points were sampled

uniformly from the bounding cube for each benchmark objective, and the

minimum error from the optimum was recorded. This procedure was repeated

100 times and the results were averaged. The scaling factors computed in this

way were only computed once for each dimension and were reused throughout

dissertation. They are listed for each benchmark in Table A.1.

The scaling factors used in these experiments reveal the ratio of each

algorithms performance to the performance of random search. There are other

ways that scaling could have been accomplished. For example, the norm of

each objective could have been estimated as the scaling factor, but it is not

always easy to obtain a practical estimate of ||f ||. More importantly, the

objective was not assumed to be integrable, although each one of these bench-

marks can be integrated on the search domain. Since random search is a

suitable comparison point for analyzing optimizer performance, the scaling

factors that were used are meaningful and do make it possible to compare the

performance of a single optimizer across several benchmarks.

8.2 Experimental Results

Figures 8.2 to 8.6 provide a visualization of the performance criteria

introduced in Section 7.1 for the benchmarks in five dimensions; the complete

experimental results are given in Appendix A. The performance criteria in

the figures group the evaluations into virtual populations of 100 each so that
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the experiment contains 2, 500 successive populations. Population-based opti-

mizers with larger populations and optimizers that do not use populations are

thus compared in the same setting.

Figure 8.2 displays a scaled instance of φw with weights w100n = 1
2500

for 10 ≤ n ≤ 2500 and zero otherwise. That is,

φ1 (G, f) =
1

sf

1

2490

2500∑
n=10

EGf [f(Z∗100n)− f ∗] , (8.2)

where sf is the objective-specific scaling factor from Table A.1. The initial

factor of 1
2490

was used to scale the magnitude of the sum, and the sum was

started at n = 10 in order to ignore the initial error of the first 1, 000 evalu-

ations. This bar chart provides a sense of how different optimizers compare

to each other on each objective. DE, CMA-ES, CMA-ES-R, GSS-R, and NM-

R perform best on this criterion. As expected, CG and even CG-R perform

poorly overall on this benchmark set.

Figure 8.3 displays another scaled instance of φw, this time with expo-

nential decay,

φ2 (G, f) =
1

sf

2500∑
n=10

1

2n−10
EGf [f(Z∗100n)− f ∗] . (8.3)

Once again, the sum was started after 1, 000 evaluations to avoid early errors.

Unlike φ1, φ2 places higher emphasis on early errors. Thus by comparing

Figure 8.3 with Figure 8.2 it is possible to obtain a sense of the convergence

speed of each optimizer on the benchmarks. The values of φ2 are larger than φ1

for most optimizers, reflecting the earlier errors. Importantly, this effect is less
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pronounced in CMA-ES, GSS, and NM, which converge faster than the other

algorithms. The term “converge” here is intended to mean “cease to propose

substantially new evaluation points” rather than “converge to an optimum”,

although it is known that each of the algorithms mentioned do converge to a

local optimum. The restarted versions of these three algorithms do perform

worse when using φ2 rather than φ1 because restarting lowers the average error

substantially in later evaluations, which are less important under φ2.

The scaled values for ζT250,000 , the minimum global error at the 250, 000th

unique evaluation, are shown in Figure 8.4. Whereas φ1 and φ2 give the

average error under different weightings, ζT250,000 gives the error at the final

evaluation. In Rm, non-unique points have measure zero under the selected

optimizers, so T250,000 = 250, 000 on these experiments. The criterion ζT gives

little information about the speed of convergence but is useful for comparing

the absolute performance of different optimizers on a fixed objective. In Fig-

ure 8.4, DE is most reliable algorithm, with CMA-ES not far behind. This

conclusion can also be drawn from the results for φ1, but is less clear. In

φ2, the fast-converging optimizers appear preferable – especially CMA-ES and

GSS. Restarting improves performance, with CMA-ES-R, GSS-R, NM-R, and

CG-R all performing well on ζT . On ζT , at least, DE still appears preferable

to the restarted optimizers.

Comparing the different criteria reveals a tradeoff between solution

quality and convergence speed. DE achieves solution quality by exploring

the space more thoroughly. CMA-ES provides slightly worse solution qual-
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Figure 8.2: Performance values for selected optimizers on the twelve bench-
marks using the performance criterion φ1, which averages global error over
250, 000 evaluations, starting after 10, 000 evaluations. Lower values are bet-
ter. DE, CMA-ES, CMA-ES-R, GSS-R, and NM-R perform best on this per-
formance criterion.

253



SA

rGA

rBOA

PSO

DE
CMAES

GSS

NM
CMAES-R

GSS-R

NM-R

CG-R

CG

sphere

ackley

log-ackley
whitley

shekel

rosenbrock
rastrigin

salomon

langerman

schwefel

griewank

weierstrass 0

1

2

Figure 8.3: Performance values for selected optimizers on the twelve bench-
marks using the performance criterion φ2, which sums global error with an
exponential decay over 250, 000 evaluations, starting after 10, 000 evaluations.
Lower values are better. Unlike φ1, φ2 counts earlier errors more heavily, and
thus prefers optimizers that converge faster, such as NM, GSS, and CMA-ES.
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ity in much faster time. The restarted algorithms also converge slower but

achieve higher quality. The desired tradeoff can be achieved to some extent

by choosing the appropriate algorithm.

The average hitting time ψNε represents the convergence time directly.

This performance criterion is displayed with ε = 0.01 and N = 250, 000 in

Figure 8.5, scaled to represent the number of virtual populations of size 100

before the hitting time. The values are noisy and generally quite large due to

the high variability of this criterion. Overall, it is difficult to draw conclusions

from Figure 8.5, and the success-only hitting time ψ̂Nε is preferable. Since only

a percentage of the trial runs hit the error threshold, each average includes

a substantial number of copies of the maximum, N . Consistently low values

are only achieved when the optimizer converges on almost every run, as PSO

does on weierstrass. The criteria ψNε , ψ̂Nε , and σNε are somewhat sensitive to

the scaling of the objective function, but their values have a much more con-

sistent meaning when comparing the performance of an optimizer on different

objectives, so scaling was not applied to the error threshold.

A clearer picture of the convergence speed is given by Figure 8.6, which

shows the criterion ψ̂Nε from Equation 7.8 with the same parameters. This

criterion lacks the high variability of ψNε . Optimizers that universally failed

to attain the error target are shown with values of 2, 500 in Figure 8.6. This

figure shows that CG, CMA-ES, GSS, NM, and rBOA are the optimizers with

the fastest convergence speeds, although each of them fail on some subset of

the benchmarks. Restarting, which improves performance on ζT , predictably
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Figure 8.4: Performance values for selected optimizers on the twelve bench-
marks using the performance criterion ζT250,000 , which reports the minimum
global error after 250, 000 unique evaluations. Lower values are better. Be-
cause it does not sum over multiple time steps, ζT communicates little infor-
mation about the convergence rate. DE performs best among the optimizers,
with CMA-ES close behind. Restarting improves performance with enough
evaluations, and so CMA-ES-R, GSS-R, NM-R, and CG-R each perform well.
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Figure 8.5: Performance values for selected optimizers on the twelve bench-
marks using the performance criterion 1

100
ψNε with ε = 0.01 and N = 250, 000.

This criterion records the average number of evaluations before the minimum
global error drops below ε, capped at a maximum of N . Lower values are
better. Scale as shown runs from zero to 2, 500 and represents the number
of generations until the hitting time with a notional population size of 100.
Because many trial runs fail on these benchmarks, the numbers are typically
high, and often near 2, 500. Very low values, as seen for sphere, indicate fast
convergence. In general, the success-only hitting time ψ̂Nε is more preferable
than ψNε for measuring performance.
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weakens performance on ψ̂Nε .

The success probability σNε complements the values of ψ̂Nε . It is shown

in Figure 8.7. Unlike in the other figures, higher values of σNε indicate higher

probability of success and thus larger bars are better. Figure 8.7 shows which

optimizers are the most reliable overall. The restarted optimizers have the

highest success probabilities, with some lapses. Among the optimizers that do

not restart, DE and CMA-ES are the most reliable and consistent at reaching

the error target, with CMA-ES appearing preferable in this figure. Comparing

with the values for ζT in Figure 8.4, it can be surmised that when DE fails

to reach the error target ε, it still attains a local minimum close in value

to the true global minimum, whereas CMA-ES makes larger errors when the

error target is not attained. Thus, the performance criteria that use hitting

times ignore catastrophic failures in favor of frequent successes, and CMA-ES

appears more reliable than DE in this regard.

Overall, the choice of performance criterion should reflect the prefer-

ences of the practitioner, balancing tradeoffs of convergence speed, solution

quality, and consistency. If both solution quality and speed are important,

then the pair (ψ̂Nε , σ
N
ε ) is a good choice. In this case, the three restarted algo-

rithms performed best on the benchmarks. If solution quality and consistency

are paramount but speed is less of a concern, then ζT is the best choice. To

balance convergence speed as well, φ1 can be used. In either case, DE ap-

pears to be the most reliable non-restarted optimizer. Its performance could

be further bootstrapped by restarting as well. The value of restarting appears
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Figure 8.6: Performance values for selected optimizers on the twelve bench-
marks using the performance criterion 1

100
ψ̂Nε with ε = 0.01 and N = 250, 000

(see Equation 7.8). This criterion records the average number of evaluations
before the minimum global error drops below ε on trial runs where this error is
attained. If the error threshold is never attained, the value is set at N . Lower
values are better. Scale as shown runs from zero to 2, 500 and represents the
number of generations until the hitting time with a notional population size
of 100. These values give a clear picture of the relative convergence speed of
various optimizers. For example, on successful trials, CMA-ES, GSS, and NM
converge very quickly, whereas DE converges, but more slowly.
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Figure 8.7: Performance values for selected optimizers on the twelve bench-
marks using the performance criterion σNε with ε = 0.01 and N = 250, 000.
This criterion computes the probability of attaining global error within ε of the
true optimum. Values run from zero to one; higher values are better. Overall,
CMA-ES (especially CMA-ES-R) performs best on this performance criterion.
DE, GSS-R, and NM-R also perform well on different objectives.
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as a constant theme through these experiments. This topic is discussed more

thoroughly in the next section.

8.3 Restarting to Bootstrap Performance

The restarted algorithms were undeniably the best performers out of all

the optimizers on nearly every performance criterion and benchmark. Given

that high number of evaluations performed (250, 000), it is perhaps not sur-

prising that restarting would have a beneficial effect. Most of the optimizers

tested tend to converge quickly to a small region of the search space, which

they then sample in increasing detail. This convergence is faster in lower di-

mensions, as can be seen from the tables in Appendix A. In 25 dimensions, the

restarted optimizers are less distinguishable from their non-restarted versions.

The reason is that in higher dimensions, the optimizers converge more slowly,

and thus are restarted less often. If the experiments were run for substantially

more evaluations, then the beneficial effect of restarting might reappear even

in higher dimensions.

It is not necessary to wait for convergence to restart an optimizer, and

there may be a benefit to restarting after a fixed number of evaluations. To ob-

serve the effect mathematically, suppose an optimizer has a success probability

of σ25000
ε = 0.05 on a particular objective after 25, 000 evaluations. If the opti-

mizer is restarted every 25, 000 evaluations, then after 250, 000, the optimizer

will have been run 10 times, and its success probability can be calculated. This

value may be computed recursively as the sum of pn = pn−1 + (1− pn−1)× p1
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for 1 ≤ n ≤ 10 with p1 = 0.05. In this case, σ250000
ε = 0.40. If the same success

probability can be achieved with 10, 000 evaluations, then σ250000
ε = 0.72 will

be reached. In this way, fast but infrequent convergence can be parlayed into

reliable but potentially slow convergence. There is always a tradeoff between

speed and quality, but it is possible to improve both with effective restarts.

8.4 Illustrating Continuity of Performance

In Chapter 7, substantial effort was expended to demonstrate the conti-

nuity of performance criteria as optimizers and objectives are changed. These

results suggested that simplified approximations to an optimizer or an objec-

tive can be used to predict the performance of a similar but more complex

optimizer. This result is both practical and important, and it is worthwhile

to demonstrate such continuity graphically. This section includes results that

illustrate three facts proven in the Chapter 7. First, the performance of contin-

uous or sample convergent algorithms changes continuously with the objective.

Second, the performance of similar optimizers is similar on the same problems.

Third, when the conditions of the theorems in Chapter 7 are not met, discon-

tinuities may be encountered.

8.4.1 Continuity in Objectives

In Section 7.3.1, it was proven that φ(G, fn)→ φ(G, f) if fn → f subject

to certain conditions. This section looks at how the performance changes for

a fixed optimizer as the objective changes. For this purpose, the benchmark
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objectives shekel and langerman were convexly combined to form a line in

objective space given by

fα(x) = α langerman(x) + (1− α) shekel(x). (8.4)

The optimizer NM-R was run for 200 trials on a range of objectives fα with

α = 0.0, 0.05, 0.10, . . . , 0.95, 1.0. The results are shown for different perfor-

mance criteria in Figure 8.8. In these experiments, it is difficult to know the

minimum f ∗α exactly, and so the best observed value on any trial was taken

as the minimum. As long as the true success probability is positive for one of

the two optimizers, it is reasonable to estimate the minimum in this way.

As Figure 8.8 shows, the performance changes smoothly as α runs from

zero to one on four different performance criteria: φ1, ζT , ψ̂Nε , and σNε . Lines

indicating the first standard deviation are shown, with the performance value

in bold. The variance cannot be computed from these experiments for σNε , but

should be less than 0.005 with high probability. Referring to Figure 8.7, it can

be seen that NM-R succeeds frequently on shekel but rarely on langerman.

The smooth and nonlinear transition in performance values as α runs from

zero to one is expected, since NM-R is sample convergent Gf -a.s. on objectives

without plateaus. In this situation, Theorem 7.3.6 implies

φ(NM− R, fαn)→ φ(NM− R, fα)

whenever αn → α. The experiments are thus in line with the theory.
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(d) σNε (NM-R, fα), α ∈ (0, 1)

Figure 8.8: Change in performance by NM-R as the objective changes
smoothly from langerman (α = 0) to shekel (α = 1). The x-axis ranges over
values of α, the y-axis over performance values. The first standard deviation
is also plotted on either side of the performance where possible. Panels show
the performance criteria φ1, ζT , ψ̂Nε , and σNε , respectively. As predicted by the
theory, performance on these optimizers changes smoothly and nonlinearly as
a function of the objective.
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8.4.2 Continuity in Optimizers

In Section 7.3.2, it was shown that performance criteria are continuous

as the optimizer changes. To demonstrate this fact, the one-step optimizers

for DE and PSO were convexly combined to generate a line in optimizer space,

given by

Gα[t, f ] = αPSO<−.5, 2, 2, 100> [t, f ] + (1− α)DErand<.2, .2, 100> [t, f ],

(8.5)

recalling PSO from Equation 4.37 and DE from Equation 4.43. The optimizer

Gα was tested with 200 trials on schwefel for α = 0.0, 0.05, 0.10, . . . , 0.95, 1.0.

PSO outperforms DE on schwefel in general.

Figure 8.9 shows the performance of Gα on schwefel for various values

of α. Once again, the change in performance is smooth but non-linear, as

predicted by the theory. The most interesting aspect is that although perfor-

mance initially worsens for α in (0, 0.15], it then improves consistently until

α = 0.95. In Figure 8.9(b), it can be seen that at α = 0.95, Gα outperforms

both PSO and DE, although the result is statistically insignificant. Given that

PSO is significantly better than DE on schwefel for most of the performance

criteria, it is surprising that the best values of α are closer to DE rather than

PSO. Convex combinations of optimizers were proposed as part of the formal

analysis in Chapter 3, and the theory developed in Chapter 7 predicted convex

combinations might outperform pure algorithms. The result of this experiment

provides further evidence to support this claim. This discovery reinforces the

value of the formal approach adopted in this dissertation.
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(c) ψ̂Nε (Gα, schwefel), α ∈ (0, 1)
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(d) σNε (Gα, schwefel), α ∈ (0, 1)

Figure 8.9: Change in performance as the optimizer changes smoothly from
PSO with ω = −.5, φg = φp = 2 (α = 0) to DE with CR=.2, F=.2 (α = 1).
The x-axis ranges over values of α, the y-axis over performance values. The
first standard deviation is also plotted on either side of the performance where
possible. The panels show the performance criteria φ1, ζT , ψ̂Nε , and σNε , respec-
tively, with ε = 25 for schwefel. As predicted by the theory, performance on
these optimizers changes smoothly and nonlinearly as a function of the opti-
mizer. Interestingly, at α = .95, Gα outperforms PSO and DE on ζT , although
the result is not statistically significant. Convex combinations of algorithms
were formally proposed in this dissertation, and Section 7.2.1 suggested that
convex combinations may outperform pure algorithms. This example vali-
dates this conjecture and confirms the value of the formal approach in this
dissertation.
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As mentioned, the fact that the best performance occurs for α other

than zero or one confirms the conjecture in Section 7.2.1 that convex combi-

nations of existing optimizers may outperform the optimizers being combined.

Consequently, the problem of convex control of optimizers is worthy of further

study. The problem of convex control may be stated as follows: given a bank

of optimizers G1, . . . ,GN , an objective f , and a performance criterion φ, find

the convex combination α̂ ∈ RN that minimizes φ(Gα, f), where Gα =
∑

i αiGi.

This topic is discussed again briefly in Chapter 14.

8.4.3 An Example of Discontinuity

The proofs of continuity in Section 7.3.1 contained several conditions

that must be met to guarantee continuity. It was stated that discontinuities

can be expected at functions with substantial plateaus. There are two reasons

that support this claim. First, functions with plateaus induce trajectories of

ambiguous fitness that cause several specific optimizers to be discontinuous on

sets of positive Gf -measure. Second, functions with plateaus can introduce

discontinuities in the hitting time even for optimizers that are continuous

everywhere.

To demonstrate the discontinuities that occur as the objective passes

through a continuous function, a new objective on Rd was created, triangle,

defined on (−30, 30)d by

triangle(x) = min
i

[
1− 1

30
|xi|
]
. (8.6)
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This objective function is a d-dimensional simplex with height 1 and base

width 60. A range of objectives was then defined by tα(x) = α triangle(x)

for α = −0.1,−0.09,−0.08, . . . , 0.09, 0.1. When α < 0, the minimal values

of tα(x) occur at 0. When α > 0, the minimal values of tα are around the

boundary of the space. When α = 0, every point has minimal value. Thus as

α passes through zero, the minimal points shift discontinuously.

Figure 8.10 shows the values of the performance criteria φ1, ζ, ψ̂Nε ,

and σNε as α runs from −0.1 to 0.1 for two optimizers in 25 dimensions. The

two optimizers were (1) DE and (2) a real-coded genetic algorithms with pro-

portional selection, uniform crossover, and gaussian mutation, named rGA-2

to distinguish it from rGA, which used ranking selection. DE is potentially

discontinuous when α = 0, but rGA-2 is continuous on all of C[R25], which

includes tα for all values of α. The objective t0 fails the requirements of

Corollary 7.3.4, and so the performance of ψ̂Nε and σNε each have a potential

discontinuity at α = 0, which is realized for DE in ψ̂Nε and σNε for DE and is

visible in Figures 8.10(f) and 8.10(h). For these graphs, ε was set at 0.0001.

The objective t0 fails the requirements of Corollary 7.3.4, and so the

performance of ψ̂Nε and σNε each have a discontinuity at α = 0 on DE (right

panels) but not on rGA-2 (left panels). The plots are interpolated, but careful

inspection of Figure 8.10(g) shows that σNε descends below 1 to the right of zero

(it is still equal to 1 at α = 0.01), whereas Figure 8.10(h) jumps discontinuously

from 1 to 0 between α = 0 and α = 0.01.

The hitting time for DE drops to zero as α approaches zero from the
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Figure 8.10: Change in performance of rGA-2 and DE for zero-centered prisms
of different heights in 25 dimensions, measured on tα from Equation ?? for 21
values of α evenly spaced in the interval [−0.1, 0.1]. The x-axis ranges over
values of α, the y-axis over performance values. Panels in the left column
show the performance of rGA-2, and panels in the right column show the
performance of DE. The rows show the performance criteria φ1, ζT , ψ̂Nε , and
σNε , respectively. DE has a discontinuity at t0.
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left, and the success probability is constant at one. From the right, the hitting

time is fixed at N = 250, 000, and the success probability is zero. The graphs

for DE appear left continuous, but jump discontinuously to the right of zero.

As noted above, the plots are interpolated. At α = 0.01, DE immediately

has ψ̂Nε > 100 versus values of ψ̂Nε < 50 on the left. In contrast, the value

of ψ̂Nε for rGA-2 also descends to zero from the left, but on the right it still

has ψ̂Nε relatively small at α = 0.01. Notice that φ1 and ζ are continuous for

both optimizers despite the discontinuity in ψ̂Nε and σNε due to Corollaries 7.3.2

and 7.3.3. Once again, theoretical inquiry correctly predicted potentially useful

information about the performance of the optimizers.

8.5 Principal Components Analysis

Chapter 3 emphasized that the space of optimizers is a vector space with

well-defined notions of distance between any two optimizers. In this section,

a simple visualization of the space will be given for the optimizers that were

included in the experiments. This visualization relies on the fact that there

is a performance-based duality between optimizers and objective functions.

This duality will be formally explored in Section 10.2. In essence, the results

that will be presented in that section indicate that for a given performance

criterion φ, the average performance against an objective function under φ

forms a line through the vector space of long-running optimizers introduced

in Chapter 6. The set of all possible distributions over objective functions

induces an uncountable linear basis over optimizer space dependent on φ. The
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performance of an optimizer on a particular objective is thus a projection onto

one of the components of this basis.

This property of optimizers was studied in the context of genetic al-

gorithms by Ashlock [10]. They developed a set of test optimizers by vary-

ing the crossover rules of a genetic algorithm. The resulting optimizers were

then run on an array of benchmarks. For a given crossover rule, the tuple(
ψ̂Nε , σ

N
ε ,Var(τε)

)
was recorded for each benchmark. The set of all tuples for

each crossover rule was treated as a signature of the crossover rule unique to

it. The system of Ashlock et al. works because of the duality described in the

prior paragraph, but its effectiveness is not limited to genetic algorithms. It

can also be applied to any performance criterion.

To demonstrate the results of such a characterization visually, the per-

formance of each of the optimizers tested was used to create an array of perfor-

mance values for each of the performance criteria φ1, ζT , ψ̂ε, and σNε . Principal

components analysis (PCA) was used to project the performance into a three-

dimensional space. PCA requires a square matrix, and there were thirteen

algorithms and twelve benchmarks. To make a square matrix, the values for

CG were excluded, so that the values for each performance criterion consti-

tuted an 12 × 12 matrix. For the performance criteria φ1, the influence of

CG-R on PCA was so strong that it skewed the visualization, and so PCA was

performed without for this performance criteria, leaving an 11× 11 matrix.

Principal components analysis (PCA) was applied to this matrix to

create a 12-dimensional basis projection such that the earlier components have
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larger eigenvalues. For φ1, the first three components found by PCA had an

average range of 5.64. The remaining eight components had an average range

of 1.39, so that the first three components do capture a substantial amount

of the variation; results for other performance criteria were similar. These

components were plotted in a three-dimensional scatterplot in Figures 8.11–

8.13.

Reviewing the results for φ1, the first PCA component separates NM

(x = −5) from PSO (x = −2.5) and the rest (x ∈ (0, 2)). The second PCA

component separates rBOA, GSS, SA, and rGA (y < 0) from the restarted

optimizers, NM, DE, and CMA-ES (y > 0). The third component separates

PSO (z = −3) from the rest (z > −1). More generally, for φ1, (1) the

restarted optimizers other than CG-R group together, (2) CMA-ES and DE

are relatively close to each other and are closest to the restarted optimizers,

and (3) SA and rGA generally appear together.

When CG-R is included for φ1, then the first PCA component has a

range of 10.75, as opposed to a range of 6.35 without it. Additionally, CG-R is

located at −9.27 on this scale, whereas the other 11 algorithms fall between 0

and 1.45. Thus φ1 strongly separates CG-R from the other algorithms, match-

ing the intuition that gradient-based methods should behave in a noticeably

different manner than gradient-free methods. If both CG and CG-R are in-

cluded, with rBOA omitted, then a similar separation occurs, except that the

first component separates CG and CG-R from the other methods, and the

second component separates CG from CG-R. These distinctions are shown in
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(a) First three PCA components of optimizers in the φ1 basis, without CG-R

(b) First three PCA components of optimizers in the ζT basis

Figure 8.11: PCA plots for the test algorithms on the benchmarks. These
plots show the proximity between various optimizers based on their perfor-
mance on φ1 and ζT . The resulting layout of optimizers reveals interesting
new relationships among the algorithms.
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Figure 8.12: The first three PCA components in the φ1 basis, with CG and
CG-R included. The first component separates conjugate gradient descent
from the other methods, and the second component separates the restarted
version from the non-restarted version. This plot shows that CG and CG-R
are indeed distinct from the other methods in terms of performance on φ1.
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Figure 8.12.

The salient features for ζT resemble those for φ1, without the disrup-

tive influence of CG-R. The first component also isolates NM (x = 6.5) from

the other methods (x < 3). The second component isolates PSO (y = 4),

and the third component separates the restarted algorithms (except CG-R),

CMA-ES, and DE (z = −1.5) from the others (z > 0). Once again, DE and

CMA-ES are close both to each other and to the restarted optimizers. Also,

SA and rGA are near to each other. CG-R does not cluster with the other

restarted optimizers, in part because it performs worse than the others on ζT ,

particularly on problems like log-ackley and weierstrass.

As might be expected, ψ̂Nε separates optimizers first based on the con-

vergence speed. NM, GSS, CMA-ES, and all the restarted optimizers have

x > 0, while DE has x = 0 and the other algorithms have x < 0. The third

component has CG-R at one end (z = −3) and quasi-evolutionary methods

except rBOA at the other (z = 1), with direct search methods clustered to-

gether at the center (z ∈ (−1, 0)). Interestingly, this projection places the

restarted version of optimizers close to the version without restarts in each

case. Notably, SA and rGA are still relatively nearby for ψ̂Nε .

As for σNε , the first component separates the all of the restarted op-

timizers off from the rest. The second component places NM-R on the far

negative side (y = −3) and SA on the other extreme (y = 2), with the rest

distributed evenly. The third component separates CG-R (z = 4) from the

others (z < 2). SA and rGA are still close together, and DE is as close to
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(a) First three PCA components of optimizers in the ψ̂Nε basis

(b) First three PCA components of optimizers in the σNε basis

Figure 8.13: PCA plots for eleven algorithms on eleven benchmarks. These
plots show the proximity between various optimizers based on their perfor-
mance on ψ̂Nε and σNε . The resulting layout of optimizers reveals interesting
new relationships among the algorithms.
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CMA-ES as it is to any other algorithm.

The graphs in Figures 8.11–8.13 thus demonstrate that the formal anal-

ysis of optimizers and their performance can enable new ways of looking at the

relationships between optimizers. The picture that emerges provides insights

that are not predicted by the origins of these optimizers. For example, sim-

ulated annealing and genetic algorithms are close in all of the graphs above.

Even though such a result is unintuitive, it is substantiated by two theoretical

observations: Theorem 4.2.3, which states that the (1+1)–ES is the norm-limit

of simulated annealing, and the discussion of Expected Proportional Selection

in Section 11.1.3. Thus theoretical inquiry is a useful tool for uncovering the

connections between different optimizers.

8.6 Conclusion

The experiments in this chapter substantiated the theoretical analysis

of performance undertaken in Chapter 7. These results demonstrate how theo-

retical analysis can suggest the existence new phenomena that can be observed

experimentally. The formal approach adopted in this text makes it possible to

compare algorithms using novel techniques that yield unforeseen insights, as

when convex combinations were shown to outperform pure algorithms in some

cases.

In earlier sections of this chapter, certain optimizers were shown to

outperform others on the benchmarks. For example, the restarted algorithms,

DE, and CMA-ES collectively perform much better than PSO, rGA, rBOA,
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SA, GSS, and NM. To the extent that such claims are restricted to the ex-

periments performed, they cannot be disputed. But how will these optimizers

perform on practical objectives on which they have not previously been tested?

The next chapter extends the No Free Lunch theorems to infinite-dimensional

search domains in order to answer this question: In any domain where learn-

ing is possible, there are always some optimizers that are better than others.

What is observed experimentally in this chapter is thus proven theoretically

in the next.
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Chapter 9

No Free Lunch Does Not Prevent General

Optimization

As was discussed in Chapter 2, a large number of heuristic optimiza-

tion methods have been developed that attempt to locate the optimum of an

arbitrary objective function automatically using only the sequence of objective

values along an iterative path. Which of these optimizers is the best was a

substantial focus of experimental and theoretical research for several decades.

Then, in 1995, Wolpert and Macready published the first of the No Free Lunch

(NFL) Theorems, proving that all non-repeating optimizers perform equiva-

lently when averaged over all problems in a finite space [217]. Gradually, the

assumptions and conclusions of NFL have been explored more thoroughly, and

its overall impact has turned out to be much less destructive than was origi-

nally thought. In this chapter, the history is first reviewed, and then NFL is

adapted to the formal setting introduced in the previous chapters. It is shown

that NFL still applies in arbitrary measure spaces, and the exact conditions

that lead to NFL are articulated and proven. These conditions generally make

learning impossible, which is an absurd assumption for real-world problems.

Thus general real-world problems cannot be subject to NFL.
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9.1 Overview of No Free Lunch

The NFL theorems were first discovered by Wolpert and Macready in

the context of search. Their 1995 paper concluded that all search heuristics pay

for good performance on some datasets by performing poorly on other datasets,

with average search quality over all datasets being constant in general [217].

In the same year, Radcliffe and Surrey applied Wolpert and Macready meth-

ods to obtain a similar result for optimization [162]. Two years later, Wolpert

and Macready’s published a proof that the average probability of obtaining

a particular trajectory of objective values is independent of the optimizer se-

lected. Since that time, a number of refinements and extensions have been

produced [12, 48, 59, 60, 100, 171, 180, 181]. The relevant history is reviewed in

this section.

9.1.1 NFL Basics

Wolpert and Macready treated an optimization algorithm as a deter-

ministic function a : T[X × Y ]→ X on a finite search space X with objective

values in a finite, strictly ordered set Y [218]. An algorithm a is non-repeating

if a(t) = x implies that x /∈ t. Using their notation, they proved the following

theorem:

Theorem 9.1.1 (No Free Lunch – Wolpert and Macready, 1997). For any

two iterative optimizers a1 and a2 that are non-repeating and all m ≤ |X|,

∑
f

P(dym | f,m, a1) =
∑
f

P(dym | f,m, a2), (9.1)
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where dym ∈ T[Y ] is a sequence of objective values of length m, and f ranges

over the function space Y X .

The definition of an algorithm used by Wolpert and Macready is iso-

morphic to the set DF ∩ Otr with Y ⊂ R, where DF is the set of deter-

ministic algorithms defined in Section 5.2 and Otr is the set of trajectory-

restricted optimizers from Chapter 3. The isomorphism is given explicitly

by A[t, f ](dx) = δa(t,f(t))(x) where f(t) ∈ T[R] is the trajectory formed by

evaluations of t, i.e. f(t)i = f(ti).

As Wolpert and Macready observed, it can easily be seen that the NFL

Theorem applies to stochastic optimizers just as much as to deterministic

ones by observing that X and Y are finite and taking a weighted sum over the

possible algorithm outputs on either side of Equation 9.1 [218]. As a result,

NFL applies to all of Otr for finite search domains. The requirement that

the set Y be finite and ordered means that Y can always be embedded into

R. Based on these observations, the NFL Theorem can be restated using the

notation developed in Chapter 6.

Theorem 9.1.2 (No Free Lunch – Restated). Let G,G′ ∈ Otr be non-repeating

almost surely, and let X be finite. Let Y ⊆ R be finite as well, and let F = Y X

be the space of functions on X restricted to the finite set Y . Then for all

m ≤ |X| and all y ∈ T[Y ],

∑
f∈F

Gf ({x : f(xm1 ) = y}) =
∑
f∈F

G′f ({x : f(xm1 ) = y}). (9.2)
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The plain meaning of this theorem is that no optimizer performs better

than any other. The probability of attaining any level of performance on

average is a constant independent of the algorithm used. As will be seen,

NFL holds because the function space Y X is incompressible. Observing the

objective value at any point provides no information about the objective value

at any other point. That is, NFL makes learning impossible.

The NFL Theorem above has three main limitations. First, it assumes

that all functions are equally likely. Second, it only applies to finite spaces.

Third, it only applies to algorithms that do not repeat points. The next few

sections address the first two points in order. The third limitation will be

relaxed in Section 9.3.

9.1.2 Function Priors and Closure Under Permutation

In order to provide the context for generalizing their result, Wolpert

and Macready stated a more general equality,

∑
f

P(dym | f,m, a1)P(f) =
∑
f

P(dym | f,m, a2)P(f), (9.3)

in which a weighted sum replaces the average, with a prior distribution over

functions P(f). If P(f) = 1/|Y X |, then Equation 9.1 is recovered. They

conjectured at the time that the general equality would hold for many if not

most function priors, particularly priors that place positive probability on a

large number of functions. In retrospect, this claim was too expansive. The

equality holds only for very few function priors that satisfy strict conditions.
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The first result in this direction was obtained by Igel and Toussaint in

2004 [100]. Radcliffe and Surrey had previously proven an NFL theorem by

using permutations on the search space [162]. A permutation π : X → X can

be applied to an objective f to obtain a new objective f ◦ π that shuffles the

inputs. A set of functions F ⊆ Y X is closed under permutation (c.u.p.) if for

any permutation π, f ∈ F implies that f ◦ π ∈ F. The uniform distribution

over any c.u.p. set of functions is subject to NFL.

Theorem 9.1.3 (Sharpened NFL – Igel and Toussaint, 2004). Suppose F ⊆

Y X is c.u.p. for X and Y finite. Then for any two optimizers G,G′ ∈ Otr that

are almost surely non-repeating, for all m ≤ |X| and all y ∈ T[Y ],

∑
f∈F

Gf ({x : f(xm1 ) = y}) =
∑
f∈F

G′f ({x : f(xm1 ) = y}). (9.4)

Igel and Toussaint also asked how many c.u.p. subsets of Y X exist.

They proved that the percentage of subsets of Y X that are c.u.p. is exactly

2

 |X|+ |Y | − 1
|Y |


− 1

2(|Y ||X|) − 1
. (9.5)

This fraction vanishes double exponentially fast as |X| and |Y | increase. The

obvious conclusion is that function priors subject to NFL are extraordinarily

rare.

In some ways, the fact that NFL is rare does not make it less impor-

tant. One of the main conclusions of NFL is that an optimizer’s success on

an optimization task depends on how well the optimizer is aligned with the
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class of problems likely to appear under P(f). Wolpert and Macready charac-

terized this alignment with a loose statement of duality. The sums in Equa-

tion 9.4 may be regarded as the dot product of two vectors of size |Y X |, one for

P(dym | f,m, a1) and one for P(f). In this view, the performance of an opti-

mizer is projected onto the function prior. An optimizer will perform better

on function priors with which it is well-aligned. The paucity of NFL priors

strengthens this interpretation by proving that opportunities for such align-

ment do occur. This perspective also holds in the infinite-dimensional setting

and will be made rigorous in Section 10.2.

On the other hand, the sets of functions that are not c.u.p. can be

quite large and general. The fact that an optimizer can be well-aligned with

a very general set of functions weakens the claim that all optimizers perform

equivalently, especially since closure under permutation seems to be an unrea-

sonable assumption for any practical class of problems. This line of thought

will pursued further below, where P(f) is allowed to be non-uniform and fully

general.

9.1.3 Infinite Extensions of NFL

More recently, NFL has been extended to infinite spaces in different

ways. Rowe et al. [171] used set-theoretic arguments based on permutations

to show that an NFL property holds in spaces of arbitrary cardinality. Specif-

ically, they show that every non-repeating optimizer has equivalent perfor-

mance on any c.u.p. subset of functions in Y X for X,Y of arbitrary cardinality.
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Their result generalizes NFL to infinite dimensions, but only in the case of

uniform priors.

Auger and Teytaud extended NFL to countably and uncountably infi-

nite domains using a measure-theoretic approach [12]. They introduced several

variants and generalizations of NFL, including one based on a random fitness

function. A random fitness function is defined as a random field over the search

domain X, that is, a random variable that takes on values in RX . A random

fitness F has the property GNFL if for any m ≤ |X| and any G,G′ ∈ Otr

that are almost surely non-repeating, the two sets of random variables given

by
(
F (ZG

1 ), . . . , F (ZG
m)
)

and
(
F (ZG′

1 ), . . . , F (ZG′
m )
)

are identically distributed.

The meaning of these symbols will be made more rigorous in the next section,

where GNFL corresponds to the strong NFL property.

With this definition, Auger and Teytaud proved that there exists a ran-

dom fitness that possesses the GNFL property whenever the search domain

is countably infinite. They also attempted to prove that there is no random

fitness that has the GNFL property when |X| = |R| and concluded as a conse-

quence that NFL does not apply to uncountable spaces. Unfortunately, their

proof contains a fatal error, which it will be necessary to explain here. Auger

and Teytaud correctly demonstrated that if the GNFL property holds for a

random fitness F , then for any finite sequence (x1, . . . , xm) ⊆ X, the random

variables F (x1), . . . , F (xm) must be independent and identically distributed.

This result holds and will be proven again in this chapter.

A theorem was presented stating that NFL cannot hold for any function
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prior when the search domain is R, and that continuous lunches are therefore

free. The claim was based on the assumption that NFL requires uncountable

projections of a random fitness to be mutually independent, including pro-

jections onto uncountably many coordinates. Contradicting this assumption,

NFL in fact only requires that the finite-dimensional projections of a random

fitness be mutually independent, as is proven below. It will also be shown in

in Theorem 10.4.1 that a random fitness subject to NFL always exists.

This mistake is easy to make. However, it is incorrect to consider un-

countable collections of variables in this context, because the σ-algebra B[RX ]

is not rich enough to support such a conclusion. Even in the limit, cylinder

sets can restrict at most countably many points. In an uncountable domain,

there is a gap between any two points in a countable subset. Intuitively, this

gap is big enough for a random function to forget where it came from, so that

any countable collection of variables {F (xi)}i∈N can be independent, even if

the random functions are continuous with probability one.

A rigorous approach to these issues follows in the next section.

9.2 NFL Preliminaries

The NFL theorems contain general statements about the average per-

formance of all optimizers on all objective functions. To support such a broad

claim, further theoretical structure and definitions are needed. In this section,

the concept of a random objective and its function prior are defined. In ad-

dition, two variants of the NFL property are defined. Strong NFL indicates
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that the sequence of objective evaluations must be identically distributed un-

der the function prior for any pair of optimizers. Weak NFL requires that all

optimizers have the same average performance on some performance criterion.

Finally, the properties of function priors are defined that can be used to state

necessary and sufficient conditions for the NFL properties to hold.

9.2.1 Function Priors and Random Objectives

In the last section, the idea of a function prior P(f) was introduced

as a probability measure ranging over objective functions. These function

priors also correspond to the concept of a random test procedure described

in Chapter 1. Suitable measures of this kind can be constructed by using

the same technique that was used to construct the optimization process in

Section 6.1.

Definition 9.2.1. A function prior is a probability measure defined on the

measurable space
(
RX ,B[RX ]

)
, where B[RX ] is the smallest σ-algebra con-

taining the cylinder sets on Rd for arbitrary d.

To define a function prior, it is sufficient to define a consistent family of

finite-dimensional distributions, as in Definition 6.1.1 and the following text.

Then, the Kolmogorov Extension Theorem guarantees the existence of the

function prior exists as a measure on
(
RX ,B[RX ]

)
[50, 112, 113].

In order to support the duality result in Section 10.2, it is necessary

to expand the concept of a function prior to include arbitrary finite signed
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measures on
(
RX ,B[RX ]

)
; such a prior will be termed a generalized function

prior when the distinction is important. The space of all generalized function

priors will be denoted by M[RX ] following the notation of Chapter 3. The

space M[RX ] is a Banach space under the norm || · ||M.

Consider the random variable F (ω, x) on ω ∈ RX defined by the coor-

dinate mapping, i.e., F (ω, x) = ω(x). Then F is a random objective, or equiva-

lently, a random fitness function. The notation F (x) = F (ω, x) will refer to the

random variable taking values on R. The random variable F ∗ = infx∈X F (x)

is the minimal value of F . The function prior corresponds to a distribution for

F , and will be written as PF , so that PF (A) = P(F ∈ A) for any A ∈ B[RX ].

An expectation taken with respect to PF is written EPF [·].

When considering theorems that pertain to optimization, it is not fea-

sible to include arbitrary function priors. The minimum of a function prior

may not be integrable, in which case the minimization task will not be defined

for a set of functions with positive measure. Function priors will be termed

admissible if EPF [F ∗] exists. For an admissible function prior, it also holds that

PF ({F ∗ > −∞}) = 1. The set of admissible priors is closed under the vector

operations of M[RX ], and therefore the set of generalized admissible function

priors is a vector subspace, denoted by Ma[RX ]. From this point forward, all

function priors discussed in this text are assumed to be admissible.

The NFL properties can now be defined for function priors.
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9.2.2 NFL Priors

As mentioned, the NFL theorems imply that under certain conditions,

no optimizer outperforms any other optimizer when averaged uniformly over

all fitness functions. The original theorems actually state that the trajectory

of objective evaluations is independent of the choice of algorithm on average.

In this chapter, NFL will be defined with respect to the unique stopping

sequence (Tm)m∈N of Section 7.1.4. Recall that Tm = Tm(z) is a stopping time

indicating the index in an optimization sequence z at which m unique points

have been evaluated. The uniquely stopped optimization process (ZTm)m≤|X|

contains no repeated points if Tm < ∞. This stopped sequence will be used

to replace the original NFL requirement that an optimizer should not repeat

points. Thus the NFL results presented here apply in general to all algorithms

that eventually propose new points by ignoring the repetitions. In addition,

the NFL properties will be defined for arbitrary optimizer subsets X ⊆ PF,

although they will only be proven initially for Otr.

First, a strong criterion for NFL is stated with respect to the distri-

bution of the evaluation process. Given an optimizer G ∈ PF, the evaluation

process is the sequence of objective values given by
(
F (ZG

T1
), . . . , F (ZG

Tm
)
)
. To

satisfy the strong version NFL, the evaluation processes of all optimizers that

eventually produce unique points must be identically distributed.

Definition 9.2.2. A random objective F or its function prior PF is strongly

NFL on a set of optimizers X ⊆ PF if for any m ≤ |X| and for any two opti-
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mizers G,G′ ∈ X such that Tm <∞ both Gf -a.s. and G′f -a.s.,
(
F (ZG

T1
), . . . , F (ZG

Tm
)
)

and
(
F (ZG′

T1
), . . . , F (ZG′

Tm
)
)

are identically distributed on (Rm,B[Rm]).

The strong NFL property is equivalent to the GNFL property of Auger

and Teytaud [12]. It requires that the first m experimental objective values

produced by the unique optimization trajectory of any two algorithms share

the same distribution whenever the optimizers eventually produce at least m

unique points.

At this stage, it is important to consider the nature of the distribution of(
F (ZG

T1
), . . . , F (ZG

Tm
)
)
, since this distribution must be handled formally in later

proofs. This distribution is a joint distribution, since F (Zm) depends on the

value of Zm, and Zm may depend on the value of F . For arbitrary optimizers

in PF, F must be sampled first, and Z may then be generated iteratively. In

special cases, however, both F and Z may be sampled iteratively.

In the case of trajectory-restricted optimizers, X = Otr, both Z and F

may be sampled iteratively. First, ZT1 is generated, then F (ZT1), then ZT2 and

F (ZT2), and so on. This procedure is possible because the optimizer depends

only on the objective evaluations and nothing else. Sampling up to ZTm thus

requires observing F at exactly m points. The distribution may be written

down. As a first step, note that T1 = 1, and so

P (F (ZT1) ∈ dy1) =

∫
X

PF (F (z1) ∈ y1)G[∅, 0](dz1). (9.6)

In this equation, G[∅, 0] is used instead of G[∅, F ] to indicate that G is inde-

pendent of F for the first step, since G is trajectory-restricted.
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In order to expand the above result to Tm, it is necessary to integrate

over the possible values of Tm. Recalling the set Hn of stopping trajectories

for a stopping time from Equation 6.8 and using the fact that Tm <∞ almost

surely,

P
((
F
(
ZTj
))m
j=1
∈ dy

)
=
∞∑
n=1

∫
Hn

PF
((
F
(
tTj(t)

))m
j=1
∈ dy

) n∏
i=1

G[ti−11 , yi−11 ](dti)

(9.7)

The term G[ti−11 , yi−11 ] was used instead of G[ti−11 , F ] to indicate that G depends

only on the initial values of y, since it is trajectory-restricted. The distribution

in Equation 9.7 will be used several times below. If a joint expectation is taken

with respect to both PF and GF , then the integrand should appear inside the

integral of Hn, as in Proposition 9.2.1 below.

The strong NFL property can be weakened by requiring only that the

average values of a particular performance criterion be equal. This property

will be termed weak NFL because it corresponds to the equality under just

one performance criterion.

Definition 9.2.3. Given a performance criterion φ that is uniquely dependent

on the error sequence, a random objective F or its function prior PF is weakly

NFL in φ on a set of optimizers X ⊆ PF if for any two optimizers G,G′ ∈ X

such that Tm <∞ both Gf -a.s. and G′f -a.s. for all m ≤ |X| on which φ depends,

it holds that EPF [φ(G, F )] = EPF [φ(G′, F )].

The phrase “on which φ depends” in the definition of weak NFL ac-

counts for performance criteria that are finitely uniquely dependent on the

291



error sequence, in which case G and G′ need only have Tm < ∞ at the values

of m for which φ depends on Ef
Tm

.

If a prior is strongly NFL, then it admits no statistical difference in the

trajectories produced by running a pair of optimizers on a random objective.

If the prior is only weakly NFL, there may be differences in the trajectories,

but these differences disappear when integrating to measure performance on

a particular performance criterion. For trivial performance criteria, such as

φ(G, f) = c with c constant, every prior is weakly NFL. In general, such

performance criteria are uninteresting and uninformative. In practical terms,

if a prior is weakly NFL on a large enough set of performance criteria, the

implications do not differ greatly between the two. Importantly, strong NFL

implies weak NFL.

Theorem 9.2.1. Every strongly NFL prior is also weakly NFL on Otr over

all uniquely dependent performance criteria.

Proof. Suppose F is a strongly NFL random objective and φ is a performance

criterion that is uniquely dependent on the error sequence. Suppose initially

that φ is finitely uniquely dependent on the error sequence up to the M th

unique point. Let G, G′ ∈ Otr such that TM <∞ both Gf -a.s. and G′f -a.s. for

some M on which φ depends.

Because φ is uniquely dependent,

φ(G, f) = EGf

[
h̃

((
Ef
Tn

)M
n=1

)]
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for some h̃ and the error process Ef
Tn

. Also, since G,G′ ∈ Otr, both Gf and G′f

can only depend on the objective value of the first M unique points by time

TM . Therefore, the expectation EPF can be computed by integrating only over

these m points plus the optimum, and with Hn as the stopping set for TM , we

have

EPF [φ(G, f)] = EPFEGf

[
h̃

((
Ef
Tn

)M
n=1

)]
=

∫
Rm+1

h̃
(

(yj − y∗)Mj=1

) ∞∑
n=1

∫
Hn

n∏
i=1

G[ti−11 , yi−11 ](dti)

× PF
((
F
(
tTj(t)

))M
j=1
∈ dy, F ∗ ∈ dy∗

)
(9.8)

In these equations, the integrand h̃ was extracted from the inner integrals be-

cause it does not depend on t. Recognizing that the outer integral is taken with

respect to the distribution of (F (ZT1), . . . , F (ZTm)), which is shared between

G and G′, it follows that

EPF [φ(G, f)] = EPF [φ(G′, f)]. (9.9)

Therefore F is weakly NFL in φ.

To remove the assumption that φ is finitely uniquely dependent, re-

call that any uniquely dependent φ is progressively decomposable by Theo-

rem 7.2.5. Therefore we may construct a sequence of performance criteria,

φm(G, f) = EGf

[
Tm∑
n=1

hm(Zm
1 , f)

]
. (9.10)

At m =∞, the sum comes out of the expectation, and so φm → φ. Since φ is

uniquely dependent on the error sequence, φm is finitely uniquely dependent
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on the error sequence. Consequently, EPF [φm(G, f)] = EPF [φm(G′, f)] for all

suitable G,G′, and

EPF [φ(G, f)] = lim
m

EPF [φm(G, f)] = lim
m

EPF [φm(G′, f)] = EPF [φ(G′, f)].

(9.11)

In this dissertation, the emphasis will be placed on strongly NFL pri-

ors, with secondary discussion of weakly NFL priors. The next section presents

properties of function priors that are necessary and sufficient to draw conclu-

sions about the strong and weak NFL properties.

9.2.3 Properties of Function Priors

As shall be demonstrated, a prior is weakly NFL on φw and ζTm if

it has uncorrelated paths and a constant mean at every evaluation point. A

particular function prior is strongly NFL if it is identically distributed over the

search space and if it is independent along all possible evaluation paths. An

NFL prior implies that information from one evaluation at one point provides

no information about evaluation at any other point. To illustrate, consider

the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Under an NFL prior, there is no basis for claiming that the next number in

this sequence is 233; it could just as likely be 234, 11, or 3, 486, 269, 203. NFL

assumes a sequence is not correlated with itself.
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Definition 9.2.4. A random objective F or its prior PF is path independent

if for any finite collection of distinct points x1, . . . , xn ⊆ X, the collection

(F (xi))
n
i=1 is mutually independent. If F is not path independent, then it is

path dependent.

The name of path independence captures the intuition that no trajec-

tory through the search space provides more information about the objective

value of another point than any other. The objective values are independent

of any such path. However, path independence is not sufficient to account

for NFL priors. To be strongly NFL, a random objective must be identically

distributed at each point. If it were not, then two different optimizers could

result in distinct evaluation processes by exploiting the variations in objective

values between two points in the search space. Path independence and iden-

tical distributions are the two main properties that hold for a strongly NFL

prior. These two properties are in fact provably equivalent to strong NFL.

To be weakly NFL, a random objective may only need to satisfy a less

stringent requirement. As an example, for the performance criteria ζT and φT ,

the random objective only needs to have a constant mean across all inputs

and uncorrelated paths. Otherwise, one optimizer could outperform another

on these criteria by prioritizing more optimal inputs.

Definition 9.2.5. A random objective F or its function prior PF is mean-

constant if EPF [F (x)] = EPF [F (y)] for all x, y in X.

Notice that having a constant mean at each point and being identically
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distributed at each point are substantially different requirements. A function

prior can be mean-constant and still have substantially different probability

distributions at each point. For additively decomposable performance criteria,

however, these differences may be integrated out to obtain the weak NFL

property for φw and ζTm . On the other hand, every identically distributed

prior is also mean-constant. Thus any result that applies to mean-constant

priors also applies to priors that are identically distributed.

For similar reasons, weak NFL holds for φw and ζTm under a slightly

different condition on the evaluation paths. These paths do not need to be

independent for weak NFL; it is sufficient if they are uncorrelated.

Definition 9.2.6. A random objective F or its prior PF is path uncorrelated

if for any finite collection of distinct points x1, . . . , xn ⊆ X,

EPF [F (x1) | F (x2), . . . , F (xn)] = EPF [F (x)] .

One final edge case must be handled before moving on. Universally con-

stant priors trivially possess the NFL property. However, some non-constant

priors may have a universal minimum.

Definition 9.2.7. A point x ∈ X is a universal minimum of a function prior

PF if there exists an x ∈ X such that the set Fx = {f : f(x) = f ∗} has PF -

probability one.

If a prior has a universal minimum, then an optimizer can obtain perfect

performance by guessing the minimum. This ability would violate NFL unless
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every point in X is a universal minimum, in which case every optimizer obtains

perfect performance. Such a prior is termed universally constant. Mean-

constant priors have a universal minimum if and only if they are universally

constant.

Definition 9.2.8. A function prior PF is said to be universally constant if

every x ∈ X is a universal minimum.

These two concepts coincide for mean-constant priors and, by extension,

priors that are identically distributed at each point.

Lemma 9.2.2. If a mean-constant prior PF has a universal minimum then

PF is universally constant.

Proof. Suppose PF has a universal minimum at x ∈ X; then Fx = {f : f(x) = f ∗}

has PF -probability one. Then because PF is mean-constant, Fy = {f : f(y) = f ∗}

has PF -probability one for all y ∈ X. That is, PF is universally constant.

Using these definition, a prior is strongly NFL if and only if it is identi-

cally distributed and path independent. A prior is weakly NFL over additively

decomposable performance criteria if and only if it is mean-constant and path

independent. Establishing these facts is the topic of the next section.

9.3 NFL Theorems

This section presents a series of results that culminate in the NFL

Identification Theorems 9.3.7 and 9.3.8. The core ideas are built up in several
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lemmas and theorems, which are then aggregated into the primary results

characterizing strong and weak NFL.

9.3.1 Implications of Strong and Weak NFL

The following two lemmas establish that strong NFL priors are identi-

cally distributed, and weak NFL priors over additively decomposable perfor-

mance criteria are mean-constant.

Lemma 9.3.1. Every strongly NFL prior on Otr is identically distributed at

every point in X.

Proof. Suppose that PF is strongly NFL but not identically distributed. Then

there exist x, y ∈ X and A ∈ B[R] such that

P(F (x) ∈ A) 6= P(F (y) ∈ A). (9.12)

Let Gx,Gy ∈ Otr with Gx[∅, f ]({z}) = δx(z) and Gy[∅, f ]({z}) = δy(z). Then it

is immediate that

P(F (ZGx
T1
∈ A) = P(F (x) ∈ A) 6= P(F (y) ∈ A) = P(F (Z

Gy
T1
∈ A), (9.13)

contradicting the assumption that PF is strongly NFL. Therefore PF is iden-

tically distributed at every point.

Lemma 9.3.2. Every function prior that is weakly NFL on Otr over a non-

trivial additively decomposable performance criterion is also mean-constant.
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Proof. Suppose φ is an additively decomposable performance criterion that is

also uniquely dependent on the error sequence. Then φ depends on ζTm for

one or more values of m, since it is non-trivial. Thus if the results holds for

ζTm for arbitrary m, then it holds for all φ meeting the assumptions.

Using the same technique as in Lemma 9.3.1, if PF is weakly NFL but

not mean-constant, then there exist x, y ∈ X such that

EPF [F (x)− F ∗] > EPF [F (y)− F ∗] . (9.14)

Let Gmx ,G
m
y ∈ Otr such that Gx[t, f ]({z}) = δx(z) and Gy[t, f ]({z}) = δy(z) for

any t containing exactly m− 1 unique points. Then

EPF [ζTm (Gmx , F )] = EPF [F (x)− F ∗] > EPF [F (y)− F ∗] = EPF
[
ζTm

(
Gmy , F

)]
.

(9.15)

The inequality in Equation 9.15 contradicts the assumption that PF is weakly

NFL in φ. So PF is mean-constant.

Note that in Lemma 9.3.1 and Lemma 9.3.2, the proof did not depend

strongly on the trajectory-restrictedness of the optimizer; it only required the

existence of Gx and Gy meeting the description. The exact same proof holds

for all of Oir and for many subsets of PF that are of interest. These facts are

explored with slightly more detail in Chapter 14, where the NFL Identification

Theorem is extended to Oir. The next theorem, however, does depend heavily

on trajectory restrictions.
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9.3.2 NFL Implications on the Evaluation Path

This section shows that NFL implies that past evaluations can reveal

no information about the outcome of future evaluations. This fact is one of

the key points of this dissertation, since it is equivalent to the claim that NFL

makes learning impossible. First, it is shown that strongly NFL priors are

path independent.

Lemma 9.3.3. Suppose PF is a strongly NFL prior. Then PF is path inde-

pendent.

Proof. The conditional probability of F (ZA
Tm

) given F (ZA
T1

), . . . , F (ZA
Tm−1

) is

P
(
F (ZA

Tm) ∈ A | F (ZA
T1

), . . . , F (ZA
Tm−1

) ∈ B
)

(9.16)

for A ∈ B[R] and B ∈ B[Rm−1]. The NFL property implies that the distribu-

tion of F (ZA
T1

), . . . , F (ZA
Tm−1

) is independent of Z, and so Equation 9.16 may

be written as a function gmA (B) independent of ZT1 , . . . , ZTm .

Notice that gmA (X) is the marginal distribution of F (ZA
Tm

). The claim

that PF is path independent is equivalent to the claim that gmA (B) = gmA (R) for

all m ≤ |X|, A ∈ B[R], and all nonempty B ∈ B[Rm−1]. If PF is universally

constant, it is trivial that gmA (B) = gmA (R). Thus we may assume that PF is

not universally constant.

Suppose that for some m ≤ |X|, there exists A ∈ B[R] and a nonempty

B ∈ B[Rm−1] such that gmA (B) 6= gmA (R). Let C be the complement of B in

R, i.e. C = R \B, and then it follows that gmA (B) 6= gmA (C), which is possible

300



since PF is not universally constant. The only remaining step is to exhibit two

stochastic optimizers, one of which passes through B while the other traverses

C. If such optimizers exist, then their evaluation processes are not identically

distributed, contradicting the assumption that PF was of class NFL.

The sets B and C are both nonempty, and so there are trajectories

t, t′ ∈ Xm such that

F (t1), . . . , F (tm−1) ∈ B (9.17)

F (t′1), . . . , F (t′m−1) ∈ C. (9.18)

Let A be a deterministic optimizer that produces t with probability one re-

gardless of the objective, and let A′ produce t′ in the same way. Then

P
((

F (ZA
Tj

)
)m
j=1
∈ A× Rm−1

)
= gmA (B) (9.19)

P
((

F (ZA′

Tj
)
)m
j=1
∈ A× Rm−1

)
= gmA (C), (9.20)

which contradicts the assumption that PF was of class NFL since gmA (B) 6=

gmA (C). Therefore PF is path independent.

Next, any function prior that is weakly NFL in ζTm is shown to be

path uncorrelated, provided that it has no universal minimum. The proof of

this statement is quite demanding, but it leads to one of the most important

conclusions in this dissertation.

Theorem 9.3.4. Suppose PF is a function prior that is weakly NFL in the

performance criterion ζTm on Otr for all m < |X|. Then if PF has no universal

minimum, it is path uncorrelated.
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Proof. For a trajectory t ∈ T[X], an evaluation trajectory y ∈ T[R] with

|y| = |t|, and a point x ∈ X, define

ŵ(x, t, y) = EPF
[
F (x)− F ∗ | F

(
t1
)

= y1, . . . , F
(
t|t|
)

= y|t|
]

(9.21)

û(x, t, y) = EPF [F (x)− F ∗] (9.22)

so that ŵ(x, t, y) is the average evaluation of x on PF conditioned on t, y,

and û(x, t, y) = û(x) is the average evaluation of x without conditioning. If

ŵ(x, t, y) = û(x, t, y) for all inputs, then PF is path uncorrelated.

This fact will be demonstrated by showing that it is true over all count-

able sets in Bτ . Let A ∈ Bτ be countably infinite, or choose A so that |A| = |X|

if X is finite. Note that any countable subset of X is Bτ -measurable because

τ is Hausdorff. Next, it would be desirable to construct a measure λ over A so

that ŵ and û are λ-integrable. Unfortunately, it is not possible to do so, since

ŵ and û may be infinite on A. To work around this, define for N = 1, 2, . . .

ŵN(x, t, y) = ŵ(x, t, y) ∧N (9.23)

ûN(x, t, y) = û(x, t, y) ∧N (9.24)

If ŵN = ûN , then ŵ = limN ŵN = limN ûN = û. Thus it suffices to prove

ŵN = ûN for arbitrary N . From this point on, let N be arbitrary and fixed.

Note that ŵN , ûN > 0 because PF has no universal minimum. Choose

an enumeration (an)∞i=1 of A. Define λ by

λ (X \ A) = 0 (9.25)

λ ({an}) = 2−n for all n (9.26)
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so that every point in A has positive λ-probability. Then ûN , ŵN are λ-

integrable since ∫
X

ûN(x)λ(dx) =
∑
n

2−n ûN(an) ≤ N,

and similarly for ŵN .

These functions can be normalized into probability distributions over

A, since they are λ-integrable:

wN(x, t, y) = ŵN(x, t, y)×
(∫

X\t
ŵN(z, t, y)λ(dz)

)−1
(9.27)

uN(x, t, y) = ûN(x, t, y)×
(∫

X\t
ûN(z, t, y)λ(dz)

)−1
. (9.28)

The integrals are taken of the set with t removed in order to avoid repetition in

t in the next step. Define trajectory restricted optimizers G1 and G2 as follows:

G1[t, f ](dx) =

{
wN(x, t, y)λ(dx) if x /∈ t

0 otherwise
(9.29)

G2[t, f ](dx) =

{
uN(x, t, y)λ(dx) if x /∈ t

0 otherwise.
(9.30)

Then G1 leverages the conditional probabilities, whereas G2 does not. Both

optimizers are defined so as to not repeat points. Then Tm = m, so

EPF [ζTm (Gi, F )] = EPFEGiF [F (Z∗m)− F ∗] (9.31)

for i = 1, 2 using the performance criterion ζTm . Since PF is weakly NFL,

EPFEG1F [F (Z∗m)− F ∗] = EPFEG2F [F (Z∗m)− F ∗] (9.32)
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for all m > 0. Since w(x, ∅, ∅) = u(x, ∅, ∅), this equation holds for m =

1. Now let Tm = {t ∈ T : |t| = m and t contains no repetitions}. Let ti1 be

the trajectory formed by taking the first i elements of t, and let f(t) be the

trajectory in T[R] formed by evaluating f over t in order. Further, let f(t∗)

be the minimum value of f over a trajectory t. Then

EPF [ζTm (G2, F )] =

∫
RX

∫
Tm

[f(t∗)−f ∗]

[
m∏
i=1

uN
(
ti, ti−11 , f(ti−11 )

)
λ
(
dti
)]

PF (df)

=

∫
Tm

∫
RX

[f(t∗)−f ∗]PF (df)

[
m∏
i=1

uN(ti)λ
(
dti
)]
, (9.33)

where the integrands can be reversed because uN is independent of f and all

terms are positive. Define km(t, f) on Tm by

km(t, f) = [f(t∗)− f ∗]
m−1∏
i=1

uN
(
ti
)
.

Next define a measure over Tm × RX ,

κm(dt, df) = km(t, f)PF (df)
m∏
i=1

λ
(
dti
)
,

so that EPF [ζTm (G2, F )] is the norm of ũN(t) = uN(t−1) in L1
[
Tm × RX , κm

]
,

EPF [ζTm (G2, F )] =

∫
Tm

∫
RX
ũN(t, f)κm(dt, df) = ||ũN ||κm .

Fixm = 2. By a similar sequence of equations using w̃N(t, f) = wN
(
ti, ti−11 , f(ti−11 )

)
,

EPF [ζT2 (G1, F )] =

∫
T2

∫
RX
w̃N(t, f)κ2(dt, df) = ||w̃N ||κ2 ,

and therefore since PF is weakly NFL, wN(x, t, y) = uN(x) almost everywhere

(a.e.) in κ2 if |t| = 2. This result can be extended to all m > 1 by induction.
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For the induction hypothesis, suppose that wN(x, t, y) = uN(x) a.e. in κm−1.

Then uN can be substituted for wN on trajectories shorter than m. Therefore

[f(t∗)− f ∗]
m−1∏
i=1

wN
(
ti, ti1, f(ti−11 )

)
= [f(t∗)− f ∗]

m−1∏
i=1

uN
(
ti
)

= km(t, f),

and so

EPF [ζTm (G1, F )] =

∫
Tm

∫
RX
w̃N(t, f)κm(dt, df) = ||w̃N ||κm .

That is, wN = uN a.e. in κm for all m. The next step is to show that wN =

uN a.e. in λ, and hence on each point on A. This fact will be proven by

exhibiting a sequence of measures with respect to which wN and uN are almost

everywhere equal, leading to the conclusion that wN = uN a.e. in λ.

Define νm as the natural extension of λ to trajectories of length m,

νm (dt) =
m∏
i=1

λ
(
dti
)
.

Also, define κ̃m as the marginal of κm with objectives integrated out,

κ̃m(dt) =

∫
RX
κm(dt, df) = νm(dt)

∫
RX
km(t, f)PF (df).

Because wN = uN a.e. in κm and wN and un do not depend on the objective

f for a set of full measure in κm, wN = uN a.e. in κ̃m. If νm is absolutely

continuous with respect to the measure κ̃m, then wN = uN a.e. in νm. Absolute

continuity holds if in turn∫
RX
km(t, f)PF (df) > 0 a.e. in νm.
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The left hand side can be rewritten as∫
RX
km(t, f)PF (df) =

(
m−1∏
i=1

uN
(
ti
))

EPF [F (t∗)− F ∗] .

Recall that PF has a no universal minimum, and so uN(x) > 0 for all x

and EPF [f (t∗)− f ∗] > 0. Thus wN = uN almost everywhere in νm. So

ŵN(x, t, y) = ûN(x, t, y) for all x ∈ A with t and f arbitrary, recalling that

ûN(x, t, y) = ûN(x).

The setA used to define λ was arbitrary, therefore ŵN(x, t, y) = ûN(x, t, y)

for all x ∈ X by letting A range over all countable sets in Bτ . To become con-

vinced of this fact, note that any particular inputs x and t are contained

entirely in some countable set A, and the values of y are determined by PF

independently of A. Finally, since ŵN = ûN for all N , then letting N →∞, it

holds that ŵ(x, t, y) = û(x, t, y) for all x ∈ X, i.e. PF is path uncorrelated.

This subsection and the previous one have established necessary con-

ditions for NFL; the next section shows that with slight additions, these con-

ditions are also sufficient.

9.3.3 Sufficient Conditions for NFL

This section contains two theorems. The first theorem gives sufficient

conditions for a function prior to be strongly NFL. The conditions are that the

function prior must be path independent and identically distributed at every

point. The second theorem gives sufficient conditions for a function prior to

be weakly NFL in any additively decomposable performance criterion that is
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finitely uniquely dependent on the error sequence. Together with the results

of the last two subsections, these two theorems prove that NFL priors are

exactly those priors that defeat any attempts at learning. These results are

summarized in the next section as the NFL Identification Theorems.

Theorem 9.3.5. Any function prior that is path independent and identically

distributed at every point is strongly NFL on Otr.

Proof. Let PF be identically-distributed and path independent. Fix m ≤ |X|

and let G ∈ Otr such that Tm <∞ Gf -a.s. Fix A ∈ B[Rm], a Borel set in Rm.

Referring to Equation 9.7, observe that

P
(
F (ZTj)

m
j=1 ∈ A

)
=

∫
A

∞∑
n=1

∫
Hn

n∏
i=1

G[ti−11 , yi−11 ](dti)PF
((
F
(
tTj(t)

))M
j=1
∈ dy

)
.

(9.34)

Next, note that because PF is path independent,

PF
((
F
(
tTj(t)

))M
j=1
∈ dy

)
=

M∏
j=1

PF
(
F
(
tTj(t)

)
∈ dyj

)
. (9.35)

Also, because PF is identically distributed, for any x0 ∈ X,

PF
((
F
(
tTj(t)

))M
j=1
∈ dy

)
= PF (F (x0) ∈ dyj)M . (9.36)

Thus,

P
(
F (ZTj)

m
j=1 ∈ A

)
=

∫
A

PF (F (x0) ∈ dyj)M
∞∑
n=1

∫
Hn

n∏
i=1

G[ti−11 , yi−11 ](dti)

=

∫
A

PF (F (x0) ∈ dyj)M . (9.37)
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Since this probability is independent of G, the distribution of
(
F
(
ZTj
))m
j=1

is

a constant depending on m for any G such that Tm < ∞ Gf -a.s. That is, PF

is strongly NFL.

Theorem 9.3.6. Any function prior that is mean-constant and path uncor-

related is weakly NFL on Otr over all additively decomposable and finitely

uniquely dependent performance criteria.

Proof. Let PF be mean-constant and path uncorrelated. Let φ be a perfor-

mance criterion that is additively decomposable and finitely uniquely depen-

dent on the error sequence up to time M ≤ |X|. Let G ∈ Otr such that

TM <∞ Gf -a.s. Note that

φ(G, f) = EGf

[
M∑
j=1

wjE
f
Tj

]

for some sequence (wj) with wM > 0 and the error process Ef
Tj

. Let HM
n be

the set of stopping trajectories for TM of length n. Taking the expectation

over PF on both sides and decomposing the sum,

EPF [φ(G, f)] = wMEPFEGf [F (ZTM )− F ∗] + EPFEGf

[
M−1∑
j=1

wjE
f
Tj

]
= ξ(M).

The proof follows if ξ(M) does not depend on G, which can be proven by

induction on M .

For the base case, it holds that T1 = 1, and so for arbitrary x0,

ξ(1) =

∫
X

G[∅, ∅](dx)

∫
R
w1y1PF (F (x) ∈ dy)−

∫
R
w1y

∗PF (F ∗ ∈ dy∗)

= w1 [EPF [F (x0)]− EPF [F ∗]] = w1C, (9.38)
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where C is a constant determined by the constant mean of the prior and the

expected minimum. Thus the base case is satisfied.

To extend this result to arbitrary M , suppose for the induction hypoth-

esis that

ξ(M − 1) = C

M−1∑
j=1

wj, (9.39)

and it will be shown that ξ(M) = wMC + ξ(M − 1), which is independent of

G. Consider the conditional expectation

EPF [F (zM) | F (zj), j = 1, . . . ,M − 1] = g(z1, . . . , zM). (9.40)

By the properties of conditional expectations,

EPFEGf [F (ZTM )] = EPFEGf [g (ZT1 , . . . , ZTM )] . (9.41)

But ZT1 , . . . , ZTM are distinct, and PF is path uncorrelated and mean-constant,

so for arbitrary x0,

g (ZT1 , . . . , ZTM ) = EPF [F (ZTM )] = EPF [F (x0)] = C + EPF [F ∗] . (9.42)

Therefore,

EPFEGf [F (ZTM )− F ∗] = C (9.43)

and by definition, ξ(M) = C + ξ(M − 1) as required. The optimizer G was

arbitrary, and so PF is weakly NFL in φ on Otr, completing the proof.

The previous two theorems have shown that function priors whose paths

are not correlated with themselves are necessarily subject to NFL. These re-

sults can be combined with the results of the previous section to give necessary

and sufficient conditions for the strong and weak NFL properties.
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9.3.4 NFL Identification Theorem

The results of the previous three subsections can be aggregated into a

pair of theorems named the NFL Identification Theorems, which give neces-

sary and sufficient conditions for a function prior to possess the strong or weak

NFL properties. In the case of the weak NFL property, these theorems only ap-

ply to additively decomposable performance criteria that are finitely uniquely

dependent on the error sequence. Among the performance criteria presented

in Chapter 7, only ζTm and φT satisfy this criteria. Because of the nature of

the weak NFL property, the sufficient conditions for weak NFL always depend

upon the specific performance criteria to which it is applied.

The NFL Identification Theorems expand the application of the NFL

properties to the more general setting of arbitrary measure spaces. Rowe et

al. previously showed that the NFL property applies in infinite settings, but

their results were limited to uniform priors over c.u.p. subsets [171]. The

next two theorems give for the first time an exact characterization of what it

means for an arbitrary function prior to be subject to the NFL property for

trajectory-restricted optimizers.

Theorem 9.3.7. Strong NFL Identification Theorem. A function prior

PF is strongly NFL on Otr if and only if PF is identically distributed at each

point and path independent.

Proof. Strong NFL =⇒ identically distributed and path independent: Sup-

pose PF is strongly NFL on Otr. Lemma 9.3.1 shows that PF is identically
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distributed at every point, so it only remains to show that PF is path inde-

pendent.

First, suppose PF has a universal minimum. Then PF is universally

constant by Lemma 9.2.2. But if PF is universally constant, then it is trivially

path independent.

If PF has no universal minimum, then Theorem 9.3.4 implies that PF

is path independent, since PF is weakly NFL in ζTm by Theorem 9.2.1.

Path independent and identically distributed =⇒ Strong NFL: This

result was proven as Theorem 9.3.5.

Theorem 9.3.8. Weak NFL Identification Theorem. A function prior

PF is weakly NFL on Otr over all additively decomposable performance criteria

that are finitely uniquely dependent on the error sequence if and only if PF is

mean-constant and path uncorrelated.

Proof. Weak NFL =⇒ mean-constant and path uncorrelated: Suppose PF is

weakly NFL on Otr and ζTm for all m. Lemma 9.3.2 shows that PF is mean-

constant, so it only remains to show that PF is path independent.

First, suppose PF has a universal minimum. Then PF is universally

constant by Lemma 9.2.2. But if PF is universally constant, then it is trivially

path uncorrelated.

If PF has no universal minimum, then Theorem 9.3.4 immediately im-

plies that PF is path uncorrelated.
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Path uncorrelated and mean-constant =⇒ Weak NFL: This result was

proven as Theorem 9.3.6.

9.4 Conclusion

In this chapter, an array of NFL Theorems were presented, leading ul-

timately to the discovery of the NFL Identification Theorems. These theorems

expand the applicability of NFL to all trajectory-restricted optimizers in arbi-

trary measure spaces. They also provide sufficient conditions that demonstrate

what causes a function prior to induce the NFL property. Given the impor-

tance ascribed to the original NFL theorems, these accomplishments should

be of interest on their own.

The fact that the strongly NFL priors must be path-independent dis-

credits the hypothesis that NFL prevents general-purpose optimizers, since

such a claim is tantamount to saying that the general prior over real-world

problems has no internal structure whatsoever. NFL implies that a function

prior is unlearnable, yet it would seem strange to assume that physical reality

is unlearnable. In relatively small, discrete domains it may well be true that no

objective is more likely than any other. For any large, realistic domain, how-

ever, there is substantial internal structure to any general prior that is not just

problem-specific. Concrete examples of very general priors not subject to NFL

will be given in the next chapter. In spite of NFL, general-purpose learning

should be possible. These ideas are explored further in the next chapter.

Even if certain interpretations of NFL are somewhat discredited, there

312



remains a large circle of ideas related to NFL that are as true and relevant as

ever. If the practitioner is only interested in a small subset of objectives, it

is almost a truism that a tailored optimization algorithm should outperform

a general-purpose optimizer. Furthermore, even if some optimizers are better

than others, it does not follow that there is a unique best optimizer, even

for a relatively focused function prior. The performance of an optimizer is

intimately linked to the conditions under which it is tested, and any random

test procedure corresponds to some function prior. All of these ideas together

may be regarded as the NFL way of thinking, and this paradigm is still useful

and productive, as will be shown in the next chapter.
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Chapter 10

The Geometry of Optimization and the

Optimization Game

This chapter examines the philosophical and theoretical implications of

the NFL results from the previous chapter. It introduces a duality between

optimizers and function priors that formalizes Wolpert and Macready’s notion

of alignment within a performance-based geometry for the space of optimiz-

ers. Optimization is then explored as a game-theoretic exercise, pitting an

optimizer against a function prior. The possibility of optimizing the optimiza-

tion process is considered, and it is conjectured that the information generated

by the optimization process should play a key role. These results lead to the

formulation of the information-maximization principle for static optimization.

An optimizer implementing this principle, evolutionary annealing, will be in-

troduced in Chapter 11. The ideas in this chapter suggest a number of points

of departure for further research and inquiry, all opened up by the rigorous

formal approach adopted in this dissertation.
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10.1 The Reality Prior

In practice, an objective function corresponds to some observable quan-

tity that has a utility for someone, such as the amount of oil recovered from a

wellhead, the number of errors made by an automated manufacturing system,

the purity of a chemical substance, or the profit on a financial trade. What

sort of function prior governs objectives derived from reality? Does the nature

of such a prior differ if only certain kinds of quantities are considered? If all

such objectives are considered in aggregate, is the resulting prior subject to

NFL? These questions are considered briefly in this section, with the conclu-

sion that a prior can be quite general without inducing NFL. The term reality

prior will be used for the overarching prior governing all reality-derived objec-

tives. There is good reason to speculate that the reality prior in fact does not

obey NFL and instead contains internal regularities that make general learning

possible. Such speculation is related to conjectures proposed in the context

of inductive inference that connect the universal prior to program description

lengths via Occam’s razor. Before taking up this topic, this inquiry begins

with a discussion of the frequency of NFL priors.

10.1.1 The Frequency of NFL Priors

Now that the NFL priors have been completely identified, it is possible

to pose the question of how common strongly NFL priors may be. As it

happens, far from being in the vast majority, NFL priors are extraordinarily

rare. As mentioned in Chapter 9, Igel and Toussaint [100] previously showed
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that a vanishingly small portion of function subsets possess the NFL property

under a uniform prior. Now that Theorem 9.3.7 has identified the strongly

NFL priors completely, it can be stated in general that Igel and Toussaint’s

results hold for all priors, not just c.u.p. subsets. NFL priors are not just rare,

they have measure zero even in finite search spaces.

Suppose the search space X is finite, and that objective functions tak-

ing values from a finite space Y are assumed to have probability one. The

effective objective function space then has size D = |Y ||X|. Since this function

space is finite, then the space of priors over it is a finite-dimensional vector

space isomorphic to RD−1. To convert a probability vector in RD to RD−1,

use spherical coordinates, remove the radius, and expand the remaining co-

ordinates from [−π, π) to all of R by the transformation g(x) = x/π(x + 1).

Under this transformation, the function priors on Y X cover RD−1 completely.

Strongly NFL priors are a proper subset of the identically distributed priors.

In order for a prior to be identically distributed, if must have the same distri-

bution at each input. It should be clear that the set of identically distributed

priors is isomorphic to R|X|−1 under a similar transformation as for RD−1. As

long as |Y | > 1, it follows that |X| < |D|, and thus the set of identically

distributed priors has Lebesgue measure zero in RD−1. The set of strongly

NFL priors is even smaller and therefore has measure zero as well. Thus if an

infinite sequence of priors were chosen at random, with probability one, not a

single one would be identically distributed, much less NFL!

The set of NFL priors can be made larger by considering only priors
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that take on discrete and finite probabilities from a set M ⊆ [0, 1]. This sort

of argument might be made from an axiomatic assumption that the world

is computable, rejecting the theory of a continuum. Even so, the set of NFL

priors would grow exponentially small as a M , |X|, or |Y | are increased. Thus,

on purely statistical basis, one does not expect to encounter an NFL prior, even

if there are finitely many priors.

The sparsity of NFL priors is not in itself a reasonable objection to

the hypothesis that the reality prior is strongly NFL. Even though the space

of priors is large, most priors are chaotic and random and lack compact de-

scriptions. By contrast, an NFL prior has a short and simple description and

should therefore be preferred over priors with long description lengths on the

principle of Occam’s Razor. However, this argument can be turned against

NFL. As a prior, it has short descriptions, but functions drawn randomly from

a non-constant NFL prior typically have long descriptions. In an infinite do-

main, such a function can only be described on average by listing its value at

an infinite number of points. Further, experience in the real world suggests

that a correct prior should prefer abundant substructure, especially local reg-

ularity and globally repeated structure (decomposability). Such a prior may

have a longer description length than an NFL prior, but the functions drawn

from it would have shorter descriptions, balancing the complexity of both the

prior and the objectives it prefers.
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10.1.2 Diffusion Prior

The previous section proposed that one should expect the reality prior

to possess more regularity than a strongly NFL prior does. But do general

priors with regular structure exist? In this section, the diffusion prior will be

discussed as an example of a prior satisfying one of the desired qualities in a

prior, that of local regularity. The reality prior likely possesses more regularity

and structure than a diffusion prior; this example is only intended to show that

such regularities exist within general-purpose priors.

A diffusion prior may be defined as a function prior over objectives

on subsets of Rn based on the Brownian motion. The Brownian Motion as-

sumes random expansion in space at a rate equal to the square root of the

time elapsed. It is a well-studied mathematical object that plays a role in

mathematical theories ranging from physics to finance [38, 105]. The Brow-

nian motion can be defined as a prior over all continuous functions, or even

as a prior over discontinuous ones. However, it enforces a constraint that if a

function has a certain value at one point, then it is likely (but not required)

to have similar values at nearby points.

The standard Brownian Motion is a random process in one variable,

often denoted by W = (Wt)t∈[0,∞), such that the increments of the Brownian

Motion are normally distributed with a variance the size of the increment, i.e.

Wt −Ws ∼ N (Ws, t− s) , ∀s < t.

Typically, the process is started at W0 = 0 for convenience, but the process
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can be initialized at any point. The phrase “Brownian Motion started at x”

indicates that W0 = x.

The Brownian Motion can be constructed as a prior over continuous

functions (C[0,∞)) against a σ-algebra of cylinder sets (see e.g. Karatzas and

Shreve [105]). Thus the distribution of the Brownian Motion is a function

prior. A function drawn from this Brownian prior is a continuous trajectory

of the Brownian Motion.

The Brownian prior has constant mean (EWt = W0), but it is not

identically distributed at each point and is path dependent. Thus such a prior

is non-NFL. It is easy to demonstrate this fact because Wt is a martingale and

so

E [Wt | Ws] = Ws 6= W0 = EWt for 0 < s < t.

As a non-NFL prior, it follows that some optimizers perform better than others

on this prior. This fact is also easily demonstrated. Consider the search space

given by t ∈ [0, 1]. Let G1 be a deterministic optimizer that proposes evenly

spaced points in order, say,

0,
1

100
,

2

100
,

3

100
,

4

100
,

5

100
, . . . ,

and let G2 be another deterministic optimizer that iteratively splits [0, 1] with

evenly spaced points, i.e

0, 1,
1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
,

1

16
, . . .
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G2 has better performance than G1 on a Brownian prior, because at each step

it eliminates a larger proportion of functions from consideration than G2 by

placing more constraints on the available functions.

Define an n-dimensional diffusion prior as a functional of one or more

Brownian Motions on Rn. It can be described as a random objective Y indexed

by x ∈ [0, 1]n given by

Yx = g(W1,x1 , . . .Wn,xn),

where W1, . . . ,Wn are n independent Brownian Motions, and g is a Borel-

measurable function from Rn to Rn.

Let PY be the distribution of Y . Consider the search space [0, 1]n.

Then a sample from PY is a function over the search space. This prior can

be extended to all of Rn by transforming the space. The diffusion prior PY

is a functional of the Brownian Motion, and as long as the function g is non-

degenerate, PY is not strongly NFL.

Readers familiar with the use of Gaussian processes in predictive func-

tion modeling should notice the similarity. The function g defining the diffusion

prior corresponds to the choice of kernel in a Gaussian process. The driving

Brownian Motions could also be shifted backwards in time by an arbitrary

amount (e.g. W̃n,t = Wn,t+σ2
0
) to obtain a non-degenerate initial distribution.

With this in mind, an optimizer could perform well on a diffusion prior by

choosing evaluation points in such a way as to minimize the conditional vari-

ance of the objective function given the evaluation points under the kernel g.
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Because of this relationship, a diffusion prior might also be called a Gaussian

prior.

The diffusion prior provides an example of a non-NFL prior that can

place positive probability on all subsets of continuous functions. As this ex-

ample proves, NFL does not imply that successful learning is only possible on

specific problems.

10.1.3 The Universal Prior

The previous section proved that very general non-NFL priors exist.

But what sort of prior is the reality prior? Some conjectures have been pre-

viously offered on this topic in the context of inductive inference [37, 47, 98,

178, 190, 191]. Ideas concerning a universal prior have typically centered on

the modernized version of Occam’s razor, which says that when one is faced

with competing hypotheses that explain some data, the simplest hypothesis is

most likely to be correct.

This research is rooted in the idea that the universe is generated by

a computable program, an idea that goes back to Zuse, and even further

back to Leibniz [178]. Given that the universe has an observed state x, then

according to Occam’s razor, the most likely program computing the universe is

the shortest program that computes x. In 1964, Solomonoff [190, 191] proposed
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a universal measure over bit sequences conforming to this principle, given by

P′M(x) =
∑

program prefixes p
that compute x

2−|p|. (10.1)

Similar measures with a basis in information theory were subsequently pro-

posed by Chaitin and Cover that model the entropy of the observation [37, 47].

Solomonoff’s measure is enumerable but not computable because of the

halting problem [178, 191]. Computable variants have been proposed based on

Minimum Description Length and Kolmogorov complexity [47, 113, 178]. Most

recently, Schmidhuber [178] proposed the Speed Prior in 2002 after work by

Hutter [98] exhibited an algorithm to enumerate all programs that produce

an output prefix after a fixed of number of steps. The Speed Prior is similar

to Solomonoff’s measure in spirit, but accounts for the computation time as

well, making it computable in the limit. Schmidhuber provided an algorithm

for computing the Speed Prior in finite time within a given tolerance.

Viewed as probabilities over objectives (as program subroutines), nei-

ther Schmidhuber’s nor Solomonoff’s measures could possibly be strongly NFL,

nor could any similar measure that prioritizes observations on the basis of com-

pressibility. NFL requires that the future be incomputable on the basis of the

past, and compressible programs necessarily encode computable regularities.

It seems likely that formal results could be derived to demonstrate this claim.

Such a result is left as future work, discussed again briefly in Chapter 14.

However, if the reality prior possesses the NFL property, then any univer-
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sal measure based on Occam’s razor must be false, since NFL assumes that

complex programs are substantially more common than simple ones.

10.1.4 The Meaning of NFL

The discovery that NFL implies path independence (Section 9.3) makes

it possible to understand exactly what NFL means. Whenever NFL holds,

learning is impossible. The past is irrelevant to the future, and there is no

means of predicting the outcome of any action. If the reality prior is NFL,

then anyone betting that the sun will rise tomorrow is taking a substantial

risk. Under NFL, one could go to sleep at night on Earth, and wake up

in the morning to find himself in the middle of Alpha Centauri with a few

extra appendages. NFL admits no rational basis for making any decisions or

forming any definite opinion about any future detail, no matter how immediate

or trivial.

The assumption that the reality prior is NFL can be defeated simply

by observing the existence of humans. People can and do predict numerous

aspects of the future. At a mundane level, if a person places an object in a

room and leaves, then if no one else enters the room, the person is bound to find

the object in the place where he left it when he returns. In essence, the laws of

physics are nothing other than a simple model of future physical interactions.

The very fact that such laws can be stated in a highly compressed form with

reliable predictive power implies directly that the general structure of the

universe is path dependent. The reality prior is not NFL. There exist general-
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purpose optimizers that outperform others on all tasks averaged according to

their likelihood.

10.2 Duality and the Geometry of Optimization

The existence of performant general-purpose optimizers does not pre-

clude specialized optimizers from performing better on specific problem classes.

Indeed, there is a natural pairing between problem classes and the optimizers

that perform optimally on them. Wolpert and Macready’s concept of align-

ment between optimization algorithms and function priors can be made rigor-

ous and formal by expressing this relationship as a duality, a non-degenerate

bilinear mapping over optimizers and priors. This duality forms the basis for

assessing the performance of optimizers over particular problem classes.

10.2.1 Duality Based on Average Error

The duality results in this section relate the space of long-running

trajectory-restricted generalized optimizers A[X] from Section 6.2 for some

X ⊆MF to the space of admissible function priors Ma[RX ] from Section 9.2.1.

For any performance criterion φ, a bilinear mapping can then be given by

〈Gf ,PF 〉φ = EPF [φ (G, F )] . (10.2)

It is important to note that this mapping is linear over the vector structure of

A [X] rather than that of X, since the mapping is actually non-linear over X.

Proposition 10.2.1. For any fixed performance criterion φ, 〈Gf ,PF 〉φ is a
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bilinear mapping on A [X]×M
[
RX
]

for any X ⊆MF.

Proof. Note that

〈Gf ,PF 〉φ = EPFEGF [h(Z)]

for some function h dependent on φ. The result is then a trivial consequence

of the linearity of the integral.

To obtain a duality, this bilinear mapping must be non-degenerate.

That is, if 〈Gf ,PF 〉φ is zero for all Gf , then PF must be the zero measure. And

if 〈Gf ,PF 〉φ is zero for all PF , then Gf must be identically zero.

Notably, 〈Gf ,PF 〉ζTm is degenerate on universally constant priors. If PF

is a universally constant prior, then 〈Gf ,PF 〉ζTm= 0 for all Gf because every

point is optimal. But there are many universally constant priors that are

non-zero. So universally constant priors must be excluded to reach a duality.

Notice that the vector sum or scalar product of two distinct universally

constant priors is universally constant. That is, if F = c and G = d are two

universally constant priors, then F+G = c+d is a constant, and so is αF = αc.

So universally constant priors form a vector subspace of Ma[RX ]. Let UC be the

vector subspace of universally constant priors, and define NC = Ma[RX ]⊥UC

to be the vector subspace of function priors with universally constant priors

removed.

Theorem 10.2.2. The bilinear mapping 〈Gf ,PF 〉ζTm is non-degenerate over

A [MFtr] × NC if |X| ≥ m + 1, and therefore the vector space of optimizers
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A [MFtr] and the vector space of function priors NC are in duality under this

mapping.

Proof. Non-degeneracy in NC. Assume 〈Gf ,PF 〉ζTm is zero for all Gf ∈

A [MFtr], and that PF is not zero. Then 〈Gf ,PF 〉ζTm is zero for Ax[t, f ] = δx

for any x ∈ X. Thus

〈Gf ,PF 〉ζTm =
〈
Ax
f ,PF

〉
ζTm

= EPF [F (x)− F ∗] = 0.

Since x was arbitrary, F (x) = F ∗ almost surely in PF for all x, and so PF is

universally constant, which contradicts the fact that PF ∈ NC. Therefore PF

is zero.

Non-degeneracy in A [MFtr]. Nondegeneracy of optimizers will be shown

by using the pigeonhole principle. Assume 〈Gf ,PF 〉ζTm is zero for all PF ∈ NC

for some fixed, nonzero Gf . The goal is to construct a prior PF that cannot

be perfectly decided by a trajectory-restricted optimizer. To this end, choose

m+ 1 distinct points x1, . . . , xm+1 ∈ X, which is possible since |X| ≥ m+ 1.

Now we will construct a combination of m + 1 function priors that

cannot be distinguished by evaluating just m points. Let G1, . . . , Gm+1 be

these function priors. Set Gi(xi) = δ−1 for all i ∈ {1, . . . ,m+ 1} so that

G∗i = −1. For y 6= xi, let each Gi have an exponential distribution over the

nonnegative numbers, P(Gi(y) ∈ dx) = 1[0,∞)e
−x dx. Define G so that

PG =
1

m+ 1

m+1∑
i=1

PGi , (10.3)
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meaning that G(x) is sampled by first choosing one of the Gi uniformly at

random and then sampling Gi(x). Each of the Gi is B[RX ]-measurable, and

thus G is as well. It should be clear that G∗ = −1, and that for any y ∈ x

such that y 6= xi for all i, G(y) ≥ 0 with probability one. In order to have

〈Gf ,PG〉ζTm = 0, Gf must determine which of the Gi was actually sampled,

since it must hold that G(Z∗Tm) − G∗ = 0 almost surely. This fact implies

Z∗Tm = xi for the value of i selected randomly byG. So G perfectly distinguishes

all m+ 1 cases after just m− 1 evaluations, proposing xi at or before the mth

evaluation. Consequently, G must use some mechanism other than function

evaluation to identify which of the m + 1 functions it is handling. That is, G

is not trajectory-restricted, in contradiction to the fact that G ∈ MFtr. Thus

Gf is zero, and 〈Gf ,PF 〉ζTm is non-degenerate.

Thus the spaces of non-constant function priors and the space of trajectory-

restricted optimizers are dual vector spaces. The nature of this duality is that

of posterior and prior. This fact can be seen more clearly by stating the joint

distribution explicitly. Suppose Z ∼ GF , and then GF (A) = P (Z ∈ A | F ).

Then

GF (A)PF (B) = P (Z ∈ A | F ∈ B)P (F ∈ B) = P (Z ∈ A,F ∈ B) ,

and using the set of stopping trajectories H =
⋃
nHn from Equation 6.8 to

remove Tm,

〈Gf ,PF 〉ζTm = E
[
F
(
Z∗Tm

)
− F ∗

]
=

∫
RX×H

f (t∗)− f ∗ PZ,F (dt, df) .
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That is, an optimizer’s performance on a function prior under ζTm is just the

average error over the joint distribution of Z and F . An optimizer and a

function prior together form a system with a well-defined performance given

by 〈Gf ,PF 〉ζTm . Given a joint distribution over trajectories and objectives,

the decomposition into optimizer and function prior is unique. In addition,

every optimizer-prior system has an alternate decomposition as a prior over

trajectories and a posterior over objectives given trajectories, i.e.

P (Z | F )P (F ) = P (F | Z)P (Z) .

This alternate system may be thought of as a solution to the complementary

problem of finding the function that minimizes the error of a given trajectory.

The duality between A [Otr] and NC introduced in this subsection for-

malizes the idea of geometric alignment between problems and priors advanced

by Wolpert and Macready. However, this duality was restricted to the perfor-

mance criterion ζTm . The next subsection explores how this concept can be

generalized to other performance criteria.

10.2.2 Duality Under Arbitrary Performance Criteria

Although 〈Gf ,PF 〉φ is bilinear over all of A[MF] × Ma[RX ], it may

be degenerate on different subspaces due to the nature of the performance

criterion. For ζTm , degeneracy could be induced by either a non-constant prior

or an optimizer with access to more than just the function evaluations along

the trajectory. In general, a duality can be obtained on a fixed non-trivial

performance criterion φ by eliminating the null space of both arguments.
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Definition 10.2.1. The optimizer null space of a performance criterion φ on

an optimizer space A[X] is the set of function priors for which φ is zero for all

optimizers in X, denoted

Nφ[X] = {PF ∈Ma[RX ] | ∀Gf ∈ A[X], 〈G, F 〉φ = 0}. (10.4)

Definition 10.2.2. The prior null space of a performance criterion φ on a

space of function priors P is the set of optimizers for which φ is zero for all

priors in P, denoted

Nφ[P] = {G ∈ A[MF] | ∀PF ∈ P, 〈G, F 〉φ = 0}. (10.5)

A space of optimizers and a space of priors are in duality under a

performance criterion if and only if the optimizer null space and the prior null

space are excluded.

Proposition 10.2.3. The space of optimizers A[X] and the space of function

priors P are in duality on φ if and only if Nφ[X]∩P = {0} and Nφ[P]∩A[X] =

{0}.

Proof. Suppose that Nφ[X] ∩ P = {0} and Nφ[P] ∩ A[X] = {0}. Then the

definition of N[·] implies that 〈·, ·〉φ is non-degenerate on A[X]×P, and duality

follows from the bilinearity of 〈·, ·〉φ. Conversely, if A[X] and P are in duality,

non-degeneracy guarantees the desired result.

Without going into further depth, the optimizer space Otr and the space

of non-constant priors NC are also in duality under the performance criteria
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φw, φT , ψε − 1, and 1 − σε with non-trivial parameter assignments using the

definitions in Section 7.1. Duality can also be obtained for many of these same

performance criteria in a larger space of information-restricted optimizers pro-

vided that the amount of information obtained from each function evaluation

can be bounded, as will be shown next.

10.2.3 Duality and Information Restrictions

The past several chapters have focused on the performance of trajectory-

restricted optimizers. However, many of the same results also apply to more

general information-restricted optimizers with some modifications. Keep in

mind that information in information-restricted optimizers is distinct from

the information contained in a filtration, although the two are related in that

the information passed to an information-restricted optimizer generates a cor-

responding filtration under appropriate conditions.

As with MFtr, there is a duality between most optimizers in MFir and

all function priors in NC. The map 〈Gf ,PF 〉ζTm is bilinear on all of MF, so

the only hindrance to duality is the degeneracy of certain optimizers. Some

information-restricted optimizers are degenerate in this map even on NC, be-

cause the information function can be used to pass information identifying

the objective function back to the optimizer. As a result, it is impossible to

use the pigeonhole principle to force non-degeneracy as in the proof of Theo-

rem 10.2.1. If the search space X is large enough, this problem can be avoided

by bounding the size of the information trajectory that can be returned.
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Definition 10.2.3. An optimizer G ∈MFir is of bounded information dimen-

sion if the length of trajectories returned by its information function is bounded

above by some M < ∞, i.e. |I(x, f)| ≤ M < ∞ for all x, f . In this case, G

has information dimension bound M .

Once the information dimension is bounded, non-degeneracy of 〈Gf ,PF 〉ζTm
can be proven for MFtr. Unfortunately, the information bound is not preserved

when two information-restricted optimizers are convexly combined, since the

convex combination depends on both information functions and thus has infor-

mation dimension bound by 2M , not M . However, the information dimension

bound is preserved by convex combinations over optimizers with the same

information function. Let I be an information function with information di-

mension M <∞. Then 〈Gf ,PF 〉ζTm is non-degenerate on OI
ir ×NC.

Theorem 10.2.4. Let I : RX × X → T[R] be an information function with

information dimension bound M <∞. Then the bilinear mapping 〈Gf ,PF 〉ζTm
is non-degenerate over A

[
MFIir

]
× NC if |X| ≥ M(m − 1) + 2, and therefore

the vector space of optimizers A
[
MFIir

]
and the vector space of function priors

NC are in duality under this mapping.

Proof. Repeat the proof of Theorem 10.2.1 using M(m−1)+2 distinct points

and function priots in the second half of the proof instead of just m+ 1 points

and functions. In this case, with an information bound of M , an optimizer

Gf ∈ A[MFir] can only distinguish at most M(m − 1) + 1 possibilities, since

the information returned to G has only M(m− 1) degrees of freedom.
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As for MFtr, this same duality also holds for φw, φT , ψε− 1, and 1−σε

as well.

Duality is a fertile topic for further analysis, and this dissertation does

not have the space to move beyond its immediate consequences. Nonetheless,

the duality mapping explored in this section articulates the notion of alignment

between optimizers and function priors, and provides a formal environment

within which performance may be analyzed. The particular goal in this case is

to identify the optimal optimizer for a particular test procedure or, conversely,

to determine the function prior that yields the best performance results for a

particular optimizer. Some initial results are discussed in the next sections.

Projection into a dual space is often used to prove theorems about the

original space being studied. The nature of the performance dual is of interest

because it can be used to analyze the theoretical performance of optimizer.

The results such as those suggested in this subsection may shed further light

on how optimizers perform under different performance criteria and function

priors.

10.3 Linear Functionals

The duality mapping provides a source for generating linear function-

als on the subspaces of PF. In this section, some interesting consequences of

duality and the linearity of performance are explored, including (1) the rela-

tionship of the performance dual to the continuous dual, (2) how performance

can be improved automatically by following performance lines, and (3) how
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linear projections into Euclidean space can be used for similarity analysis.

10.3.1 Continuous Linear Functionals

For each non-constant random objective F , its prior PF induces a linear

functional over A[MFtr] through the equation

`φF (G) = 〈G,PF 〉φ (10.6)

for a fixed performance criteria φ that is one of φw, φT , ζT , ψε − 1, 1− σε, or

any other duality-inducing performance criterion. Denote the set of all such

linear functionals for φ by Lφ [NC] = {`φF : PF ∈ NC}. These functionals will

be called the performance functionals of a performance criterion φ.

Recall from Chapter 7 that the performance criterion is continuous

if G is either continuous or sample convergent Gf -a.s.. Therefore, `F is a

continuous linear functional over subsets of A[MFtr] containing only optimizers

that are almost surely continuous under the joint distribution of F and Z.

The standard (continuous) dual space of A[MFtr] consists of all its continuous

linear functionals, denoted as usual by A∗[MFtr]. The fact that at least some

performance functionals may also be continuous suggests that there is some

overlap between Lφ and A∗.

In many cases, there is more than just some overlap. The space A is a

normed vector space, as is R. A standard result of operator theory holds that

any linear functional on A is bounded if and only if it is continuous. Consider
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the standard operator norm for these functionals, given by

||`||L = sup
{Gf∈A:||Gf ||A=1}

`(Gf ). (10.7)

That is, the operator norm of a linear functional on A is the upper bound

of that functional when applied to all long-running optimizers extended from

the appropriate subset of PF. For a given performance functional, ||`φF ||L

is bounded only if φ is bounded PF -a.s. over all of Gf . Thus the space of

functionals Lφ consists entirely of bounded linear functionals whenever φ is

one of ψNε − 1 or 1− σε, and possibly in many other cases as well.

As a consequence, every performance functional for a bounded φ is

also continuous, and Lφ ⊆ A∗. Given this observation, it seems reasonable to

speculate that

A∗ =
⋃
φ bdd

Lφ. (10.8)

Importantly, the fact that `φF = EPFφ is continuous does not imply that φ

is continuous over objectives. Rather, the continuity of `φF is an extension of

the fact that φ is everywhere continuous over optimizers as proven in Theo-

rem 7.3.5. It is also possible for a subset of Lφ to be bounded as well. If F

is almost surely bounded, then `φF is bounded when φ is one of φT , ζT , and

sometimes φw. In these cases, `φF is also continuous over optimizers.

10.3.2 Performance-improving Linear Extensions

Because the performance functionals are linear, then performance on a

particular random objective could be improved by extending the line between
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two optimizers. If F is a random objective and G,G′ ∈ Otr are optimizers with

`φF (G) < `φF (G′) then supposing G′ is not at the boundary of Otr, better per-

formance under φ can be obtained by extending the line Aα = G + α (G′ − G)

to the boundary of Otr, recalling that Otr is a closed convex set by Proposi-

tions 3.4.2 and 3.4.4. In this case, one seeks the largest β > 1 such that Aα[t, f ]

remains a probability distribution Aα-a.s. for all α ≤ β. It is not immediately

clear how to find the requisite β, or how to sample Aα for α > 1, but the

possibility of optimizing optimizers in this way is an intriguing consequence of

the formal theory. This line of thought is an interesting direction for future

work.

10.3.3 Performance-based Linear Projections

The duality between optimizers and priors also suggests that it could

be possible to decompose subsets of optimizers linearly onto a pseudo-basis

induced by the choice of performance criterion. In this way, a set of optimizers

can be projected into a lower dimensional space, where their similarity and

relative nearness in terms of performance may be assessed. Section 8.5 and its

associated figures illustrate a simple projection analysis of this type.

In general, the spaces A and Ma are far too large to be characterized by

a countable basis. Still, given any optimizer Gf ∈ A and a sequence of random

objectives F1, . . . , FN , the performance functionals `φF1
, . . . , `φFN can be applied

to Gf to project it into RN . This projection can be represented as

proj(G, φ, {Fi}Ni=1) =
(
`φFi(G)

)N
i=1

, (10.9)
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where N may be infinite.

For a family of priors F ⊆ Ma (countable or finite), proj(G, φ,F) is a

real vector of dimension |F|. Because the functionals `φFi are not guaranteed to

be orthogonal, the set formed from the projection of all optimizers in A may be

a manifold of lower dimension than R|F|, and many optimizers will project to

the same point, since R|F| is generally of lower dimension than A. The choice

of performance criterion plays a key role in determining the capacity of the

projection; a trivial performance criterion, for instance, projects all optimizers

to a single point regardless of the random objectives used. Likewise, if the

random objectives are similar, the projection they induce may be less powerful

for distinguishing optimizers.

In Section 8.5, the random objectives forming the projection set were

deterministic, consisting of the experimental benchmarks. The benchmark set

covered a wide variety of function types, but this set was still small and non-

orthogonal. It would be of interest to see whether a larger set of stochastic

functions would result in similar relationships among the optimizers tested.

This section has advanced several interesting perspectives on how the

performance functionals and other linear projections of optimizer performance

can be used both to improve optimization and to study the performance of op-

timizers. A full development of this material is left as future work, discussed in

Chapter 14. But it is clear that the formal approach adopted in this disserta-

tion makes it possible to articulate numerous theoretical and practical issues

worthy of further study. For now, the discussion turns to a game-theoretic
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analysis of optimization that examines some of these issues in a slightly dif-

ferent setting.

10.4 The Optimization Game

The process of optimization can be treated as a two-player game pit-

ting an optimizer against an objective function. The optimizer attempts to

minimize the performance criterion; the objective function seeks to maximize

it. This arrangement will be termed the Optimization Game, and it will be

analyzed in this section. This point of view will lead to new insights about

optimization. The existence of an NFL prior in every search domain will be

proven. For non-NFL priors, the information-maximization principle will be

introduced, which suggests how to identify the optimal optimizer for a fixed

function prior. The information-maximization principle will then become the

central theme in the remaining chapters of the dissertation.

10.4.1 Game Theory and Optimization

Game Theory was formally proposed by von Neumann and Morgenstern

in Theory of Games and Economic Behavior [205]. It was intended as a formal

framework within which the decisions of rational economic actors could be

quantified and explained in terms of their available actions and the likely

response to those actions by other actors.

Formally, a two-player zero-sum game consists of a set of strategies X

available to the first player, a set of strategies Y available to the second player,
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and a value function V : X × Y → R that maps a pair of strategies, one for

each player, to the score that the first player obtains when those strategies are

adopted by each player, respectively. The score for the second player is defined

as −V , so that the two scores sum to zero. The zero-sum game is adversarial;

one player wins, and the other loses. Each player seeks to maximize its value

function.

This description from the prior paragraph is known as the normal form

of a game. The strategies are termed pure strategies and are not allowed

to involve random choices. In the Optimization Game, the first player op-

timizes an objective function, and the pure strategies it can play consist of

the long-running trajectory-restricted deterministic optimizers A [DFtr]. The

second player chooses an objective function to confound the optimizer, and

its pure strategies are identified with the available objective functions, RX .

The value function is given by the logarithm of a performance criterion, e.g.

V = − log ζTm , with the logarithm applied to yield positive and negative val-

ues and additively inverted so that maximizing the value function minimizes

the performance criterion. The first player is referred to as the optimizing

player, and the second player is referred to as the objective player.

In addition to deterministic, pure strategies, players may opt to play a

mixed strategy if the game is repeated. In each repetition of the game, each

player randomly selects a pure strategy according to some distribution and

plays the selected strategy. The particular distribution over pure strategies is

referred to as a mixed strategy. In the Optimization Game, the mixed strate-
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gies for the first player are the long-running trajectory-restricted optimizers,

A [Otr]. The available mixed strategies for the second player are the the ad-

missible function priors, Pa
[
RX
]
. When mixed strategies are considered, the

value function is

V (G,PF ) = − log 〈G,PF 〉ζTm .

In addition to the normal form, games have an equivalent representation

as a series of iterated choices. In the Optimization Game, play proceeds in

turns: The first player selects a point to be evaluated according to its chosen

optimizer, and the second player evaluates that point according to its chosen

objective. The history of evaluation points and their evaluations is fixed at

each turn; neither player can undo its choices. In addition, the second player

must be consistent with its prior evaluations. If it has previously evaluated a

particular point, it must return the same evaluation as previously.

The mixed strategies used by the optimizing player in extensive form are

the elements of Otr. Suppose the first player has adopted a strategy G ∈ Otr.

At time step n + 1, the player samples G[Zn
1 , F (Zn

1 )] to choose an evalua-

tion point Zn+1 ∈ X, using Zn
1 = Z1, . . . , Zn to represent the play history

prior to time n + 1 and F (Zn
1 ) to represent the history of observed function

evaluations F (Z1), . . . , F (Zn). If the objective player is playing a strategy

PF ∈ Pa
[
RX
]
, then he responds by selecting an evaluation F (Zn+1) ∈ R

according to PF (F (Zn+1) | F (Zn
1 )).

The extensive form of a game is often represented as a tree, called

the game tree. Each node of the tree represents a decision by one of the
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players, and the tree has one branch for each decision. In the Optimization

Game, players may have infinitely many options. For this reason, many of the

standard results of Game Theory, such as the Minimax Theorem, do not apply

in general. However, if the search space is finite and the objective functions

are restricted to take on finitely many values, the game tree representation is

valid, and Minimax applies.

10.4.2 The Role of Information

The Optimization Game is a game of perfect information. At each

time step, the players have access to the same information, consisting of the

trajectory Zn
1 and its evaluations F (Zn

1 ). As described by von Neumann,

the play history may be regarded as a filtration of σ-algebras, specifically,

the filtration progressively generated by Zn
1 and F (Zn

1 ) [205]. This filtration

gradually reveals the strategy of each player.

If the objective player is playing a mixed strategy PF , then the infor-

mation contained in this filtration can be leveraged to produce a strategy for

the optimizing player. As above, Zn
1 = Z1, . . . , Zn is the history of the first

player’s choices, and F (Zn
1 ) = F (Z1), . . . , F (Zn) represents the second player’s

choices. Let Hn = σ (Zn
1 , F (Zn

1 )) be the σ-algebra generated by the histories

Zn
1 and F (Zn

1 ). Then at a given time step n, consider

Fn(x) = E [F (x) | Hn] . (10.10)

The function Fn is the conditional expectation of F with respect to Hn. The

conditional expectation is the closest random function to F out of all Hn-
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measurable random variables using the L2 norm over PF .1 Equivalently, the

random error Fn(x)−F (x) has lower variance than the error G(x)−F (x) for

any other random function G and any x ∈ X. That is, Fn is the best estimate

of F given the information in Hn.

10.4.3 The Objective Player Wins

When the function prior is such that evaluations reveal information

about the objective function, then the best strategy for the optimizing player

should leverage that information. In the Optimization Game, however, the

objective player holds a trump card. He can select a strategy that intentionally

hides information about the objective function so that evaluations effectively

yield no information about the true minimum of the objective. Specifically, the

objective player can win with an arbitrarily large score by playing a specially

tailored NFL prior.

According to the Weak NFL Identification Theorem 9.3.8, an NFL

prior is mean-constant and path independent. Weak NFL is used in this

section because the value function defined above was based on the particular

performance criterion, ζTm . Path independence deprives the optimizing player

of any information; under an NFL prior, the estimate Fn(x) is a constant,

since Fn(x) = E [F (x)]. All optimizing strategies perform equally against an

NFL prior. By adopting an NFL prior, the objective player fixes the score of

1This fact is a consequence of the Hilbert Projection Theorem, since E [G (F − Fn)] =
E [E [GF | Hn]− E [GFn | Hn]] = E [GFn −GFn] = 0.
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the game to a constant, independent of the choices made by the optimizing

player. In order to prove that the objective player wins with an arbitrarily

large score, it needs to be shown that a suitable NFL prior exists, and that it

can be constructed to yield an arbitrarily negative value for the game.

Theorem 10.4.1. There exists an NFL prior for the Optimization Game that

results in an arbitrarily large negative value for the game.

Proof. This proof assumes that the space X is infinite. The result also holds

for finite X if the m in ζTm has m < |X|, but the finite case will not be handled

here.

For the infinite case, the first step is to construct an NFL prior for

an arbitrary space, which will be accomplished using the Kolmogorov’s con-

sistency theorems, as described in Section 6.1. First, recall that B
[
RX
]

is

the σ-algebra generated by cylinder sets over the Borel σ-algebra B [R], and

B
[
XN
]

is the σ-algebra generated by cylinder sets over Bτ , the Borel σ-algebra

on (X, τ). Define PF to assign uniform probability to F (x) on [0, 2M ], for any

A ∈ B [R] and any x ∈ X,

PF (F (x) ∈ A) =
1

2M

∫ 2M

0

1A(y)dy, (10.11)

where 1A is the indicator variable on the set A, i.e. 1A(x) = 1 if x ∈ A and

zero otherwise. Further, let separate values be independent of each other, so

that for any (A1, . . . , An) ∈ B [Rn] and x1, . . . , xn,

P (F (x1) ∈ A1, . . . , F (xn) ∈ An) =
n∏
i=1

PF (F (xi) ∈ Ai) . (10.12)
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Equations 10.11 and 10.12 assign a probability to each cylinder set B ∈

B
[
RX
]
. The finite-dimensional projections given by these equations are in-

variant under permutation, and the independence of the finite variables guar-

antees that the finite-dimensional distributions are consistent as the dimen-

sion increases. By Kolmogorov’s consistency theorem, PF has an extension to

B
[
RX
]

whose finite-dimensional distributions match the two equations above.

Since all finite-dimensional projections are contained on the interval

[0, 2M ], their extensions are as well, and so PF places probability one on

bounded functions that reside in the interval [0, 2M ] for all x ∈ X. From

Equation 10.12, PF is path independent. It is also mean-constant, since for all

x ∈ X

E [F (x)] =

∫ 2M

0

y PF (F (x) ∈ dy) =
1

2M

∫ 2M

0

y dy = M.

Therefore PF is weakly NFL on ζTm by Theorem 9.3.8.

In order to complete the proof, the value of EF ∗ must be computed.

Let (xn)∞n=1 be a countable sequence in X. Construct a countable subsequence(
xmj
)∞
j=1

by first letting m1 = 1, and then for j > 1 choosing mj = k with

k > mj−1 so that F
(
xmj
)
< 2−j. Such a countable subsequence cannot always

be constructed, but the set of functions on which it can be constructed have

probability one because

PF
(
F (xn) ≥ 2−j, ∀n > mj−1

)
=

∞∏
n=mj−1+1

PF
(
F (xn) ≥ 2−j

)
=

∞∏
n=mj−1+1

1− 2−j

2M
= 0,

leveraging the mutual independence of F (xn). This fact is true for each j.

343



Thus it is possible to choose mj < ∞ with probability one. Because the

sequence xn was arbitrary, for all ε > 0, PF (F ∗ < ε) = 1 and EF ∗ = 0.

PF is weakly NFL on ζTm , and thus E [ζTm (G,F )] is a constant for all

G ∈ Otr. Let G place probability one on some point z ∈ X. Then

EPF [ζTm (G, F )] = EPF [F (z)− F ∗] = M − 0 = M.

Thus the value of the game under PF is − logM for the optimizing player.

The choice of M was arbitrary and can thus be made arbitrarily large.

Theorem 10.4.1 proves that the objective player controls the game. Im-

portantly, it also proves the existence in any search domain of an NFL prior

that is not universally constant. However, the implications of this theorem

should not be overwrought. An NFL prior corresponds to the philosophical

position that the real world is of unbounded complexity and inherently un-

learnable. This position is of little practical value. If nothing can be learned,

no learning should be attempted. Yet the very experience of learning and pre-

dictability by humans and other animals nullifies the hypothesis that learning

is impossible. The main lesson of Theorem 10.4.1 is that one is unlikely to

encounter arbitrarily hard learning problems unless faced with a rational and

adversarial intelligence.

Because learning is impossible under NFL, the remainder of this section

assumes the objective player plays a fixed, non-NFL strategy. In this case, an

optimizing strategy that seeks to maximize information may be optimal.
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10.4.4 Optimal Optimization through Information-Maximization

In cases where the conditional expectation under the prior is com-

putable, it is possible for the optimizing player to play a strategy that maxi-

mizes the information about the random objective. In fact, it is expected that

such a strategy is optimal. This concept is formulated as the information-

maximization principle

The Information-Maximization Principle. The optimal optimizer against

a fixed function prior PF is the one which fully utilizes the information obtained

from prior evaluations in order to select new points optimally. Specifically, for

a performance criterion φ(G, f) = EGf [h(Z)] and the game history Hn, define

g(x | Hn) = EPF
[
h(Z) | Hn, Z

∞
n+1 = x

]
. (10.13)

with Z∞n+1 representing the sequence Zn+1, Zn+2, Zn+3, . . . and x ∈ XN. It is

conjectured that an optimal strategy on a performance criterion φ chooses the

point Zn+1 to be any member of the minimizing set for g:

On+1 =
{
y1 | y ∈ XN, ∀x ∈ XN, g(y | Hn) ≤ g(x | Hn)

}
(10.14)

for a given evaluation history Hn. That is, the set of optimal moves at each

time step consists of those moves that both improve the ultimate performance

and simultaneously add the most information to a probabilistic model of the

final performance.

The estimate of any random quantity with the least variance given a

source of increasing information (i.e., a filtration as described in Chapter 6) is

a martingale:

345



Definition 10.4.1. Given a stochastic process Z = (Zn)n∈I for some strictly

ordered index set I and a filtration (Fn)n∈I to which Z is adapted, Z is a

martingale if for m ≤ n,

Zm = E [Zn | Fm] .

Martingale theory is an important topic in the theory of stochastic

processes, and the properties of martingales are generally well understood [38,

105]. In particular, a martingale can be generated by conditioning on a filtra-

tion. Such a martingale is known as a Levy martingale (or a Doob martingale);

one example is the process (φn)n∈N defined by

φn (G, F ) = E [φ (G, F ) | Hn] . (10.15)

The optimal optimizer as predicted by the information-maximization principle

controls the filtration Hn in order to optimize the conditional expected per-

formance φn. In essence, the proposed optimizer plans all future evaluation

points to optimize its performance given the results of prior evaluations, and

then proposes the first point of the optimal plan. A new plan is developed at

each step to take the results of evaluation into account.

It is not entirely clear how to prove the information-maximization con-

jecture, and even if the conjecture is proven, it may not always be possible to

find a point in the minimizing set On+1 analytically, although it may be possi-

ble to approximate such a point. The next subsection proposes a strategy that

attempts to implement the information-maximization principle heuristically.
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10.4.5 Martingale Optimization

The information-maximization principle suggests a new approach to

optimization that will be termed martingale optimization. A martingale op-

timizer generates an optimization process that is a martingale with respect

to the filtration generated by the evaluation history. In this approach, the

results of objective evaluation as an information source that the optimizer can

use to choose which points to evaluate. The following paragraphs outline one

possible martingale optimizer that can be used if the function prior is known.

The Optimization Game as defined above is scored with a value func-

tion based on the performance criterion ζTm . Thus the optimizing player can

spend m− 1 moves to develop a good model of the objective function around

the optimum, and then one final move to guess the minimal point based on

the model. Recalling Fn from Equation 10.10 and applying the information-

maximization principle, the optimal final move is given by

Zm = argminx∈XFm(x), (10.16)

which is the most rational estimate of the true minimum given the information

in Hm. The initial moves serve to prepare Hm so that it holds as much useful

information as possible.

In order to maximize the information in Hm during the first m − 1

moves, the first player could attempt to minimize the variance of the estimate

Fm, since variance represents uncertainty, and the estimate is most likely to

be mistaken in areas where its variance is high. However, merely minimizing
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Figure 10.1: An example showing an estimated objective function such that the
variance of the estimate increases with distance from the control points. The
highest variance occurs at x = 0.75, but a new optimum is much more likely to
be found near 2.25. When optimizing an objective function, merely reducing
variance is not enough; the objective values must be taken into account as
well. The optimal point to choose should trade off between reducing variance
and improving the objective value.

the variance is not enough. In some places, the variance may be high, but the

nearby values of the objective function are so large that the true minimum of

the function is highly unlikely to reside in that region.

This situation is visualized in the context of a Gaussian process in

Figure 10.1. In this case, it is more profitable to minimize the variance in

regions where the objective value is low. Thus there is a tradeoff between

removing uncertainty in general and removing uncertainty near the expected

minimum. Proportional sampling provides one way to address this tradeoff.

Let Ln be the lower variance-adjusted estimate of F ,

Ln(x) = Fn(x)− α
√

Var [F (x) | Hn]
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for some α, with α = 1 being the first standard deviation. Then, for n < m,

the optimizing player can choose Zn with probability

P (Zn ∈ dx) ∝ exp

(
−Ln(x)

T

)
, (10.17)

where T is a factor that controls the sensitivity of the strategy to different

values of Ln. The probability in Equation 10.17 chooses points proportionally

according to the variance-adjusted estimate Ln. It balances the choice of points

near known good values against the need to increase evaluations in regions with

high variance. This probability is similar to the Boltzmann distribution used

by simulated annealing.

In summary, then, the proposed strategy for the optimizing player is

to choose m − 1 points in succession according to Equation 10.17 followed

by a single point chosen according to Equation 10.16. This strategy is an

information-maximizing strategy. It attempts to develop a useful set of infor-

mation near the apparent optima and then makes its best guess at the end.

Such a strategy takes advantage of the control that the optimizing player has

over which points can be evaluated. While the tradeoff between exploration

and exploitation encoded in Equation 10.17 may not be optimal, it seems

plausible that this strategy or a similar one could perform best against a given

function prior PF on the performance criterion ζTm .

In order to implement this particular strategy, it must be possible to

compute or approximate both E [F (x) | Hn] and Var [F (x) | Hn]. Thus this

strategy is still not completely specified, and a computable function prior F
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is needed in order to instantiate it. In the next chapter, a simpler strategy

named evolutionary annealing is proposed that ignores the conditional variance

and assumes that the function prior is a random mixture sieve. This simpler

strategy can be fully specified and efficiently implemented. Future studies will

account for more complex priors as well as the conditional variance.

10.4.6 Curiosity Search

Curiosity Search, introduced by Schaul et al [177], partially implements

the strategy described above. In Curiosity Search, the current set of points and

its evaluations are used to construct a Gaussian process estimate of the objec-

tive function. The next evaluation point is selected by an internal optimization

routine on the Gaussian process. If the objective function is drawn from a dif-

fusion prior as described in Section 10.1.2, then the conditional expectation Fn

is the mean value of the Gaussian process with a matching kernel. Thus Cu-

riosity Search selects evaluation points according to Equation 10.16 above. To

fully implement the information-maximizing strategy for ζTm , Curiosity Search

would need to be modified to intentionally minimize the variance. Without

doing so, however, this method still obtains good results on optimization.

10.4.7 Strategic Forgetting

Genetic algorithms strategically forget all prior populations. As such

they leak information. Given the discussion above, one might expect the

strategy of forgetting to be a mistake that will always reduce performance.
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In actual practice, forgetting plays two roles. The first is practical. Partic-

ular algorithms can tend to focus evaluations on region of the search space

where they have had success previously. This focusing behavior can create

a feedback loop that pulls all future evaluations into a narrow region of the

search space, resulting in convergence around a local minimum. Periodically

forgetting old points can help preserve diversity among new evaluation points.

However, an optimizer that uses information effectively need not be trapped

by this feedback loop. An example of such an optimizer is evolutionary an-

nealing, which is introduced in the next chapter. Also, notice that the most

effective population-based algorithms on the static fitness functions in Chap-

ter 8 have some means of retaining the most important information from past

evaluations. DE keeps the best evaluation point along a sequence of parallel

trajectories, and CMA-ES follows a gradient-based meta-strategy that tracks

an evolutionary path.

The second benefit of forgetting is observed when the objective function

is dynamic. The assumptions of this dissertation require the fitness function

to be static and unchanging. Even in the context of function priors, the ob-

jective function, once evaluated, has been presumed to retain the same value

on any repeated evaluation of a previously visited point. Allowing the ob-

jective function to be stochastic would not substantially change this analysis.

Stochastic objective functions can be treated as a space of functions of the

form X → P [R] instead of X → R, and many of the definitions and theo-

rems would still be relevant. But in the case of a dynamic fitness function,
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there is no presumed regularity to repeated evaluations at the same point. A

strong solution at one point in time could later become a poor solution due to

nothing other than the passage of time. In a dynamically changing landscape,

forgetting may be a viable strategy because it allows an optimizer to adapt to

changing fitness conditions.

For these reasons, population-based optimizers that forget are most

likely suboptimal on static or simply stochastic objective functions, but they

can outperform other strategies on a dynamic objective. Dynamic objectives

do occur in the real world, particularly in competitive domains, such as adver-

tising, marketing, and games. In Chapter 8, optimizers were tested on static

objectives, and population-Markov methods such as rGA, rBOA, and even SA

fared poorly. Thus, particularly on a static objective, strategic forgetting is

a poor strategy in comparison to strategies that preserve useful information

over the entire evaluation history.

10.5 Conclusion

The NFL Identification Theorem showed that the NFL property im-

plies path independence. Path independence in turn implies that learning and

prediction are impossible. Given that learning and prediction are observed in

reality, one must conclude that the reality prior is not subject to NFL. That

is, general-purpose optimizers exist, and it makes sense to search for them.

This concept was discussed from a pragmatic and philosophical point of view

in Section 10.1, where it was conjectured that NFL produces hypothesis that
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necessarily violate Occam’s razor. Thus, if smaller problem descriptions are

more likely, then effective general-purpose black-box optimizers exist.

When the function prior is non-NFL, then performance varies over op-

timizers and priors. The duality from Section 10.2 provides a means of relating

the performance of a class of optimizers to a range of function priors. This

duality provides a source of linear functionals that can be used to project a

set of optimizers into a finite Euclidean space, where their relationships with

each other may be more easily analyzed.

In particular, in the case where the problem class is constrained by some

fixed function prior, then one wishes to know which optimizer will perform

best on the given problems. The Optimization Game formalizes this concept

in game-theoretic terms. Since the game is dominated by NFL priors, which

must always exist, the proper choice of optimizer is only relevant when the

prior is fixed. In this case, a strategy that makes full use of the game state

seems likely to perform best. A theoretical strategy implementing this idea was

presented in Section 10.4.5 based on the information-maximization principle in

Equations 10.13 and 10.14. In the next chapter, a concrete class of optimizers

is proposed that implements aspects of this information-maximizing approach.

By this point, the potential power of the formalization adopted by this

dissertation should be clear. This formal analysis brings mathematical tools

to bear on traditional problems in optimization and permits new insights into

what new types of optimizers might be discovered and how their performance

may be assessed. In the final portion of this dissertation, these insights are
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applied concretely to propose evolutionary annealing, a practical information-

based strategy that builds on the principles of performance from this chapter.
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Chapter 11

The Evolutionary Annealing Method

In Chapter 10, an optimizer was conjectured to achieve its best perfor-

mance on a non-NFL function prior by making full use of the information about

the objective function obtained from function evaluations, and martingale op-

timizers were proposed as a consequence. In this chapter, evolutionary an-

nealing is proposed as a practical martingale optimizer, i.e., a general-purpose

optimization technique that efficiently uses past evaluations in order to select

new evaluation points. Like simulated annealing, evolutionary annealing is a

meta-technique that can be applied to many optimization tasks. This chap-

ter introduces the basic algorithm and shows theoretically that instances of

the algorithm converge to the global optimum under certain conditions. The

next two chapters evaluate this approach experimentally in two specific spaces,

finite-dimensional Euclidean space and neural networks.

11.1 Foundation

In the previous chapter, a martingale optimizer was defined as any opti-

mizer whose optimization process is a martingale with respect to the evaluation

history. Evolutionary annealing, introduced in this chapter, is a martingale
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optimizer. Much like the strategy described in Section 10.4.5, it chooses points

proportionally to their expected objective value. It also adopts several simpli-

fying assumptions that make it possible to implement the algorithm efficiently.

The conditional variance is not used to select new points, and the particu-

lar form of the conditional expectation is determined by an implementation-

specific family of mutation operators. Given the discussion of globally optimal

optimizers in Chapter 10, it may seem disappointing that the practical algo-

rithm proposed here does not implement many of the concepts suggested by

the theory. However, it does apply the core ideas of martingale optimization,

and the resulting optimizer is competitive with other state-of-the-art optimiz-

ers despite its limitations. The success of evolutionary annealing suggests that

future work on developing efficient ways to implement more aspects of the

information-maximization principle is likely to be rewarded.

11.1.1 Martingales vs. Markov Chains

Martingale optimization stands in contrast to optimization methods

based on the convergence of Markov chains. Simulated annealing, for instance,

converges globally in some instances because its sequence of accepted points

generates an irreducible, aperiodic Markov chain that satisfies the principle

of detailed balance [109]. Most evolutionary algorithms are also Markov; the

population for each generation is constructed stochastically from only the pop-

ulation in the prior generation. As a result, these algorithms can discover and

then forget high-quality regions within the search domain. They can therefore
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miss crucial information from the past, resulting in suboptimal performance.

This problem can be alleviated by selecting new evaluation points based

on the entire pool of previously observed solutions. A genetic algorithm with

non-Markovian selection can in principle become trapped in local optima by

prematurely focusing on a narrow region of the search space. Evolutionary

annealing combines genetic algorithms and simulated annealing using martin-

gales in a manner that prevents this premature focus, resulting in an evolu-

tionary algorithm that takes advantage of the full information gathered from

the entire history of function evaluations. Evolutionary annealing solidly out-

performs both genetic algorithms and simulated annealing, and compares fa-

vorably with the bank of stochastic optimization methods tested in Chapter 8.

11.1.2 Characteristics of Evolutionary Annealing

Evolutionary annealing is a global optimization algorithm for Borel

measure spaces that can be alternately viewed as a genetic algorithm with

non-Markovian selection or as a method for performing simulated annealing

without the Metropolis sampler. Evolutionary annealing introduces two an-

nealed selection operators, exploiting a connection between the average ef-

fect of proportional selection and the annealed Boltzmann distributions used

in simulated annealing. Although many genetic algorithms have previously

employed the Boltzmann distribution for selection (e.g. [78, 102, 141]), evolu-

tionary annealing is distinct from these approaches in that it can select any

member of any prior population and does so using information generated by a
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sequence of refining partitions of the search domain. Evolutionary annealing

is distantly related to Estimation of Distribution Algorithms (EDAs), since it

builds a global model of the annealing distributions for the fitness function (see

Section 2.7.2, [140, 154]). However, whereas EDAs build models based solely

on the best members of the immediately prior generation, evolutionary anneal-

ing maintains a martingale model based on the entire history of observation.

By leveraging the information acquired from function evaluations, evolution-

ary annealing builds an increasingly refined estimate of the fitness function

that allows it to locate the global optimum. To illustrate this process, the

progress of an example run of evolutionary annealing in a two-dimensional

space is shown in Figure 11.1.

Theoretically, evolutionary annealing converges asymptotically to the

true global optima of the fitness function. The proof is given in Section 11.3.1.

Experimentally, evolutionary annealing converges at a controlled rate as demon-

strated on the twelve global optimization benchmarks from Chapter 8. Be-

cause of its efficient use of information gained from evaluations, evolutionary

annealing performs well in a comparison with the other optimization methods

evaluated in Chapter 8, i.e. simulated annealing (SA), differential evolution

(DE), evolution strategies with correlated matrix adaption (CMA-ES), particle

swarm optimization (PSO), the real-coded Bayesian optimization algorithm

(rBOA), a real-coded genetic algorithm (rGA), the Nelder-Mead algorithm

(NM), a basic generating set search (GSS), and conjugate gradient descent

(CG).
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(a) 50 points (b) 125 points (c) 250 points (d) 500 points

Figure 11.1: Example run of evolutionary annealing on Shekel’s Foxholes in
two dimensions (shown in Figure 8.1(e)). Images are heat maps displaying the
estimated probability density of evolutionary annealing, that is, the probability
that each point will occur in the next generation of evolutionary annealing.
White areas are more probable, and dark areas are less probable. Successive
frames show how the probability density changes once 50, 125, 250, and 500
points have been evaluated. The resulting distribution increasingly models
the fitness function; comparison with Figure 8.1(e) confirms that after 500
evaluations, evolutionary annealing has focused on the true global optimum.

11.1.3 Expected Proportional Selection

Evolutionary annealing builds on concepts from simulated annealing

and evolutionary algorithms (discussed in Section 2.5.1, Section 2.6, and Chap-

ter 4). There is an interesting theoretical connection between genetic algo-

rithms and simulated annealing that motivates the global selection mechanism

of evolutionary annealing. This connection is exposed by trivial manipulations

of a previous result of Mühlenbein and Mahnig [141], as will be discussed in

this subsection.

Many genetic algorithms employ proportional selection, where individ-

uals in the prior population are selected proportionally to their observed fit-

ness (see Section 4.2.3). Much like simulated annealing, proportional selection
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sharpens the fitness function implicitly with each generation, so that on aver-

aging over population trajectories the selection operator asymptotically places

probability one on the optima of the fitness function. Following Mühlenbein

and Mahnig [141], proportional selection at the nth time step is given by

Snf (x) ∝ f(x)Nn−1
x , where Snf (x) is the probability of selecting x at time n,

and Nn
x is a random variable indicating the number of copies of the solution

x in the population at time n. Taking the expected value over Nn
x ,

E
[
Snf (x)

]
∝ f(x)E

[
Nn−1
x

]
. (11.1)

The expected value on the left is also a probability distribution over x, here

termed expected proportional selection. It differs from proportional selection

in that expected proportional selection may assign positive probability to any

point in the search domain. It is possible to imagine an evolutionary algorithm

where each successive population is sampled from just this rule. This algorithm

is a one-stage, selection-only genetic algorithm; because expected proportional

selection averages over all individuals, no variation is required.

In such an algorithm, if the initial population is selected uniformly at

random, then E [N0
x ] is a constant, so

E
[
S1
f (x)

]
∝ f(x). (11.2)

By definition, E[Snf (x)] = E[Nn
x ]/K where K is the population size, since

Nn
x /K is just the proportion of the population taking the value x. Applying

this fact to the recursion in Equation 11.1 yields E[Snf (x)] ∝ f(x)n. Thus
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expected proportional selection sharpens the fitness function. Introducing

g(x) ≡ − log (f(x)),

E
[
Snf (x)

]
∝ exp (−g(x))n

= exp

(
− 1

n−1
g(x)

)
. (11.3)

Comparing Equation 2.3 to Equation 11.3, expected proportional selection

is found to have an annealing distribution on − log f with cooling schedule

Tn = n−1. Since the logarithm is monotonic, the maxima of f are the minima

of g.

Expected proportional selection is not a feasible selection rule, because

it requires total knowledge of the fitness function a priori. If such knowledge

were possible, there would be no need for iterative optimization. The optima

would already be known. Expected proportional selection could be estimated

by averaging over the trajectories of several different runs of a genetic al-

gorithm, but the number of trajectories required for a good estimate would

be intractably large. Genetic algorithms with proportional selection can be

viewed as an approximation of expected proportional selection.

Evolutionary annealing exploits the theoretical relationship between

simulated annealing and genetic algorithms to create a hybridized algorithm

that merges qualities of both algorithms, as will be described next.
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11.2 The Evolutionary Annealing Approach

This section defines the evolutionary annealing algorithm. The formal

context and notation are introduced first, followed by the algorithmic details.

11.2.1 Formal Context and Assumptions

Reviewing and expanding the notation from Section 3.2.3, let the search

domain (X, τ) be a topological space with a given Hausdorff (separated) topol-

ogy, and let (X,Bτ ) be a measurable space such that Bτ is the Borel σ-algebra

for the given topology on X. By this formulation, open sets are always Bτ -

measurable. Evolutionary annealing is defined with respect to a base measure

λ that is finite on (X,Bτ ) and positive on all open sets. Let f : X → R be

a fitness function which is to be minimized, and assume that f has all neces-

sary integrability properties required by the formulae that follow. Primarily,

exp(−f/T ) must be integrable for bounded T > 0. The notation (Pn) will

represent a stochastic population process, that is, a sequence of populations

generated by a stochastic optimization algorithm. Each population Pn con-

tains a fixed number of individuals and is denoted by Pn =
(
P k
n

)K
k=1

, where K

is the population size. For a given trajectory t ∈ T[X] with |t| = NK, this

definition implies that P k
n = H(t)n,k for n ≤ N . The set An represents the set

of all individuals up to time n, An =
⋃
m≤n,k

{
P k
m

}
. With these definitions,

the basic algorithm can be defined.
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11.2.2 Basic Algorithm

Evolutionary annealing consists of selection and variation phases. The

population Pn+1 is sampled one individual at a time in these two stages. In

the selection phase, an element a ∈ An is selected with probability

pn (a) = ξn exp

(
−f(a)

Tn

)
λ (Ea

n) , (11.4)

where Tn is a cooling schedule, ξn is a normalizing factor, and λ (Ea
n) is the

measure of a region surrounding the point a, discussed below. This selec-

tion mechanism will be termed annealed proportional selection based on the

relationship between expected proportional selection and annealing described

in the prior section. Using the formalisms introduced in Chapters 3 and 4,

annealed proportional selection may be written as

APS 〈T 〉 [t, f ]({a}) = 1a∈H(t)p|H(t)|(a), (11.5)

where T = (Tn)∞n=1 is the cooling schedule and 1a∈H(t) is used to ensure that

the set A|H(t)| has probability one, as required by the formal definition of a

selection rule. The primary distinction of APS is that it can select any member

of any prior population.

For the variation phase, evolutionary annealing requires a family of

probability distributions {νxn}x∈X used to mutate selected points, so that given

a selected point x, νxn is used to vary x at time n. The choice of mutation distri-

butions is essentially arbitrary, although the convergence theorems that follow

will restrict this choice. In Euclidean space, Gaussians can be used, centered
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at x and with the variation as a hyperparameter σn. In binary spaces, indi-

vidual bits can be flipped with a probability dependent on n. The particular

mutation distributions should be chosen based on the needs of the problem

at hand; a mutation distribution whose shape is well matched with the ob-

jective function will converge much faster than one that is not. The choice

of mutation distribution determines the function prior with respect to which

evolutionary annealing is best aligned in the sense of Section 10.2. Some re-

sults for a specific instantiation of evolutionary annealing with real vectors will

be discussed in Section 12.2. The family of mutation distributions defines a

mutation operator in the terminology of Chapter 4 through the equation

V[t ∪ x, f ](A) = νx|H(t)|(A). (11.6)

Once an individual a ∈ An has been selected with probability pn (a),

then that individual is mutated according to νan in order to generate a new

member of the population. That is, each individual in the population at time

n+ 1 is sampled according to

P k
n ∼

∑
a∈An

pn(a)νan (dx) . (11.7)

Thus evolutionary annealing samples its populations from a sequence of mix-

ture distributions with one mixing point located at each individual from prior

populations. In this way, the selection is non-Markovian; the selected individ-

ual could come from any previous generation. The mixture probabilities pn(a)

are chosen according to the annealing formula in Equation 11.4.
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Equation 11.7 may be recognized as a convolution, and so evolutionary

annealing with annealed proportional selection may be written as

EA 〈T,V〉 = APS 〈T 〉 ? V, (11.8)

reflecting a dependence on the cooling schedule and the choice of mutation

distributions.

Intuitively, if the temperature is fixed at a constant, as the number

of mixing points increases and the variance of the mutation distribution de-

creases, the mixture distribution in Equation 11.7 converges to the annealing

distribution Af
n in Equation 2.3. It is commonly known that mixtures of Gaus-

sians can model any sufficiently smooth distribution arbitrarily well if enough

mixing points are used. It is also true that mixture distributions in general

can model any probability measure arbitrarily well subject to certain condi-

tions. A specific proof of convergence for evolutionary annealing is offered in

Section 11.3.1; Theorem 11.3.1 states that evolutionary annealing converges

in probability to the optima of f . Therefore Pn is successively sampled from

better and better approximations to Af
n, and as n → ∞, the population se-

quence Pn will increasingly focus on the optima of f . The rate of convergence

will be taken up in Section 11.3.2.

A high-level algorithm for evolutionary annealing over N generations

is shown in Algorithm 1. The algorithm depends on two subroutines, prepare

and sample. The subroutine prepare builds data structures to support effi-

cient sampling of the quantity pn from Equation 11.4. The subroutine sample
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Algorithm 1 Evolutionary Annealing Algorithm

N , the number of generations
K, sample points (population size) per generation(
P k
1

)K
k=1

, the initial random population
A0 ← ∅, all points from all generations
for n← 1 to N do
An ←

⋃
k P

k
n ∪ An−1

pn ← prepare (An)
for k ← 1 to K do
y ← sample (pn)
P k
n+1 ← a sample from νyn

end for
end for

samples from pn using the prepared data structures. Through the use of

highly precise approximations as described in Section 12.1.2, both prepare

and sample can be implemented to run in time logarithmic in the population

size and the number of generations. The specific implementations of prepare

and sample used in the experiments utilize the methods of Section 12.1.2. The

prepare routine adds nodes to the trees described in that section and prop-

agates the components of Equations 12.1 and 12.7 up the tree. The sample

routine employs Equations 12.1 and 12.7 to traverse the tree down from the

root in order to select a previously evaluated point. Assuming that sampling

νan and computing λ (Ea
n) do not add to the complexity, the overall algorithm

has performance O (NK logNK).

In order to make evolutionary annealing concrete, the cooling schedule

must be determined. In light of [82], a default choice for the cooling schedule

is given by T−1n = η log n. Here η is a learning rate that scales the fitness
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function and thereby controls the aggressiveness of selection. A high learning

rate focuses selection on the few best individuals and may restrict exploration

of the space. A low learning rate allows promiscuous selection, slowing down

refinement of previously discovered solutions but increasing the probability of

escaping a local minimum. Again following [82], a possible value for η is 1/d

where d is the largest depth of a local minima relative to its surroundings

in the fitness landscape. In more complex spaces, different cooling schedules

could be considered. There may also be a benefit to linking the variance of

the mutation distribution to the cooling schedule, so that as the probability

of selecting the current best individual decreases, the variance also decreases

to enable refined exploration of the immediate region around the current best.

The effect of parameter settings is explored further in Section 11.3.2.

The region weight λ (Ea
n) is present in Equation 11.4 to avoid a partic-

ular scenario of premature convergence. Once a good solution is discovered,

evolutionary annealing will devote increasing resources to exploring the neigh-

borhood of that point. If these points are also good, then the probability

of selecting more points in the same region will increase in a feedback loop.

Within a few generations, almost all points selected will come from the im-

mediate environment of these good points. If there is a local minimum in the

vicinity, evolutionary annealing would likely become entrapped in that region.

The region weight is intended to serve as a measure of how many individuals

have been previously sampled in the region surrounding the point a. The sets

Ea
n partition X around points in An, the total population so far. Such a par-
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tition can be computed in logarithmic time in many spaces. These partitions

also play an important role in the convergence proof in Section 11.3.1.

11.2.3 Partitioning the Space

To demonstrate convergence of evolutionary annealing, each of the mix-

ing points a ∈ An will be considered representative of a particular region of

the search space X. Each successive set An will be associated with a partition

{Ea
n}a∈An of disjoint sets such that X =

⋃
a∈An E

a
n and a ∈ Ea

n for all n. The

σ-algebra F is assumed to be rich enough to support such partitions based on

any finite collection of points in X. The partitioning set Ea
n is the same as the

one that appears in Equation 11.4.

Provided that there exists a computable algorithm to split any set con-

taining two distinct points into two disjoint sets each of which contains exactly

one of the points, then the partitions can be stored in a binary tree, and if the

splitting algorithm does not depend on the population size of the number of

generations, the computational complexity of maintaining a partitioning tree

is logarithmic on average.

Algorithm 2 partitions any Borel measure space over a Hausdorff topol-

ogy given a function for dividing a partition region between two separate points

in the region. A partition is represented as a binary tree, with the root rep-

resenting the entire space X and each branch partitioning X into two sets.

The algorithm is initialized with a sequence of points {xm}Mm=0 ⊆ X to be

partitioned (the mixing points), a tree T with X as the root node, and an
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Algorithm 2 Algorithm to Generate a Partition Based On Grid Points

{xm}Mm=1 ⊆ X, the mixing points
T ← {X}, the partition tree
k(i)← ∅ for all i = 1, . . . ,M , node assignment function
for m← 1 to M do
N ← the leaf node in T such that xm ∈ N
if ∃j 6= m s.t. k(j) = N then
N0, N1 ← separate (xj, xm, N)
T ← T ∪ {N0, N1}
k(j)← N0, k(m)← N1

else
k(m)← N

end if
end for

assignment function k such that k(m) is the leaf node of the tree assigned

to the point xm, or ∅ if no assignment has been made. The algorithm then

loops through the mixing points, splitting the space where necessary to ensure

that each leaf node contains exactly one mixing point. The algorithm relies

on separate, a domain-specific subroutine to split an existing set. At the end

of each iteration of the algorithm’s main loop, each leaf node is assigned to

exactly one mixing point. When a new mixing point is added, separate parti-

tions the leaf node to which it belongs into two new leaf nodes, each containing

only one mixing point. The process of adding a single new mixing point to

the tree requires only a tree traversal, so that at each generation, updating

the partition requires O (K logNK) time, where NK is the number of points

at the N th generation.

In a vector space, such as Rd, the function separate can in many cases
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be given explicitly. Suppose that X is bounded above by {ui} and below by

{`i} so that X has a rectangular shape. Each node in the partition tree will

restrict the coefficient for exactly one of the basis vectors, say j. To maintain

computability, it is necessary to require that j < D <∞ for some D. That is,

each set Ea
n in the partition is defined as a hyperrectangle on finitely many co-

ordinates, with each step in the traversal of the partitioning tree adding a new

coordinate value for some side of the hyperrectangle. So Ea
n can be represented

as two vectors, ua for the upper bounds, and `a for the lower bounds. Given

the point a ∈ X and a second point x ∈ X, Ea
n can be separated as follows.

Let k = argmaxi≤D |ai − xi|; k is the index at which the rectangle Ea
n will be

split. Suppose ak > xk for the sake of simplicity; the opposite situation is han-

dled analogously. Initialize ux ← ua and `x ← `a. Then set `ak ← 1
2

(ak + xk)

and uxk ← 1
2

(ak + xk). The regions Ea
n+1 and Ex

n+1 defined by these boundary

vectors are then disjoint if the upper boundary is strict. The result of this

partitioning method in R2 is shown in Figure 11.2. This version of separate

cannot separate two vectors that are the same in the first D coefficients. In

an infinite-dimensional vector space, it is possible for two distinct vectors to

have arbitrarily many identical coefficients, and no computable algorithm can

locate the coefficients in which they differ. This situation is of theoretical

more than practical concern, however, and can be ignored in most cases. The

separation algorithm above can be implemented efficiently in many spaces of

interest. Section 12.1.2 discusses how these partition mechanisms can be used

to implement the subroutines prepare and sample from Algorithm 1.
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(a) 10 points (b) 25 points (c) 100 points (d) 250 points

Figure 11.2: Progression of partition regions {Ea
n} on Shekel’s Foxholes during

the run of evolutionary annealing in Figure 11.1 in two dimensions. Images
are heat maps displaying the selection probability of each region; light regions
have a higher selection probability. Successive frames show how the partition
regions gradually model the shape of the fitness function after 10, 25, 100, and
250 points have been evaluated.

11.2.4 Annealed Tournament Selection

Annealed proportional selection as given in Equation 11.4 is a propor-

tional selection rule; individuals are selected according to their proportion of

the overall fitness. Proportional selection has a well-known drawback that

also applies to annealed proportional selection. For example, suppose that the

fitness function f has a minimal value of 0, and consider the selection proba-

bilities for the points x, y with f(x) = 0.01 and f(y) = 0.001 at temperature

Tn = 5. Assume λ (Ex
n) = λ (Ey

n) = 1. Then pn(y)/pn(x) = 1.0018. That is, x

is almost equally as likely to be selected as y, even though y is a whole order

of magnitude closer to the optimum. Thus the more precise solution is no

more likely to be selected than rougher solutions close to the optimum, which

makes refinement of solutions near a local or global optimum sluggish. These

intuitions are confirmed by the experimental results in Chapter 12; annealed
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proportional selection converges within 0.1 of the optimal fitness without dif-

ficulty, but then fails to attain accuracy within 0.001 in most cases.

To address this weakness of proportional selection in genetic algorithms,

tournament and ranking selection were introduced (cf. [201]). These meth-

ods select among individuals according to their fitness rank in the population

rather than according to their raw fitness. For tournament selection, the best

individual is selected with some probability q, termed the selection pressure.

If the best individual is not selected, then the second best individual is chosen

with probability q. Thus the probability of selecting the nth-ranked individual

of the population is proportional to q(1− q)n−1.

A similar concept can be used to define annealed tournament selec-

tion, a non-Markovian version of tournament selection. Annealed tournament

selection replaces Equation 11.4 by

pn (a) = ξn q
1/Tn

(
1− q1/Tn

)r(a)
λ (Ea

n) , (11.9)

where q is the selection pressure, and r(a) is the fitness rank of a in An starting

with 0. Annealed tournament selection uses a cooling schedule Tn so that the

rank becomes increasingly significant with each generation, with the ultimate

result that the top-ranked individual is selected at zero temperature. The

main difference from standard tournament selection is that each individual

must be ranked against all other individuals from all prior generations. As a

consequence, the selection pressure must be much lower. For this paper, the

value of q was fixed at 0.025. Rather than varying q, the learning rate η in the
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cooling schedule can be varied to achieve the same effect.

In terms of the formalism advanced in this dissertation, annealed tour-

nament selection is given by

ATS 〈T 〉 [t, f ]({a}) = 1a∈H(t)p|H(t)|(a), (11.10)

where pn comes from Equation 11.9. Evolutionary annealing with annealed

tournament selection may be defined as

EAtour 〈T,V〉 = ATS 〈T 〉 ? V. (11.11)

With the basic algorithm defined, it can now be shown that evolution-

ary annealing converges to the global optimum with either type of annealed

selection. These results will be confirmed experimentally in Chapter 8.

11.3 Convergence Properties

Subject to a reasonable set of conditions, evolutionary annealing with

either proportional or tournament selection converges in probability to the set

of optimal points for the fitness function. These conditions include: (1) the

mutation variance must asymptotically decrease faster than the partition size;

(2) the annealing distributions must possess quasi-differentiability properties

at the mixing points; (3) the fitness function must not be too irregular in the

immediate neighborhood of the global optima; and (4) the mutation variance

and the temperature must decay slowly enough to guarantee full exploration of

the space. With these conditions satisfied, evolutionary annealing converges to
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Table 11.1: Table of symbols relating to the convergence proof

Symbol Meaning
X The search domain, a Hausdorff (separated) topological space
Bτ The Borel σ-algebra on X
λ A measure on (X,Bτ ) that is positive on open sets
f A λ-integrable fitness function with finite minimum
f ∗ The minimum of the fitness function
Xε The set of ε-optimal points in X, {x : |f(x)− f ∗| < ε}
An The set of observed individuals at generation n
A The limiting set of observed individuals as n→∞
Tn A cooling schedule, Tn ↓ 0
Ea
n A set containing a ∈ An, with {Ea

n}a∈An partitioning X
λ(Ea

n) The volume of the partition set Ea
n under the measure λ

ξn A normalizing factor for pn(a)

pn(a) The selection probability for a ∈ An, pn(a) = ξn exp(−f(x)
Tn

)λ(Ea
n)

νan The mutation distribution around a point a ∈ An at generation n
Gn The distribution of evolutionary annealing at generation n
gn The annealing density for the fitness function at temperature Tn
An The annealing distribution for the fitness function at temperature Tn
A The limit of the annealing distributions under the total variation norm
gλn The neighborhood average of gn on Ea

n

λan A measure on Ea
n given by λan(B) = λ(B ∩ Ea

n)/λ(Ea
n)

the global optima. The convergence rate for evolutionary annealing is highly

sensitive to both the cooling schedule and the variance decay; the interaction

of these parameters remains the subject of inquiry.

In this section, the preceding concepts are made rigorous, and a proof

of convergence for evolutionary annealing is provided, followed by a discussion

of convergence rates. Several symbols are used, and a table of their meanings

is provided in Table 11.3 to aid the reader.
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11.3.1 Convergence Proof

As mentioned above, the convergence proof requires conditions on the

mutation variance, the annealing distributions, and the fitness function. In-

tuitively, evolutionary annealing converges because it approximately samples

from the annealing distributions with respect to the measure λ. Specifically,

define

gn(x) =
exp (−f(x)/Tn)∫

X
exp (−f(x)/Tn) λ (dx)

. (11.12)

and note that gn is the density of an annealing distribution generalized to the

space (X,F, λ), i.e.
∫
X
gn dλ = 1. Define the annealing distributions by

An(B) =

∫
B

gn(x)λ(dx) (11.13)

so that An(X) = 1 and consider the limiting distribution A ≡ limnAn, mean-

ing An(B)→ A(B) for all B ∈ F. The functions gn are positive, and therefore

An is a probability measure. The definition of A implies A is positive and

A(X) = 1, so A is a probability measure as well. Specifically, A assigns

measure zero to all non-optimal points of f .

In order to guarantee that the mixture distributions used by evolu-

tionary annealing are capable of approximating gn, it is necessary that the

densities gn do not vary too quickly, i.e., that the fitness function does not os-

cillate wildly between infinitesimally close points. Formally, this concept can

be defined based on the integrals of gn on nicely shrinking sets. Nicely shrink-

ing sets are a vanishing sequence of sets, each of which possesses some interior

volume. The following definition suffices for the purposes of this dissertation.
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Definition 11.3.1. A sequence of Bτ -measurable sets {Ea
n}n∈N shrinks nicely

around a point a if (1) for all n there is an open set In with a ∈ In and In ⊆ Ea
n

and a constant α > 1 such that λ(Ea
n) < αλ(In), and (2) for any open set O

containing a, there is an N <∞ such that Ean ⊆ O for all n > N .

Definition 11.3.2. Given a sequence of sets {Ea
n}n∈N that shrink nicely around

a point a and a sequence of functions {gn}n∈N on a measure space (X,F, λ)

such that each gn is λ-integrable, the neighborhood average of gn on Ea
n is given

by

gλn (a) ≡ λ (Ea
n)−1

∫
Ean

gndλ. (11.14)

Definition 11.3.3. On a measure space (X,F, λ), a sequence of λ-integrable

functions gn is approximated by its neighborhood average at a point a if for

any sequence of nicely shrinking sets {Ea
n}∣∣gn (a)− gλn (a)
∣∣→ 0. (11.15)

If the neighborhood average gλn of a sequence gn approximates the values

of the sequence at a point well, then the neighborhood average can be used as

a proxy for the function at that point. Approximation by the neighborhood

average is a critical requirement for the convergence of evolutionary annealing,

but is not overly restrictive in practical terms. This property is possessed by

all continuous functions, but it is true for many discontinuous functions as

well. In fact, only fitness functions that are chaotic at an infinitesimal scale

are excluded by this requirement.
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The next set of conditions pertains to the ε-optimal sets of f . Let f ∗ be

the minimal value of f , and define Xε ≡ {x : f(x) < f ∗ + ε}. Xε includes all

points in X that come within ε of the optimum. If the set Xε has λ-measure

zero for small values of ε, then the optima are isolated, and the mutation

distributions for evolutionary annealing have zero probability of proposing the

optima. In that situation, convergence is impossible.

A second pathological situation occurs when the boundary of the set

Xε is so jagged that it possesses positive λ-mass. In this case, the boundaries

of Xε can never be well approximated by a countable sequence of estimates.

A fitness function will be called suitable when these cases can be ex-

cluded. Additionally, suitability will be defined to account for the required

integrability and neighborhood properties discussed above.

Definition 11.3.4. A fitness function f is termed suitable on a particular

cooling schedule (Tn)n∈N whenever the following five conditions hold:

1. The minimum exists, i.e. f ∗ > −∞.

2. The functions gn are λ-integrable.

3. The functions gn are well approximated by their neighborhood average.

4. The sets Xε are Bτ -measurable, ε ≥ 0.

5. There exists a constant γ > 0 such that for all ε ∈ (0, γ), λ (Xε) > 0 and

λ (∂Xε) = 0.
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In the convergence proof that follows, the mutation distributions must

be well matched with the base measure λ in the sense that sets of λ-measure

zero must also have νan-measure zero. This property is known as absolute

continuity of νan with respect to λ. Additionally, mutations must increasingly

focus within the partitions {Ea
n}a∈An .

Definition 11.3.5. The mutation distributions νan are increasingly focused

within a sequence of partitions {Ea
n}a∈An if νan(Ea

n)→ 1 as n→∞.

This requirement of increasing focus is most easily satisfied by construc-

tion. That is, the convergence νan(Ea
n) → 1 can be built into the definition of

νan by tying the variance of the mutation distribution to the size of Ea
n, as will

be done in Section 8.1 below. For instance, the choice of νan(B) = λ(B ∪Ea
n)/

λ(Ea
n) is increasingly focused.

In addition, each partition must be such that the partition point is con-

tained in the interior of the partition. Partitions that satisfy this requirement

will be described as padded because there is at least one open set within the

partition containing the partition point.

Definition 11.3.6. A partition {Ea}a∈A with a ∈ Ea for all a ∈ A is padded

if for each a ∈ A there is an open set Oa with a ∈ Oa and Oa ⊆ Ea.

An evolutionary annealing algorithm produces padded partitions if the

partitions generated by its separation routine are padded for all n. A sequence

of padded partitions yields sequences of sets that shrink nicely around each

mixing point.
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Finally, the cooling schedule and mutation variance must decay slowly

enough to guarantee full exploration of the search space, or else the global

optimum might be missed. Note that this requirement pertains to the shape

of the mutation distributions and not just the variance. Specifically, let E ⊆ X

be an open region of the search space with positive λ-measure, and let Ec be its

complement in X. Recall that An represents the set of all previously observed

individuals at time n. Ultimately, to fully explore the space, there must be

an n such that An ∩ E 6= ∅ for each open set E. As a technical detail, X

must be separable in order for this to be possible, in which case X has a

countable dense subset. If the space is fully explored, then An ↑ A where A

is a countable dense subset of X. An evolutionary annealing algorithm that

satisfies this criterion will be termed exhaustive.

Intuitively, in order to be exhaustive, an evolutionary annealing al-

gorithm must not sharpen too quickly; that is, both the variance and the

temperature must decay in such a way that every open region is traversed

at some generation with probability 1. Let Gn (E) =
∑

a∈An pn(a)νan (E) be

the probability that a single sample from evolutionary annealing lies inside an

open region E ⊆ X at time n. Define γn,K to be the probability of sampling a

point in E from Gn on at least one of the K samples in the population at time

n, noting that γn,K > Gn(E). Let α1 = γ1,K be the probability of having en-

countered E in the first generation and recursively define αn = γn,K [1− αn−1]

so that αn gives the probability of having encountered E by the nth generation.

Then the algorithm is exhaustive whenever
∑∞

n=1 αn = 1 for each open set E.

379



Unfortunately, it is not currently known what properties make an evolutionary

annealing algorithm exhaustive. However, larger sample sizes, slower cooling,

and slower mutation decay should contribute towards making an algorithm

exhaustive for many fitness functions. The study of such properties is left for

future work.

Notice that the requirement that the mutation distributions be increas-

ingly focused and that the algorithm be exhaustive are in competition with

each other. Increasing focus requires the mutation variance to shrink quickly

enough, and exhaustiveness requires it not to shrink to quickly.

The convergence theorem can now be stated. For convergence, evolu-

tionary annealing is assumed to use the partitioning method to set the region

weights cn(a). The proof makes liberal use of the partitions {Ea
n}.

Theorem 11.3.1. An exhaustive evolutionary annealing algorithm with an-

nealed proportional selection converges in probability to the minimal points of

any suitable fitness function provided that it produces padded partitions and its

mutation distributions are increasingly focused within the partitions.

Proof. Fix ε, δ > 0 with ε < γ. Without loss of generality, assume λ (X) = 1;

if not, λ̃ ≡ λ/λ (X) will satisfy this equality. Let Gn(B) =
∑

a∈An pn(a)νan(B)

be the distribution generating evolutionary annealing at time n. The desired

result will follow if there exists an N such that for n ≥ N , Gn (Xε) > 1 − δ.

Because A (Xε) = 1 for all ε, it is sufficient to prove that |Gn (Xε)−A (Xε)| <

δ for large n .
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The conclusions below will require the sequence F a
n = Xε∩Ea

n to shrink

nicely around a. The interior of Xε has positive λ-measure since f is suitable,

and so it suffices for Ea
n to shrink nicely. Because the algorithm is exhaustive,

any open set containing a must eventually contain Ea
n for n > N since An ↑ A

with A dense in X. Because the partition Ea
n is padded, a is contained in the

interior of Ea
n, which is an open set with positive measure. Thus F a

n shrinks

nicely to a.

For convenience, let λan (Xε) ≡ λ (Xε ∩ Ea
n) /λ (Ea

n). Define G̃n so that

G̃n (Xε) =
∑

a∈An pn (a)λan (Xε). Since νan is increasingly focused within Ea
n,

for n sufficiently large, νan (Xε \ Ea
n) < δ/4.

Also, because the algorithm is exhaustive, there exists n large enough

so that either X̊ε ∩ Ea
n = Ea

n or X̊ε ∩ Ea
n = ∅ where as usual X̊ε ≡ Xε \ ∂Xε.

Since ε < γ, the measure of the boundary of Xε can be ignored, and either

λan (Xε) = 0 or λan (Xε) = 1. Similarly, νan (Xε ∩ Ea
n) can be chosen to be

within δ/4 of either 0 or 1, since νan is increasingly centered on a and either

νan (Xε ∩ Ea
n) = νan (Ea

n) or νan (Xε ∩ Ea
n) = 0, depending on whether a ∈ X̊ε.

Therefore,∣∣∣Gn (Xε)− G̃n (Xε)
∣∣∣ ≤ ∑

a∈An

pn (a) |νan (Xε)− λan (Xε)|

≤
∑
a∈An

pn (a) νan (Xε \ Ea
n)

+
∑
a∈An

pn (a) |νan (Xε ∩ Ea
n)− λan (Xε)|

<
δ

4
+
δ

4
=
δ

2
. (11.16)
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Thus |Gn (Xε)− G̃n (Xε) | < δ
2
.

Next it will be shown that |G̃n (Xε) − A (Xε) | → 0. The argument is

based on the fact that G̃n is an approximate martingale and uses a series of

conditional expectations. Here and below, the notation 1B = 1B(x) is defined

as

1B(x) =

{
1 if x ∈ B
0 otherwise

. (11.17)

The fact that
∫
X

1Bdλ = λ(B) is used frequently below. The expression Y 1B

is shorthand for Y (x)1B(x), as is common in the study of stochastic processes.

Let Yn(x) =
∑

a∈An 1Ean(x)gn (a) be a random process on the same

space. Next, it will be shown that
∣∣∣E (Yn1Xε)− G̃n (Xε)

∣∣∣ < δ
4
. Let hn(x) =

exp(−f(x)/Tn), so that ξn =
∑

a∈An hn(a) from Equation 11.4. Define ηn =∫
X
hn(z)λ(dz). Also, hn is approximated by its neighborhood average since

hn(x) = ηngn(x) and gn is approximated by its neighborhood average. Then

|pn(a)− gn(a)λ(Ea
n)| = hn(a)λ(Ea

n)
|ξn − ηn|
ξnηn

. (11.18)

For any β > 0 and n large,

|ξn − ηn| =

∣∣∣∣∣∑
x∈An

hn(x)λ(Ex
n)−

∫
X

hn(z)λ(dz)

∣∣∣∣∣
≤

∑
x∈An

∣∣∣∣hn(x)λ(Ex
n)−

∫
Exn

hn(z)λ(dz)

∣∣∣∣
=

∑
x∈An

∣∣hn(x)− hλn(x)
∣∣λ(Ea

n) < β. (11.19)
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Therefore |pn(a)− gn(a)λ(Ea
n)| → 0, and so

∣∣∣G̃(Xε)− E(Yn1Xε)
∣∣∣ =

∣∣∣∣∣∑
a∈An

[
pn(a)λan(Xε)−

∫
X

1Xε∩Ean(z)gn(a)λ(dz)

]∣∣∣∣∣
≤

∑
a∈An

|pn(a)− gn(a)λ(Ea
n)| λan(Xε) <

δ

4
. (11.20)

Let {EAnn } be the filtration generated by the sequence of partitions

{Ea
n}. Now consider the process generated by conditioning Yn1Xε on {EAnn }:

Ỹ ε
n (x) = E

(
Yn(x)1Xε(x) | EAnn

)
=
∑
a∈An

1Ean(x)gn (a)λ (Xε ∩ Ea
n) .

Note that E(Ỹ ε
n ) = E (Yn1Xε) by the properties of conditional expectations. It

is also the case that Ỹ ε
n converges to A (Xε) because for η > 0,∣∣∣A (Xε)− Ỹ ε

n

∣∣∣ ≤ ∑
a∈An

1Ean |A(Xε ∩ Ea
n)− gn (a)λ (Xε ∩ Ea

n)|

≤ η

3
+
∑
a∈An

1Ean |An(Xε ∩ Ea
n)− gn (a)λ (Xε ∩ Ea

n)|

=
η

3
+
∑
a∈An

1Ean

∣∣∣∣∫
Xε∩Ean

gn(x)λ(dx)− gn (a)λ (Xε ∩ Ea
n)

∣∣∣∣
=

η

3
+
∑
a∈An

1Ean

∫
Xε∩Ean

|gn (x)− gn (a)|λ (dx) . (11.21)

In the previous equations, A was approximated An and definitions were ap-

plied. If gn were continuous, then the equations above would complete the

proof. Since gn may be discontinuous, the neighborhood average gλn can be
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inserted into the difference |gn(x)− gn(a)| to obtain∣∣∣A (Xε)− Ỹ ε
n

∣∣∣ ≤ η

3
+
∑
a∈An

1Ean

∫
Xε∩Ean

∣∣gλn (x)− gn (a)
∣∣λ (dx)

+
∑
a∈An

1Ean

∫
Xε∩Ean

∣∣gn (x)− gλn (x)
∣∣λ (dx)

≤ η

3
+
∑
a∈An

1Ean

[
sup
x∈Ean

∣∣gλn (x)− gn (a)
∣∣]λ (Ea

n) +
η

3

<
η

3
+
η

3
+
η

3
= η. (11.22)

The inequalities hold because gn is approximated by its neighborhood average

at a, and Xε ∩ Ea
n shrinks nicely. It follows that E (Yn1Xε) = EỸ ε

n → A (Xε).

That is,∣∣∣G̃n (Xε)−A (Xε)
∣∣∣ ≤ ∣∣∣G̃n (Xε)− E (Yn1Xε)

∣∣∣+ |E (Yn1Xε)−A (Xε)|

<
δ

4
+
δ

4
=
δ

2
. (11.23)

Putting it together, for n sufficiently large,

|Gn (Xε)−A (Xε)| ≤
∣∣∣Gn (Xε)− G̃ (Xε)

∣∣∣+
∣∣∣G̃n (Xε)−A (Xε)

∣∣∣
<

δ

2
+
δ

2
= δ, (11.24)

completing the proof.

As a corollary, annealed tournament selection also converges.

Corollary 11.3.2. An exhaustive evolutionary annealing algorithm with an-

nealed tournament selection converges in probability to the global minima of
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any suitable fitness function provided that the mutation distributions are in-

creasingly focused within the partition.

Proof. The proof will follow by recasting the annealed tournament selection

probability from Equation 11.9 as a problem for annealed proportional selec-

tion with an altered fitness function and cooling schedule. Let f be a suitable

fitness function. Let A = limnAn be a countable, dense subset of X. Define

r(x) to enumerate the members of A according to their rank on f starting at 0

for the minimal point, with ties broken according to any deterministic scheme.

Define rn(x) to provide a similar enumeration of Anwith the same tie-breaking

procedure, and extend rn(x) to all of A by setting rn(x) = |An| on x ∈ A\An.

Then r(x) = limn rn(x).

Given selection pressure q, define h (x) = (1− q)r(x) on the set A,

and let hn (x) = (1− q)rn(x). The function h will serve as the basis for a

convergence problem with annealed proportional selection after converting the

cooling schedule to pull the temperature exponent to the outside. Define

T̃n ≡ log 1−q
log 1−q1/Tn so that

(
1− q1/Tn

)
= (1− q)1/T̃n . It is possible to do so

because q is fixed. Then

h (x)1/T̃n = (1− q)r(x)/T̃n =
(
1− q1/Tn

)r(x)
. (11.25)

As a final step, let u(x) = − log h(x), and then

exp

(
−u(x)

T̃n

)
λ (Ex

n) = h(x)1/T̃nλ (Ex
n) ∝ q1/Tn

(
1− q1/Tn

)r(x)
λ (Ex

n) .

(11.26)
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That is, if the ranking function is fixed at r, then there is a function u such

that proportional selection with u and the cooling schedule T̃n is equivalent

to tournament selection with the ranking function r and cooling schedule Tn.

If the convergence result of Theorem 11.3.1 holds for u, then it holds for h as

well.

In order to apply Theorem 11.3.1, it is necessary to show that the

conditions are met. First, u must be suitable whenever f is. Now since

f ∗ > −∞, the enumeration r is well-founded on A; say r(z) = 0 for some z ∈ A

with r(y) > r(z) for all y 6= x. Next, umust be extended to all ofX. To do this,

choose any continuous extension of r to all of X. The resulting extension of

u automatically satisfies the neighborhood approximation requirement. Also,

0 ≤ h(x) ≤ 1 because q ∈ [0, 1]. The measure λ was chosen to be finite, so∫
X
h(x)1/T̃n dλ ≤ λ(X), i.e., u possesses the necessary integrability properties.

Since the σ-algebra F was presumed to support the partitions, the sets Xu
ε

for u are F-measurable, and due to the continuity of u and the fact that f is

suitable, λ (∂Xu
ε ) = 0 and λ (Xu

ε ) > 0. Thus u is a suitable fitness function,

and the convergence theorem holds.

The final issue to complete the proof is to show that iteratively ranking

the population with rn does not undo the convergence result. To see this fact,

set pn(x) = ξnh(x)1/T̃nλ (Ex
n) and set pmn (x) = ξmn hn(x)1/T̃nλ (Ex

n) with ξn and

ξmn as normalizing factors. Observe that limm→∞ p
m
n (x) = pn(x). Now define

Xε and Gn (B) as in Theorem 11.3.1, and define Gm
n (B) =

∑
a∈An p

m
n (a)νan (B).
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Fix δ > 0. Then for m sufficiently large,

|Gm
n (Xε)−Gn (Xε)| ≤

∑
a∈An

|pmn (a)− pn(a)| νan (Xε)

<
∑
a∈An

δ2−nνan (X) < δ. (11.27)

As a result, for all n greater than the requisite m, |Gn
n (Xε)−Gn (Xε)| < δ.

Notice that Gn
n is exactly evolutionary annealing with annealed tournament

selection on f with cooling schedule Tn, and that Gn is evolutionary annealing

with annealed proportional selection on u with cooling schedule T̃n. There-

fore evolutionary annealing with annealed tournament selection converges in

probability given the assumptions.

In sum, these theorems show that evolutionary annealing is guaranteed

to converge asymptotically arbitrarily close to the global minima of the fitness

function provided that the cooling schedule and variance decay are not too

aggressive. The theorems do not say much about the rate of convergence, but

certain heuristic principles can be identified, as will be discussed next.

11.3.2 Convergence Rates

An examination of the proof of Theorem 11.3.1 shows that there are

three basic sources of approximation error: (1) the variance of the mutation

distribution, (2) the accuracy of the neighborhood average, and (3) the speed

of convergence for the annealing distributions, due to the cooling schedule. Of

these, the variance and the cooling schedule are under the direct control of
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the practitioner. Implicitly, these two factors also control the accuracy of the

neighborhood average. In order to set the cooling schedule and variance decay

to maximize the rate of convergence, the effects of these three error sources

must be carefully considered.

The first source of error is due to the difference |νan (Xε)− λan (Xε)|.

Convergence occurs because both of these measures νan and λan asymptotically

become point masses, the former because variance decays and the latter be-

cause the mixing points eventually fill the search space. To minimize error,

these two measures should be kept as close as possible for mixing points in the

vicinity of the optima. As the algorithm begins to focus on a small group of

optima, the partitions in that region will become smaller, and the variance of

the mutation distribution should decrease at a similar rate. Notably, however,

decreasing the variance also reduces the probability that the global optimum

will be discovered if it has not already and if it is located sufficiently far from

the current regions of focus. Also, when a new and better local optimum is

discovered after the search has already focused on other local optima, the ex-

ploration of the new optimum will proceed slowly if the variance has already

decayed substantially. Therefore it may make sense to scale the variance to

reflect the size of the partition region for the mixing point being mutated. In

this way, larger variances will typically be employed in unexplored regions,

whereas a narrower variance will be used in well explored regions, so that νan

and λan are well-matched in general. The fact that the mixing points eventu-

ally fill the space guarantees that a dynamic and locally scaled variance decay
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schedule of this type will eventually become increasingly centered as required.

The second source of error pertains to the accuracy of approximat-

ing the average value of the annealing distribution by its value at the mixing

points, due to the term
∣∣gλn(x)− gn(a)

∣∣. This error depends strongly on the

fitness function. If the fitness function is relatively homogeneous and does

not fluctuate at different rates in different regions of the search space, then

this source of error strongly reflects the mass of the partition region, λ (Ea
n).

In a large region, the approximation gn(a)λ (Ea
n) is likely to differ more sub-

stantially from
∫
Ean
gn dλ than it would in a smaller region. Thus this source

of error can perhaps be reduced by spreading the mixing points more evenly

through the space in order to keep the partition regions uniformly small. This

goal can be accomplished by using a high variance at the outset to guarantee

full exploration of the space. At later stages, the use of a high variance is at

odds with the need to match the mutation distribution νan with the measure

λan, and thus the first two sources of error must be balanced and cannot be

mutually eliminated. The accuracy of the average approximation is also af-

fected by the cooling schedule. At high temperature, the approximation must

be more accurate because gn will vary less over the region Ea
n if Tn is large.

Lowering the temperature increases this source of error by causing the function

gn to fluctuate more.

The third source of error concerns the speed of convergence of the

annealing distributions due to the difference |g − gn|. The faster the cooling

schedule takes the temperature to zero, the faster this error will be minimized.
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But a fast cooling schedule will increase the error due to the neighborhood

approximation. The speed of the cooling schedule must balance the need

to minimize both the neighborhood approximation error and the annealing

convergence error.

Overall, preliminary experiments showed that a logarithmic cooling

schedule, e.g. T−1n = η log n, works well in practice. Early results also suggest

that the variance should start off quite large and decay exponentially fast.

Also, scaling the variance locally based on the size of the partition region for

the mixing point being mutated should be effective. The next chapter discusses

experimental results along these lines.

11.4 Conclusion

Evolutionary annealing was introduced as an optimization strategy that

seeks the global optimum by building a probabilistic model based on the ob-

jective evaluations of all points produced by the optimization process. Under

certain conditions, this model converges to an accurate representation of the

objective function near the global optimum, as seen in Theorem 11.3.1. The

proof relies on the fact that the model underlying evolutionary annealing is an

approximate Levy martingale. Such a martingale may be thought of as an es-

timate of some quantity that improves as more information becomes available.

Thus evolutionary annealing is a martingale method, a new class of optimiza-

tion method based on using increasing information to improve optimization.

In the case of evolutionary annealing, objective evaluations provide the source
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of information, and evolutionary annealing leverages this information in order

to improve its optimization.

Evolutionary annealing converges in theory, but its experimental per-

formance also needs to be analyzed. To do so, evolutionary annealing must be

instantiated within a particular search domain. Chapter 12 presents experi-

ments with an instantiation in finite-dimensional Euclidean space, Rd, along

with specific implementation details that make it possible to sample evolution-

ary annealing in logarithmic time with respect to the number of evaluations.

In the course of these experiments, it is seen that evolutionary annealing gener-

ally performs well. Chapter 13 applies evolutionary annealing to the problem

of training neural networks, showing that the basic optimization concept can

be expanded to search effectively in complex spaces. These neural networks

outperform networks trained by other methods on tasks that require a com-

plex network topology. Successes in both real vectors and neural networks

will establish evolutionary annealing as an effective optimization method for

practical tasks.
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Chapter 12

Evolutionary Annealing In Euclidean Space

Evolutionary annealing was developed in the last chapter as a general-

purpose optimization technique. This chapter presents an application of evolu-

tionary annealing to the space of finite real vectors. Experiments are performed

to compare real-space evolutionary annealing (REA) on the set of benchmarks

and algorithms from Chapter 8. REA performs well in general and is com-

plementary to the earlier optimizers tested, outperforming other methods on

multimodal objectives with irregular structure. This feature suggests that

REA is well-aligned with a mixture sieve prior.

12.1 Evolutionary Annealing in Euclidean Space

Evolutionary annealing can be used to search for bit strings, real vec-

tors, neural networks, Bayesian network structures, game strategies, programs,

state machines, and any other structure that can be embedded within a suit-

able measure space. As a baseline evaluation, experiments were performed

in finite-dimensional Euclidean space on a set of twelve standard benchmarks

from Chapter 8. As before, the domain was a problem-specific hypercube

Q ⊆ Rd, with a normalized Lebesgue measure on the Borel σ-algebra restricted
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to Q, i.e. λ(B) =
∫
B
dx/

∫
Q
dx. The instantiation of evolutionary annealing in

Euclidean space is termed Real-Space Evolutionary Annealing (REA), and it

was tested with both annealed proportional selection (REA-P) and annealed

tournament selection (REA-T).

12.1.1 Instantiation Details

The version of REA implemented for this article uses Gaussian muta-

tion distributions with νan = N
(
a, σn (a)2

)
. The standard deviation σn(a) is

scaled to the area of the partition region with σn(a) = 1
2
wλ (Ea

n)1/d, where d

is the dimension of the problem and w is the width of the space (i.e. 1
2
w is

the side length of Q). This choice of variance seeks to align the shape of νan

and λ (Ea
n) as discussed in Section 11.3.2. Specifically, if Ea

n were a hypercube,

then the first standard deviation of νan would be contained within Ea
n.

This implementation of REA does not meet the requirements of The-

orem 11.3.1, but it is on the cusp of doing so. Most importantly, there is no

way to determine at this time whether REA is exhaustive, though it may be

if a small enough learning rate is used. The vector-separating algorithm from

Section 11.2.3 was used, and it does produce padded partitions in Rd. The

mutation distributions are absolutely continuous with respect to the Lebesgue

measure. On average, ν(Ea
n) is a nonzero constant less than 1. If the partitions

were to reduce in size regularly, and if σn(a) were multiplied by a decaying

factor, say, e−βn for β close to zero, then νan would be increasingly focused

(νan(Ea
n) → 1). In the experiments that follow, no decay factor was applied
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for d = 5 and d = 10. It was not necessary to do so, since the samples in the

experiments converged towards a fixed distribution without a decay factor. In

25 dimensions, however, a decay factor of n−
1
2 (i.e. σn(a) = 1

2
wn−

1
2λ (Ea

n)1/d)

was applied in order to achieve faster convergence.

REA can be computationally expensive because of the overhead in-

volved in handling an expanding set of evaluations points. An efficient imple-

mentation can be obtained by implementing the sampling routines in a way

that requires computation that is only logarithmic in the number of evaluation

point. The details are discussed next.

12.1.2 Sampling Algorithms for Annealed Selection

The computational efficiency of evolutionary annealing is primarily de-

termined by the cost of preparing and sampling annealed proportional selec-

tion. A näıve approach to computing Equation 11.4 would make the cost of

preparing and sampling pn be linear, since the normalizing factor ξn must be

computed one element at a time and because sampling from a probability

vector typically requires iterating through the vector. In fact, annealed pro-

portional selection can be approximately computed in logarithmic time in the

average case by leveraging the partition tree, with most operations occurring

in subroutines that guarantee worst-case logarithmic time, to be described in

Section 11.2.4. The approximation can be made accurate at close to machine-

level precision, so that it is sufficiently precise for all practical purposes.

In order to reduce the sampling complexity for evolutionary annealing
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from linear to logarithmic time, a tree-sampling method is needed for sampling

pn. The partition tree provides a tree such that the leaves are associated

exactly with the components of pn. The goal, then, is to create a sequence of

decisions made along a path through the partition tree such that the decision

process assigns probability mass to each complete path in equality with the

probability of the leaf at the end of the path under pn.

Let ν be an internal node of the partition tree. Let N ⊆ An be the set

of previously observed individuals residing within leaves of the partition tree

that are descended from ν. Let µ be one of the two child nodes of ν, and let

M ⊆ N contain the leaf descendants of µ. To extend a probabilistic path that

has reached ν, a choice must be made at node ν whether to add node µ or its

sibling to the path. Suppose the choice is made according to

P (µ | ν) =

∑
x∈N α(x)lognλ (Ex

n)∑
y∈M α(y)lognλ (Ey

n)
, (12.1)

where α(x) ≡ exp (−ηf(x)), mirroring Equation 11.4 with cooling schedule

T−1n = η log n. Now let πx be a path from the root to the leaf containing the

point x, and observe that a sequence of decisions made according to Equa-

tion 12.1 yields

P (πx) =
∏
ν

P (child (ν, πx) | ν) = ξnα(x)lognλ (Ex
n) = pn (x) , (12.2)

with child (ν, πx) being the child node of ν on the path πx. The next to last

equality in Equation 12.2 holds because each successive denominator cancels

the numerator of the previous one, leaving only the denominator from the root
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node, which is equal to ξ−1n , and the numerator from the leaf node, which is

α(x)lognλ (Ex
n) = exp (−f(x)/Tn)λ (Ex

n). Therefore, sampling a path through

the tree starting from the root samples from pn provided that the decision at

each node is made according to Equation 12.1.

The difficulty of this method is that the sum in the numerator of Equa-

tion 12.1 must be computed for each node. If the temperature were fixed, then

the value of the sum could be stored on each node. The sum only changes

when new leaves are inserted, and then only the nodes that are direct ances-

tors of the inserted node need to adjust their sums, resulting in logarithmic

updates to the tree. As long as the temperature does not change, then, the

tree-sampling method is logarithmic both to prepare the data structures and

to sample them.

It remains to account for changes in temperature without recomput-

ing the numerator of Equation 12.1 at each time step. Introducing h(T ) =∑
x∈N α(x)Tλ (Ex

n) to capture the fact that the sum varies with the generation,

the problem is that the exponent cannot be pulled out of the sum, meaning

that the sum must be recomputed with every change in temperature. However,

h(T ) is infinitely differentiable in T , with mth derivative

h(m)(T ) =
∑
x∈N

α(x)T (logα(x))m λ (Ex
n) . (12.3)

Thus a Taylor approximation is possible, since

h(T ) =
∞∑
m=1

(∑
x∈N

(logα(x))m

m!
α(x)T0λ (Ex

n)

)
(T − T0)m . (12.4)
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The Taylor approximation can be computed by storing a vector of coefficients

t = (t1 . . . tm) with tj ≡
∑

x∈N (logα(x))jα(x)T0λ (Ex
n) for all j ∈ 1 . . .m,

with a fixed value T0. These vector sums can then be propagated up the tree

in logarithmic time, and the sampling method can approximate h (log n) as

needed at each node.

To complete the description of the sampling method, T0 and m must

be specified. As a general feature of h(T ), the approximation is substantially

correct for T > T0 over a larger interval than for T < T0. With m = 10, the

approximation is highly accurate for T ∈ [T0, T0 + 1/2] but degrades outside

that interval. Thus the Taylor coefficients must be recomputed for the entire

tree on every interval of T of size 1/2. For practical purposes, the value of T0

is set to 1 for the first few generations, and then is reset when

T = log n = 3/2, 2, 5/2, . . .

This resetting feature is actually not as burdensome as it may sound, and it

only needs to be performed logarithmically often, so that the entire procedure

of maintaining and sampling the tree still has logarithmic complexity over-

all. Some example statistics for computation time are shown in Table 12.1.

The next section discusses a similar method for sampling annealed tourna-

ment selection, and introduces data structures that make it possible to sample

annealed selection in average case logarithmic time.

397



12.1.3 Sampling Annealed Tournament Selection

As with annealed proportional selection, it is not computationally ef-

ficient to sample Equation 11.9 directly. In addition, annealed tournament

selection introduces the need to sort all previously proposed solutions by fit-

ness. In order to accommodate these issues, a balanced binary tree can be

used, called the score tree. Like the partition tree, the score tree contains one

leaf node per proposed solution; the internal nodes represent the set of nodes

in their span. The score tree reorganizes the partition tree so that points with

higher fitness are always to the left and points with lower fitness are always

to the right. Using standard tree algorithms, the score tree can be balanced

in logarithmic time after each insertion.

Annealed ranking selection can be sampled by walking the score tree,

making a decision at each node whether to follow the lower- or the higher-

ranked branch. The probability at each node will depend on the area repre-

sented by the node and the height of the subtree underneath the node. The

area of a leaf node can be copied from the partition tree. Both the area and

the height can then be propagated up the score tree in logarithmic time after

each insertion. In this way, the score tree is also a partition tree. However, the

internal nodes of the score tree correspond approximately to the level sets of

the fitness function, and thus the regions that they represent can be arbitrar-

ily complex to describe. Therefore, although the score tree defines a partition

over the search space, the score tree cannot replace the partition tree, because

there is no efficient way to determine whether a point resides in the region
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represented by an internal node of the score tree. However, the score tree is

kept balanced, providing worst-case logarithmic performance.

When sampling annealed tournament selection using the score tree, the

decision must be made at each internal node ν whether to follow the higher-

or lower-ranked branch. Let h+ 1 be the height of the subtree under node ν,

and assume the tree is perfectly balanced. Then ν has 2h+1 leaf nodes in its

span. Let µ be the higher-ranked child node of ν. Suppose further that the

nodes spanned by ν range in rank from R to R + 2h+1 − 1, so that the nodes

spanned by µ range in rank from R to R+ 2h − 1. Ignoring the region weight

temporarily, a direct application of standard tournament selection yields

QT (µ | ν) =

∑2h−1
m=0 q

1/T
(
1− q1/T

)R+m∑2h+1−1
j=0 q1/T (1− q1/T )

R+j
. (12.5)

Let κ be the lower ranked sibling of µ, spanning ranks R+ 2h to R+ 2h+1− 1.

Then the ratio for selecting µ over κ is given by

QT (µ | ν)

QT (κ | ν)
=

∑2h−1
m=0 q

1/T
(
1− q1/T

)R+m∑2h−1
m=0 q

1/T (1− q1/T )
R+2h+m

=
1

(1− q1/T )
2h
≡ q̃ (h, T ) . (12.6)

The function q̃(h, T ) gives the selection preference of the higher branch over

the lower branch. Finally, incorporating the region weights, let

PT (µ | ν) =
q̃ (h, T )λ (µ)

q̃ (h, T )λ (µ) + (1− q̃ (h, T ))λ (κ)
, (12.7)

where λ (µ) and λ (κ) are the cumulative weights of the partition regions of

the points in the span of µ and κ, respectively. Equation 12.7 is normalized

and implies PT (κ | ν) = 1− PT (µ | ν).
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To show that this process does in fact implement annealed tournament

selection, notice that

PT (µ | ν) ∝ q̃ (h, T )
λ (µ)

λ (ν)
, PT (κ | ν) ∝ λ (µ)

λ (ν)
, (12.8)

introducing the λ(ν) factor as a proportional constant. Thus for a general

path πx, recalling that q̃(h, T ) ∝ QT (µ | ν) by definition,

PT (child (ν, πx) | ν) ∝ QT (child (ν, πx) | ν)
λ (µ)

λ (ν)
, (12.9)

and therefore

PTn (πx) =
∏
ν∈πx

PTn (child (ν, πx) | ν)

∝
∏
ν∈πx

QTn (child (ν, πx) | ν)
λ (child (ν, πx))

λ (ν)

= QTn (πx)
λ (Ex

n)

λ (X)

∝ pn (x) . (12.10)

The last equality holds because the area ratios successively cancel each other,

and the last proportionality follows from the fact that QTn was defined to

implement tournament selection with selection pressure q1/Tn . The ultimate

conclusion is that a tree-sampling algorithm with node selection probabilities

as given in Equation 12.7 can be used to sample from annealed tournament

selection in worst-case logarithmic time.

As a final note on efficiency, notice that sampling in the score tree

has worst-case logarithmic time, whereas sampling on the partition tree has

400



average case logarithmic time. Therefore it makes sense to sample annealed

proportional selection from the score tree rather than the partition tree. The

only additional requirement is that the Taylor coefficients for annealed pro-

portional selection should be propagated up the score tree rather than the

partition tree. In this way, regardless of whether tournament or proportional

selection is used, the sampling operations of evolutionary annealing require

logarithmic time in the worst case.

12.1.4 Implementation

Because evolutionary annealing relies on several data structures, it

can be complex to implement. In order to further clarify implementation

details and to permit the reproducibility of the experimental results that

follow, an open-source implementation was released under the name pyec

(http://pypi.python.org/pypi/PyEC). This package implements both annealed

proportional and tournament selection along with many other popular evolu-

tionary computation methods, including the exact code used to run the ex-

periments described in Section 12.2. This package is intended to encourage

further experimentation and evaluation of the evolutionary annealing method

beyond the results reported in this dissertation.

Performance statistics for evolutionary annealing were gathered using

this implementation in order to demonstrate the actual computational costs of

running the algorithm in Table 12.1. These statistics were compiled by averag-

ing results from four runs each of the algorithm using tournament selection on
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the benchmarks shekel and rastrigin. Tournament and proportional selection

both traverse the score tree when sampling, so the numbers are representative

for both selection rules. The columns of Table 12.1 show the average time re-

quired for sampling the score tree, for inserting a point into the partition tree,

for inserting a point into the ranked score tree, and for the total processing

overhead per individual. Each entry shows the average time in milliseconds

to process a single individual given a certain number of stored points in the

database. The averages are cumulative, so for example the fact that sampling

requires 12.9 ms with 100, 000 points in the database means that the average

sample time over all 100, 000 individuals was 12.9 ms. As an exception, the

total processing time per individual shows the cost per individual averaged

over 100 samples. Logarithmic growth in complexity is clear from the table.

Since the implementation details have been fully discussed, the exper-

iments for REA can now be presented.

12.2 Experiments with REA

REA was tested on the twelve benchmarks defined in Table 8.1 us-

ing the same methodology as in Chapter 8. The parameters for REA-P and

REA-T are the learning rate η and the population size K. Several values for

η were tested, shown in Table 12.2 for each benchmark. Preliminary experi-

ments showed that the learning rate influences the performance of REA more

than the population size, and thus experiments varying the population size

were left for future work. REA-P was not tested in 25 dimensions to conserve
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Table 12.1: Performance statistics for Evolutionary Annealing on a 2GHz
Intel Core 2 Duo processor using the open-source implementation available at
http://pypi.python.org/pypi/PyEC. For each number of observed points, the
table gives the time in milliseconds for sampling one point, for inserting one
point into the partition tree, for inserting one point into the ranked score tree,
and for the total processing overhead per function evaluation. Complexity
grows logarithmically in the number of points.

points sample partition rank total
1,000 8.6 18.2 20.6 59.2
5,000 10.5 22.1 24.7 64.5

10,000 11.2 24.1 26.4 68.1
25,000 11.8 27.6 28.2 76.8
50,000 12.4 34.0 30.4 99.2

100,000 12.9 47.3 32.8 113.6

computational resources; preliminary experiments showed that REA-T sub-

stantially outperformed REA-P in 25 dimensions, just as it does in five and

ten dimensions.

12.2.1 Experimental Results

As in Chapter 8, all algorithms were run on all benchmarks 200 times

for each tested parameter setting. These 200 runs are sufficient to guarantee

statistical significance on the estimated success rates for each algorithm at

the 95% level within ±0.5% [204]. When a single number is shown as the

result of an experiment, that number represents the best value achieved on

any parameter setting for that algorithm, unless otherwise stated.

The complete experimental results are included in tabular form in Ap-

pendix A. Figures 12.2.1 to 12.2.1 show the results for REA-P and REA-T
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Figure 12.1: Performance of REA, DE, and CMA-ES in five dimensions on
the average unweighted error φ1 (scaled), as reported in Figure 8.2 for all opti-
mizers. Lower values are better. All four optimizers are generally comparable
on this criterion, with REA-T performing best on salomon, rosenbrock, shekel,
langerman, whitley, and weierstrass. REA-T generally has lower error than
REA-P, although REA-P also performs well in five dimensions.
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Figure 12.2: Performance of REA, DE, and CMA-ES in five dimensions on the
average weighted error φ2 (scaled), as reported in Figure 8.3 for all optimizers.
Lower values are better. The criterion φ2 emphasizes early errors, and thus
favors faster converging optimizers such as CMA-ES. REA-T converges at the
same rate as CMA-ES in several cases, and often makes less early errors than
DE. REA-T is the best on langerman and weierstrass for φ2.
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Figure 12.3: Performance of REA, DE, and CMA-ES in five dimensions on the
average final error ζT250,000 (scaled), as reported in Figure 8.4 for all optimizers.
Lower values are better. REA-T performs best on schwefel, shekel, langerman,
whitley, and weierstrass, with lower average error at the end of evaluation.
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Figure 12.4: Performance of REA, DE, and CMA-ES in five dimensions on
the success probability σNε with ε = 0.01 and N = 250, 000, as reported in Fig-
ure 8.7 for all optimizers. Higher values are better. REA-T generally performs
best on the irregular problems, such as shekel, langerman, and whitley.
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Figure 12.5: Performance of REA, DE, and CMA-ES in five dimensions on
the average hitting time 1

100
ψ̂Nε with ε = 0.01 and N = 250, 000, as reported

in Figure 8.6 for all optimizers. Lower values are better; 2500 is maximum
value. REA-T converges at about the same rate as CMA-ES when successful,
suggesting that its performance could be boosted by restarting. In general,
REA-T is more accurate than CMA-ES.
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Figure 12.6: Performance of REA, DE, and CMA-ES in 10 dimensions on the
average final error ζT250,000 (scaled). The performance of REA-P degrades as
the dimension increases. REA-T performs best on several problems, including
salomon, shekel, langerman, and weierstrass.
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Figure 12.7: Performance of REA, DE, and CMA-ES in 25 dimensions on
the average final error ζT250,000 (scaled). REA-P performed substantially worse
and was omitted. All algorithms perform relatively well on sphere, griewank,
rosenbrock, and whitley. REA-T performs best among these three methods on
weierstrass.
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in five dimensions on various performance criteria from Section 7.1, with DE

and CMA-ES included for comparison. Results for REA-T in 10 and 25 di-

mensions on ζT are shown in Figure 12.2.1 and 12.2.1.

In short, REA-T, DE, and CMA-ES are the most effective optimizers on

this set of benchmarks, with restarted optimizers excluded. REA-T is more ef-

fective on problems that are asymmetric, non-separable, and multimodal such

as shekel, langerman, and whitley. In Section 12.3, this fact will be discussed in

terms of alignment with a particular function prior. DE outperforms REA-T

on some but not all radially symmetric problems such as rastrigin, salomon,

and griewank. CMA-ES performs particularly well on rastrigin and griewank.

Comparing the two versions of REA, REA-P performs well, but fails to re-

fine solutions near global and local optima. Its performance also degrades

in higher dimensions. In contrast, REA-T attains precisely refined solutions,

most often at the global optimum, and is therefore the stronger method on

these benchmarks.

More specifically, in five dimensions, the results show that REA-P and

REA-T are effective at locating the global optima of complex fitness functions.

REA-P is successful on most problems at the 0.1 success level, with notable

exceptions for rastrigin and schwefel. For schwefel, REA-P actually located the

region of the true global optimum on most trials, but was unable to refine these

solutions further. For comparison, the failures of CMA-ES and PSO on this

benchmark were over an order of magnitude worse and were not in the correct

region of the search space. On rastrigin, it was not possible to configure REA-
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P to succeed predictably. The algorithm may succeed at a lower learning rate

(e.g. η = 0.001) with more function evaluations, but an even lower learning

rate would further slow down the refinement of the solution.

By contrast, REA-T is very effective at refining points around the op-

tima. In most cases where REA-T came within 0.1 of the optima, it also

managed to attain machine-level precision. The exceptions to this statement

primarily involved local optima with fitness values close to those of the true

optimum (i.e. salomon, langerman and griewank). In the case of rastrigin,

tournament selection even helped REA-T escape local optima in several cases,

so that it attained the true global optimum more often than REA-P.

In higher dimensions, all of the algorithms had trouble attaining the

global optimum. However, a review of the errors in Table A.41 shows that

REA-T was competitive with the others. In preliminary trials, REA-P failed

on whitley and rosenbrock as a consequence of numeric issues. In both of

these problems, the region of the search space containing reasonable fitness

values (e.g. f(x) < 100) is small relative to the overall area, and in higher

dimensions this region becomes exponentially smaller. Annealed proportional

selection overflows on large fitness values (Equation 11.4) and must therefore

be capped, so the probability that REA-P selects any particular point is effec-

tively constant. This problem can be overcome by using a very small learning

rate, but then REA-P would not be able to converge once the feasible region

is attained. Because annealed tournament selection is only sensitive to the fit-

ness rank of points, REA-T does not suffer from numeric issues and continues
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Figure 12.8: Success probabilities for REA-T on selected benchmarks in five
dimensions for four different learning rates. Decreasing the learning rate im-
proves the success probability overall but requires more fitness evaluations.

to perform relatively well on whitley and rosenbrock even in higher dimensions.

It is possible that with lower learning rates, REA-T could perform even better

in 25 dimensions.

Figure 12.8 shows the progression of the success probability and Fig-

ure 12.9 the magnitude of the error as a function of the number of evaluations

for REA-T with different learning rates on selected benchmarks. As the learn-

ing rate is decreased, REA-T converges slower and succeeds more often. Thus

there is a trade-off between the number of evaluations and solution quality. A

higher learning rate can be used to reduce the number of evaluations, but at the

cost of reducing the probability of success. Notice that the shape of the graph

remains remarkably constant in Figure 12.8 while the learning rate changes,

suggesting that the success probability changes smoothly and predictably as

a function of the learning rate and the number of evaluations.
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Figure 12.9: Average error rates for REA-T on selected benchmarks in five
dimensions for four different learning rates. The black solid line is the average
error for the largest learning rate in Table 12.2; the grey solid line is the second
largest; the black dotted line is the third largest, and the grey dotted line is the
smallest learning rate. Decreasing the learning rate thus reduces error overall
at the cost of increased error in early generations.

12.2.2 Analysis of REA Results

The experimental results in Section 12.2 favor evolutionary annealing,

especially with annealed tournament selection. There are some generaliza-

tions that may be drawn from the results. First, REA-T is generally bet-

ter than REA-P for optimization and is thus the preferred implementation

for Euclidean space. Second, REA is most successful relative to other algo-

rithms on problems that do not possess an easily identifiable structure, such

as langerman and especially shekel. The reason is that REA does not assume

a particular problem structure in its definition. This observation is discussed

further in Section 12.3. In structured domains, such as sphere, REA may

use more function evaluations than would otherwise be necessary to eliminate

the possibility that the current best solution is a local optimum. However, in
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unstructured environments, these extra function evaluations help REA avoid

becoming trapped in local optima.

Among the non-restarted algorithms, REA-T is most comparable to

DE in terms of optimization quality. DE is an elegant and simple algorithm

and is consequently more computationally efficient than REA-T, performing

up to two orders of magnitude faster in terms of per-generation overhead.

However, in real-world problems, the computation of fitness values typically far

outweighs the cost of algorithmic overhead. The overhead of REA is generally

unrelated to the fitness function being optimized, so in domains where the

fitness takes a long time to compute, the use of REA will not add substantially

to the overall computation time.

Also, the results on the benchmarks suggest that DE and REA-T are

complementary, with REA-T being preferable on highly unstructured prob-

lems, and DE performing better on problems with some degree of symmetry

around the optimum. In practice, there are many real-world problems both

with and without symmetry. If the degree of structure is not known, and fit-

ness can be calculated quickly, a reasonable approach is to test DE first and

use REA-T if DE fails.

All of the restarted algorithms (NM-R, GSS-R, and CMA-ES-R) gen-

erally performed as well or better than REA-T on most benchmarks, with

the notable exception of langerman. Restarting after convergence is a form a

boot-strapping that can augment the probability of success. For example, if an

algorithm has a 5% chance of success, but converges after 1, 000 evaluations,
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then by running the algorithm 100 times, that 5% success rate can be boosted

to 99.4%. To benefit from numerous restarts, and algorithm must obtain a

positive success rate quickly. For REA, if the learning rate η is set at a high

level (e.g. > 1), then REA-T will converge quickly. If this convergence can

be measured, then REA-T can be restarted to boost its success rate as well.

Such an extension is an interesting direction for future work.

In contrast to the other successful optimizers, evolutionary annealing

is well-defined in any suitable measure space. Thus evolutionary annealing

can be used to search for neural networks, game strategies, Bayesian network

structure and many other problem domains where it is unclear how DE, CMA-

ES, NM, GSS, or PSO might be applied. In fact, preliminary experiments have

been performed in all these problem domains with promising results.

The benchmark set also shows that REA performs well on problems to

which it should not be particularly well-suited, at least while using Gaussian

variation. For instance, separable problems such as schwefel and weierstrass

can be more efficiently solved by searching in only one dimension. The op-

timizer rGA succeeds on schwefel by using recombination to cross-pollinate

correct components, and DE succeeds by sharing component-level information

among the different members of its population through its unique crossover

mechanism. In contrast, REA must learn each component separately. While

this aspect of REA could be improved for schwefel by implementing a muta-

tion distribution that employs crossover, it is nonetheless promising that REA

is able to learn the correct value for all components independently without
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using excessively more function evaluations than the other algorithms.

Given that REA-T is designed to search a space exhaustively for the

global optimum, it might be expected to perform worse than more greedy

algorithms in higher dimensional spaces. The results show that the opposite

is true: REA-T still performs among the best algorithms tested even in 25

dimensions. One reason is the addition of the decay factor n−
1
2 ; without this

decay factor, REA-T failed to find good solutions in 25 dimensions. To see why,

consider that in d dimensions, 2d evaluations must be performed in order to

cut the average side length of a partition region Ea
n in half. Thus the variance

σn(a) reduces exponentially slowly in higher dimension. The decay factor

forces evolutionary annealing to focus only on the most promising solutions.

In this way, evolutionary annealing can obtain good solutions in reasonable

time for higher dimensions at the cost of global optimality.

In Chapter 13, evolutionary annealing will be applied to neural net-

works, and that application will benefit from the results of the experiments

in this chapter. The purpose of defining evolutionary annealing at the chosen

level of abstraction is to provide a means for developing new algorithms to

search in complex spaces without having to reinvent the underlying evolution-

ary apparatus from whole cloth. Evolutionary annealing provides convergence

guarantees as well as heuristics for setting learning parameters for a wide va-

riety of search domains.

More work remains to be done to establish the rate of convergence

for evolutionary annealing beyond the heuristics provided in Section 11.3.1.
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For example, maximum likelihood estimates of mixture distributions with in-

creasing mixing points are known to approximate continuous distributions at

a relatively fast rate of C
(
logn
n

)0.25
[72]. The distributions employed in evo-

lutionary annealing are not the same, but similar performance may be hoped

for on continuous fitness functions. Also, theoretical work needs to be done to

find sufficient conditions on the cooling schedule and mutation distributions

to make an evolutionary annealing algorithm exhaustive.

Ultimately, the success of evolutionary annealing must be determined

by experimentation in real-world applications. It is difficult to predict in ad-

vance whether evolutionary annealing will be successful in such applications,

but the results on benchmarks make it clear that evolutionary annealing is wor-

thy of consideration as a method for global optimization in general-purpose

domains. The next section analyzes the types of problems on which evolution-

ary annealing should perform best.

12.3 Problem Alignment

REA was presented as a general optimization technique for arbitrary

problems in Euclidean space. However, in line with the discussion in Sec-

tion 10.2, it may be expected that there are function priors on which REA

performs better than other optimizers. In fact, the experimental results just

presented provide evidence for this sort of alignment. REA outperforms other

optimizers on irregular, multimodal objectives such as langerman, shekel, and

whitley. So what is the natural function prior corresponding to REA, i.e., what
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sorts of problems play to REA’s strengths?

REA is a model-building optimizer. At each time step, REA builds a

probability distribution defined by

P(dx) = ξn
∑
a∈An

λ(Ea
n)

σn(a) (2π)d/2
exp

(
−f(a)

Tn
− |x− a|

2

2σn(a)2

)
λ(dx). (12.11)

This distribution is a mixture of Gaussians, where the number of mixing points

increases with each time step and the variance is a decreasing function of the

number of mixing points. In light of Section 10.4.5, REA might be expected

to perform best when the conditional expectation under the prior has a shape

similar to the λ-density in Equation 12.11.

In the initial generations, the distribution in Equation 12.11 has rel-

atively few large modes distributed broadly through the search space. As

the number of function evaluations increases, the modes become smaller, but

the points explored become closer to each other, since REA emphasizes ex-

ploration within the modes it has already discovered. Thus REA expects to

discover secondary modes distributed across the modes already known. Ex-

trapolating out to infinite time, the well-aligned function prior should prefer

functions with a fractal structure that results from the composition of many

Gaussian modes overlaid in tight clusters and distributed sparsely throughout

the search space. The location of large modes might appear as though drawn

from a Dirichlet prior at various levels of refinement. With high probability,

the existing modes would be maintained, and with low probability a new mode

would be sampled.
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As an example of this kind of prior, consider the following iterative

sampling scheme for functions over R1 on the interval [−10, 10]. First, choose

10 points x01, . . . , x
0
10 distributed uniformly over the interval. Assign a value

F (x01) uniformly at random on [0, 1]. Then for n greater than zero, sample

xn1 , . . . , x
n
10 from a mixture distribution with density

Gn(x) = ξn
∑

a∈
⋃n
i=1

⋃
j{xij}

1

1.035−n
√

2π
exp

(
F (a)− |x− a|2

2× 1.035−2n

)
, (12.12)

where ξn is a normalizing factor. Notice the similarity to Equation 12.11,

except for the area-sensitive variance. Consider each Gn as a random objective,

and notice that the conditional expectation of Gn based on the first 10m points

obeys the equation

E
[
Gn | F (xij), i ≤ m

]
= C

∑
a∈

⋃m
i=1

⋃
j{xij}

1

1.035−n
√

2π
exp

(
F (a)− |x− a|2

2× 1.035−2n

)
,

(12.13)

where C is a constant reflecting the normalizing factor and the expectation

of the remaining 10(n − m) terms from the sum in Gn. Annealed selection

(proportional or tournament) is unchanged by the addition of a constant mul-

tiplier, since such terms are normalized out. Thus the annealed selection rules

are approximately martingales on the sequence of priors given by Gn, suppos-

ing that the information contained in F (xij) for i ≤ m is the same or similar to

the information in G1, . . . , Gm. Loosely, then, it seems that evolutionary an-

nealing implements the information maximizing strategy in Section 10.4.4 for

the prior G∞ = limnGn, with the final step of that strategy being unnecessary,

since the expected minimum is one of the xij. Figure 12.3 shows an objective
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Figure 12.10: Examples of priors drawn from G25, G50, and G75 using Equa-
tion 12.12. The random objective G∞ may be well aligned with REA, sup-
posing a fixed, decaying variance was used in place of REA’s area-sensitive
variance decay. An area-sensitive decay would be more smooth, particularly
in sparse regions. The fractal structure of Gn is clearly evident in these im-
ages. This function roughly resembles langerman, on which REA-T performs
best among all optimizers tested, suggesting that REA is well aligned with
this random objective.

sampled from the Gn at G25, G50, G75 as an example of the sorts of objectives

that might be generated by this procedure. These images show the type of

function on which REA should perform well. Note that if the fixed variance

decay in Gn were replaced with REA’s variance-sensitive decay, the generated

objectives would probably be slightly smoother, especially in regions where

the xij are more sparse. Examining the progression of Gn reveals the fractal

nature of such a function prior.

Examining the heat maps in Figure 8.1, it may be seen that the pro-

cedure from the last paragraph most accurately describes the benchmarks

langerman, shekel, and to some extent whitley. The benchmark langerman in
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particular fits the description. It has four large modes, two of which over-

lap, with rugged and detailed volcano-like structures at the top of each mode.

Thus the intuition about what kinds of priors REA might prefer is confirmed

by the experiments, and REA should be considered as a good alternative for

optimizing multimodal functions with generally irregular structure.

12.4 Conclusion

In this chapter, REA was applied to optimization in finite-dimensional

Euclidean space. Details were offered for an efficient implementation of an-

nealed selection. Experiments on the benchmarks from Chapter 8 showed

that REA performs well in comparison to other optimization methods, partic-

ularly with annealed tournament selection. The performance profile of REA

was found to be complementary to the performance of the other optimizers

that were tested. This complementarity results from the alignment of REA to

function priors that generate irregular objectives with good fitness distributed

sparsely among different modes at several fractal levels.

Euclidean space is a common target for optimization, but evolutionary

annealing can be applied to other spaces as well. The next chapter studies

evolutionary annealing as a tool for optimizing neural networks.
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Chapter 13

Neuroannealing

In the previous chapter, evolutionary annealing was applied to bounded

subsets of Euclidean space to demonstrate that an information maximizing

approach to optimization is both feasible and effective. An important feature

of evolutionary annealing is that it can be applied to any measurable space.

In this chapter, evolutionary annealing is employed to search a space of re-

current artificial neural networks; this approach to learning neural networks

will be termed neuroannealing. Neuroannealing is compared to a successful

neuroevolution method, NEAT, and is shown to perform better on certain

kinds of problems, in particular, those that require large neural networks with

deep structure. As will be discussed in this chapter, neuroannealing is able to

discover complex solutions because it retains all previously tested solutions,

allowing it pass through regions with lower objective values in order to reach

the solutions.

13.1 Evolving Recurrent Neural Networks

Recurrent neural networks (RNNs) are a flexible class of parameter-

ized nonlinear dynamic functions. In a supervised setting, the dynamics of
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an RNN can be learned using techniques such as Backpropagation Through

Time [175]. However, RNNs are often applied to control tasks, where a su-

pervised learning signal is not generally available. In such cases, the two

most prominent approaches for training neural controllers are reinforcement

learning [176, 200, 209, 214] and evolutionary computation, termed neuroevo-

lution [66, 80, 81, 99, 138, 196, 222]. Neuroevolution, especially advanced neu-

roevolution methods like NEAT [196], has been shown to be more effective in

certain control tasks. Evolutionary annealing was compared to several compet-

ing optimizers in Chapter 12. In this chapter, neuroannealing will be compared

experimentally to NEAT in order to demonstrate the benefits of the annealed

selection for learning neural networks.

13.1.1 RNN Basics

An RNN consists of a set of artificial neurons, or nodes, connected by

artificial synapses, or links, with a signal-modulating weight. A subset of the

nodes, termed the input nodes, are used as sensors to observe external state.

A disjoint subset, the output nodes, are treated as the network’s output signal.

The remaining nodes are referred to as hidden nodes. In addition, most RNNs

use a bias on each node to predispose the neuron to be more or less easily

activated. Computation in an RNN proceeds by propagating an input signal

through the synapses until equilibrium, and then measuring the activation or

excitation of the output nodes. An RNN is characterized by the fact that

the network graph, formed by taking the neurons as nodes and the synapses
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as edges, may contain loops. A neural network without loops is termed a

feedforward neural network.

An RNN is determined by its connectivity and its weights. The network

topology refers to the particular pattern of connectivity within a network. It is

not the same as a topology of a space, although the two are distantly related.

Two disconnected neurons may be described as being connected with a zero

weights, and thus one mathematical representation of an RNN uses a pair of

weight matrices, one for connections to the input (the input weights), and one

for connections among the hidden and output nodes (the hidden weights). For

an RNN with N inputs, H hidden nodes and M outputs, the input weight

matrix I is an (H + M) × N matrix, the hidden weight matrix W is an

(H+M)×(H+M) matrix, the bias b is an M -dimensional vector. Collectively,

I, W and b constitute the parameters of an RNN.

The state of the RNN is a vector in RH+M that assigns a real number

to each output and hidden node. If xn is the state of a network, then given an

input un+1, the next state xn+1 is computed as

xn+1 = σ (Iun+1 +Wxn + b) , (13.1)

where σ is a nonlinear activation function, often called a squashing function

because it is usually intended to compress the neuron state within a small

finite range. Typical activation functions are the hyperbolic tangent, σ(x) =

tanh(x), and the logistic function, σ(x) = (1 + exp(−x))−1. The hyperbolic

tangent compresses activation values into [−1, 1], and the logistic compresses

426



them to [0, 1]. In this chapter, neuroannealing uses the hyperbolic tangent,

and NEAT uses the logistic function. There is no significant difference between

the two in terms of computing power.

A feedforward neural network with enough nodes and sufficiently pre-

cise weights can approximate any integrable real function [49]. Discrete-time

RNNs are strictly more powerful than feedforward networks. In terms of com-

putational theory, every binary language is decidable by some RNN with real

weights, meaning that RNNs are capable of performing tasks that a Turing

Machine cannot [185]. This result remains true even if the RNN is only run

for a finite number of steps [35]. With rational weights, RNNs are at least as

powerful as Turing Machines [185].

As dynamical systems, most RNNs are Lyapunov-stable and converge

to equilibrium exponentially fast [19], meaning that their neural activations

tend towards a static equilibrium in very few steps when the inputs are fixed.

Thus an RNN with random weights and no inputs cannot generally compute an

arbitrary time sequence. However, a specially constructed RNN can generate

limit cycles [174]. Such limit cycles are induced by a chain of neurons arranged

in a singly-connected loop; in such a chain, the activation is passed along each

neuron, generating a time-varying source that does not depend on the inputs.

This fact is utilized in developing the neuroannealing approach.
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13.1.2 Neuroevolution

The term neuroevolution describes the process of applying evolution-

ary algorithms to search a space of neural networks to find a network that

optimizes some fitness criterion. In this approach, the parameters of a neural

network are encoded inside of one or more artificial genes, which are then se-

lected and mutated to form new networks. Early work focused on networks

with fixed size and topology [44, 66, 150, 213, 222]. With this assumption, it is

straightforward to encode a neural network as a vector in RC where C is the

number of connections in the network.

Subsequent work resulted in methods for evolving networks one neuron

at a time, averaging over the performance of different networks to estimate the

value of particular parameters. Such methods include SANE [138], ESP [81],

and CoSyNE [80]. All of these methods use a fixed number of hidden nodes.

In a different vein, NeuroEvolution of Augmenting Topologies (NEAT)

was introduced as a neuroevolution algorithm that seeks to produce only

those hidden nodes that improve the overall fitness of a recurrent neural net-

work [195, 196]. NEAT has been widely applied to several experimental set-

tings with success [128, 130]. Later in this chapter, neuroannealing will be

compared experimentally with NEAT, and so some discussion of the algorith-

mic details is necessary.

NEAT is initialized with a population of networks that contain no hid-

den nodes and no recurrent links. These networks consist only of input nodes
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directly connected to the output nodes. In successive generations, NEAT uses

proportional selection to choose a pair of network parents. It then applies

crossover (either intermediate or multipoint crossover). After crossover, a net-

work may undergo one or more modifications, either adding a node, adding

a link, or mutating an existing weight. Weight mutation applies a relatively

large Gaussian (σ ≈ 2) to the current weight. New links are added with a

small random weight. When a new node is added, it replaces an existing link

between any two connected nodes. In this case, two new connections are also

added. One connection is added from the source of the link to the new node

with a weight of 1.0. A second connection is added from the new node to the

target of the original link, copying the original weight. The general purpose

of these details is to preserve network function as much as possible. If a struc-

tural mutation substantially impairs the performance of a network, then the

new mutation will be immediately ejected from the population. Adding nodes

and links using the method above increases the chance that the new network

will survive.

NEAT has several additional features that improve its performance.

Speciation segregates the population of networks into subgroups based on the

similarity of topology and weights, and crossover is restricted so that both

parents are usually but not always drawn from the same species. The measure

of similarity can be tightened or relaxed. The use of species in NEAT preserves

suboptimal solution candidates that are different from existing solutions during

reproduction, promoting more thorough exploration of network topologies.
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Species are allowed to go extinct after a fixed number of generations with no

improvement. Additionally, NEAT marks each new structural feature (i.e. a

new node or connection) with a unique identifier, so that when crossover is

applied to networks with different structures, the shared structures can be

properly aligned. NEAT also uses elitism, retaining the best member of the

last population, except when the species containing the best member of the

population goes extinct. There are many other details required to describe

NEAT fully, and they make a difference in how well NEAT performs. It

is thus difficult to give complete mathematical account of NEAT’s behavior.

The source code for NEAT is publicly available, and this code was used to test

NEAT in the experiments below.

13.1.3 Evaluating the Performance of NEAT

Neuroevolution in general has been shown to perform well in control

tasks, such as controlling a finless rocket in flight [79] or generating a gait

for a multi-legged robot [203]. Experiments by Stanley showed that NEAT

performs well in a number of domains, including pole-balancing, board games,

obstacle avoidance in driving simulations, and control of virtual robots [197].

In general, NEAT quickly locates small and efficient recurrent networks that

solve a task.

NEAT does not always perform well, however. The failure modes of

NEAT were studied by Kohl [110], who found that NEAT’s performance tends

to degrade with the complexity of the problem, as determined by the total vari-
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ation of the problem. A neural network defines a map between input states

and output states. Such a map will be termed a state-action map. Neuroevo-

lution searches through the space of neural networks as a tractable proxy for

the space of state-action maps. Let Π be any partition of the search space

consisting of hyperrectangles, and suppose that action space is metric. The

variation of a state-action map on a hyperrectangle H is the largest distance

between the action values at any two corners of H. The total variation of a

state-action map over the partition Π is the sum of the variation of the map

on each hyperrectangle in Π. The total variation of a state-action map is the

supremum over all partitions consisting of hyperrectangles. The total varia-

tion of a problem is the infimum of the total variation of state-action maps

that solve it.

Kohl showed that the performance of NEAT degrades as the total vari-

ation of the problem increases, a property that he termed fracture [110]. Kohl

exhibited several problems with fractured state spaces, such as recognizing

concentric spirals, implementing a multiplexer for address-based lookup, and

robotic keepaway soccer. He also proposed a solution using radial basis func-

tion nodes that improved NEAT’s performance on these domains. As Kohl

observed, when NEAT does succeed in fractured domains, the successful net-

works tend to be larger, allowing them to encode higher complexity that re-

flects the fractured problem domain. Kohl’s solution works because the mix of

radial basis functions with sigmoidal nodes allows compact networks to exhibit

more complex behavior. Kohl also experimented with cascaded networks in
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which the existing weights of the network are frozen and new sigmoidal nodes

are added, which was also successful. In contrast, neuroannealing allows all

weights in a network to change throughout training.

13.1.4 Experimental Hypothesis

In contrast to Kohl’s approach, neuroannealing does not add radial ba-

sis functions and does not freeze weights, but is still able to find more complex

solutions to fractured problems. It is able to do so because it retains informa-

tion from all prior evaluations in order to generate new candidate solutions.

In order to move from a simple network with reasonably good perfor-

mance on the objective to a complex network with better performance, an

optimization method must either make all structural changes to the network

in one step, or else it must make a series of incremental changes, each of which

may degrade the objective value of the network. As a population-Markov

optimizer, NEAT discards previously evaluated networks that fail to improve

fitness. The speciation mechanism used by NEAT preserves novel structure

for a period of time, but any network that does not improve performance is

eventually eliminated. The probability that the required intermediate steps

are preserved in the population under NEAT therefore decreases exponentially

with the number of steps required.

In neuroannealing, the intermediate solutions remain in the pool of

previously observed networks, and thus it is possible to discover more com-

plex networks that achieve higher fitness. As a result, neuroannealing should
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outperform NEAT on fractured problems. However, the fact that more explo-

ration is performed around suboptimal points imposes a cost in terms of the

number of evaluations. When NEAT succeeds, it should succeed faster than

neuroannealing.

This hypothesis will be tested experimentally on concentric spirals, mul-

tiplexers, double pole-balancing, and automated currency trading. First, the

application of evolutionary annealing to the space of neural networks is de-

scribed.

13.2 Evolutionary Annealing for Neural Networks

In order to apply evolutionary annealing to the space of neural net-

works, three components must be defined: (1) a base measure over neural

networks, (2) an algorithm for partitioning sets of neural networks, and (3) a

sequence of mutation distributions likely to improve the objective value of a

network. This section proposes a particular approach to defining these compo-

nents that is collectively termed neuroannealing. First, the concept of a layer

of nodes is introduced as a building block for RNNs, and then each of the three

components are described in turn.

13.2.1 Layered RNNs

Neuroannealing searches the space of RNNs for the optimal networks

to solve an objective. In order to generate different network topologies, neu-

roannealing stochastically adds and removes new links and nodes to existing
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networks. In addition, neuroannealing organizes nodes into layers and pro-

vides mutation operators to add and remove entire layers of neurons. A layer

is a group of nodes such that within a layer, all nodes are of the same type,

either inputs, outputs, or hidden nodes. In a layered RNN, links interconnect

neural layers, so that two nodes are connected if and only if their respective

layers are connected. Links between two layers are associated with a weight

matrix containing the connection strengths between the nodes in each layer.

The concept of layers is standard when training neural networks using

supervised techniques. Every layered RNN corresponds exactly to a basic

RNNs described above. Layers merely add a conceptual separation that is

useful for computational efficiency, since it reduces the number of weights that

must be stored and multiplied. In neuroannealing, layers also play a role in

allowing the structure of the network to expand in useful ways. Neuroannealing

probabilistically inserts layers that are designed to store the prior state of

another layer, providing a natural way for RNNs to develop an otherwise

improbable memory.

To represent a NEAT RNN as a layered network, each node can be

assigned to its own layer. The effect on neuroannealing’s optimization ability

can be tested by enforcing this property on all proposed networks.

13.2.2 Base Measure for RNNs

The measure over RNNs used by neuroannealing is a sum of simpler

measures built on top of each other. The space of layered RNNs can be par-
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titioned according to the following four features: (1) the number of layers `,

(2) the number of nodes in each layer s, (3) the connectivity pattern among

the links c, and (4) the weight values w. A layered RNN representation can

be identified exactly by the tuple (`, s, c, w). The base measure will be con-

structed by addressing each of these items in reverse. The construction of the

measure is an important aspect of evolutionary annealing. Since the value of

the base measure appears in the selection probability for the next population

of networks (Equation 11.9), networks that are preferred by the base mea-

sure will be explored more thoroughly. In general, the driving force behind

the decisions below is to emphasize smaller, less complex networks without

penalizing extra structure too severely.

The first three criteria above comprise the network topology. If `, s,

and c are all fixed, then an RNN may be described completely by listing its

weights and biases. There are a fixed number of weights and biases, and so an

RNN with a given topology may be treated as a vector in RC where C = C(c)

is the number of weights and biases. At this point, one could place a bound on

the magnitude of the weight and use the Lebesgue measure, as was done for

REA. Instead, neuroannealing utilizes a Gaussian measure to allow unbounded

weights with a preference for small weights. For a given `, s, and c, then, the

measure over RNNs matching this profile is given by

λ`,s,c(A) =

∫
A

exp

(
− x2

2γ2

)
dx (13.2)

for A ∈ B[RC ]. The factor γ is termed the space scale; it reflects the average
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absolute correlation between connected nodes. A good default for the space

scale is γ = 1.

Next, networks with the same number of layers and layer sizes but dif-

ferent connectivity are handled. The connectivity pattern c can be represented

as a binary string of size L = N2 where N is the total number of nodes in the

network, N =
∑

i si. L is the number of possible links. Let n(c) =
∑

i ci be

the number of actual links in c. Given ` and s, there are exactly 2L distinct

connectivity patterns. Let P be the set of such patterns. A set A of RNN

representations with different connectivity patterns may be partitioned into a

finite family of sets {Ac}c∈P , separating out RNNs by connectivity. A measure

over such sets is given by

λ`,s(A) =
∑
c∈P

1

n(c)

(
L
n(c)

)
λ`,s,c(Ac). (13.3)

Here the factor 1/n(c) is applied to prefer networks with lower connectivity,

and hence fewer parameters. The factor

(
L
n(c)

)
is added to emphasize

networks that have about half of the possible number of links. The combined

effect of the two parameters prefers smaller networks that possess a reasonable

number of links.

If only the number of layers is fixed, the number of sizes s is a vector

of positive integers greater than one with dimension `. Networks with smaller

layer sizes are preferable, but layers of size one should not be emphasized

too strongly, or else neuroannealing will not consider larger layer sizes. This

balance was accomplished by weighting each size profile inversely to the total
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number of nodes in the network. There are countably many possible layer

sizes, and these can be enumerated. Let S be the set of size profiles, and

define

λ`(A) =
∑
s∈S

1∑
i si

λ`,s(As), (13.4)

where As, like Ac in the last paragraph, decomposes A according to size pro-

files. It is notable that λ` is not finite, unlike λ`,s and λ`,s,w. First, there

are many size profiles with equivalent sums, and second
∑

1/k = ∞ even if

there were not. The theory of evolutionary annealing only applies to finite

measures. A finite measure over size profiles can be obtained by capping the

total size of the network with some large value. In practice, the experiments

in this chapter never produced a network larger than 256 nodes, and so this

value was used as a maximum network size.

The base measure over RNN representations is achieved by handling

arbitrary numbers of layers. This number is an integer greater than one. As

with sizes, a set of RNNs may be decomposed according to the number of

layers, so that for a given set of RNNs A, the set A` is the subset of A with `

layers. Then a measure over arbitrary layered RNNs is given by

λ(A) =
∞∑
`=2

1

`
λ`(A`). (13.5)

Putting it all together,

λ(A) =
∞∑
`=2

1

`

∑
s∈S

1∑
i si

∑
c∈P

1

n(c)

(
L
n(c)

)∫
A`,s,c

exp

(
− x2

2γ2

)
dx. (13.6)

Once again, this measure is not finite, but a finite measure can be obtained by

bounding the size of the network at some large value. In the experiments that
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follow, the number of layers was bounded above by 256; more than 20 layers

were rarely observed.

The base measure induces a σ-algebra over the space of RNNs whose

structure primarily reflects the underlying Euclidean space of the weights. The

space of network topologies is discrete and countable, and so a topology for

the space of RNNs can be defined as a countable product topology based on

the Euclidean topology over the weights.

13.2.3 Redundant Representations

The space of RNNs is treated as a proxy for searching a functional

space. Due to Cybenko’s density result [49], the space of RNNs spans at

least L1[Rd]. This relationship is not a formal isomorphism, however. There

may be many RNNs that compute the same function, even if the number of

hidden nodes is fixed. Equivalent RNNs can be generated by swapping the

connection strengths between equivalently connected RNNs. Thus even at a

basic level, RNN representations are not unique in the sense of computing

equivalent functions. The addition of layers introduces further potential for

different representations of the same function.

This non-uniqueness does not prevent searching for neural networks,

but it is an issue to consider in neuroannealing for two reasons. First, the

space of RNN representations contains numerous redundancies. Functions

with many representations will be assigned greater mass than functions with

fewer representations, meaning that neuroannealing will be more likely to se-
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lect such functions. Second, the objective value of different representations

of equivalent functions is the same, and an information-maximizing optimizer

should utilize this information in order to narrow the search space as quickly

as possible.

At this time, it is not clear how to structure the base measure to elimi-

nate redundancy and propagate objective evaluations among different network

topologies. A non-redundant measure would likely improve performance, es-

pecially when searching among complex networks. Such a direction is left as

future work.

13.2.4 Partitioning Networks

Evolutionary annealing works by partitioning the search space at in-

creasingly fine resolution one point at a time. There are many ways in which

such partitioning could be done. Neuroannealing extends the basic partition-

ing algorithm in Algorithm 2 (Section 11.2.3) to account for differences in

network topology. For this purpose, the partition tree is conceptually strati-

fied into four sections, one for each of the four levels used to define the base

measure in Section 13.2.2.

The stratification can be best understood by starting with the node-

separation algorithm. Given two networks x1 and x2 and a set A, neuroan-

nealing must create disjoint sets A1 and A2 such that x1 ∈ A1 and x2 ∈ A2.

The networks can be decomposed so that xi = (`i, si, ci, wi) for i = 1, 2. If

`1 6= `2, then compute the midpoint ˜̀ = d `1+`2
2
e, and let A1 be the set of
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networks in A with less that ˜̀ layers, and let A2 = A \ A1. This process is a

straightforward application of the vector separation method in Section 11.2.3.

If `1 = `2 but s1 6= s2, then the vector separation method can be applied to

the size vectors s1 and s2. The same approach can also be applied if c1 6= c2,

and finally if w1 6= w2. This approach to separation assumes a hierarchy of

separation levels, so that ` is separated first, then s, then c, and finally w.

Provided that any traversal through the partition tree from the root

respects the ordering of this hierarchy, the tree will correspond to a valid

partition. If the ordering is violated, for example, by separating on w at a

higher node in the tree, by ` at a lower level, and then by w at the the leaf,

then the regions contained in distinct branches of the tree may overlap, with

deleterious results. Thus a traversal through the tree must be stratified. Any

separation on ` must occur first, then separation on s, and so on.

Algorithm 2 can be modified to support this stratification by allowing

separation at nodes other than the leaves. The network partitioning algorithm

for neuroannealing locates the first separating boundary for the new network.

If this node is a leaf, then the algorithm proceeds as before using the separation

algorithm from this section. But if this boundary occurs at an internal node,

then a new internal node must be created, and the point being inserted must

be separated from every node under the span of the boundary node. In order

to make this approach possible, each node in the partition tree must be marked

with the representation (`, s, c, w) that was used to create the node and the

index of the tuple that was most recently used to separate the node. Note that
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the portion of this representation that creates the boundary is shared among

all points under the space of the boundary node. For example, if the boundary

occurs at s, so that s′ 6= s where s′ is the size profile of the network being

inserted, then it holds that every node underneath the boundary shares the

size profile s. By separating s′ from s using the vector separation algorithm,

the inserted network is partitioned away from every node under the internal

boundary node.

The hierarchical partitioning algorithm is given in Algorithm 3. To add

a new point to an existing tree, the tree is traversed from the root so long as

the representations agree up to the marked separation index. The first node

containing the inserted point that disagrees on some part of the representa-

tion up to the marked separation index is the boundary node, and is chosen

for partitioning. This node is separated as described in this section. The

new internal node is marked with the separation index at which the inserted

point first disagreed. The branch containing the existing nodes is unchanged.

The inserted point is assigned to the other branch and is marked with the

representation of the inserted point and separation index 4.

The basic partitioning algorithm introduced in Section 11.2.3 and used

for Euclidean space in Chapter 12 maintained a partition tree that represents

the entire area of the search space. In contrast, the hierarchical partitioning

method only represents the area of the network topologies discovered at each

point during execution. When neuroannealing is initialized, the area of the

first topology inserted into the tree is used to compute the area of the whole

441



Algorithm 3 Algorithm to Generate a Partition Of RNNs

{xm}Mm=1 ⊆ X, the observed networks as (`, s, c, w) tuples
T ← {X}, the partition tree
k(i)← ∅ for all i = 1, . . . ,M , node assignment function
µ({X})← (0, 0, 0, 0), the node marking function
idx({X}) = 4, the node separation index function
for m← 1 to M do
N ← highest node in T s.t. xm ∈ N and ∃i ≤ idx(N) s.t. µ(N)i 6= xm,i
if ∃j 6= m s.t. k(j) = N then
N0, N1 ← separate (xj, xm, N)
T ← T ∪ {N0, N1}
k(j)← N0, k(m)← N1

µ(N0)← µ(N), µ(N1)← xm
idx(N0)← idx(N), idx(N1)← 4
idx(N)← the minimum i s.t. xm,i 6= µ(N0)i

else
k(m)← N
µ(N) = xm
idx(N)← 4

end if
end for

tree for sampling purposes. Thus if the first point is x1 = (`1, s1, c1, w1), the

partition tree is assigned the initial area λ`1,s1,c1(X`1,s1,c1). Whenever a point

with a distinct topology is encountered, say, x2 = (`2, s2, c2, w2), then the new

node for this topology is assigned the area λ`2,s2,c2(X`2,s2,c2). Thus the total

area of the partition tree is increased whenever a new topology is inserted.

This increase is ignored for the purpose of sampling, as though the area of

the new topology had always been present, uniformly distributed among the

existing leaf nodes. Since sampling from the tree is normalized, this effect is

invisible.
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Because the area of new topologies is only added to the partition when

a new topology appears, the new area only needs to be propagated up the

partition tree. Insertion into the score tree is done as for any other point.

Thus the approach of adding new area as topologies are discovered avoids an

otherwise troublesome problem of reallocating area from existing nodes in the

partition and score tree.

As a result, when a new topology appears, it immediately acquires

substantial area, forcing some exploration of the new topology. This effect

parallels the use of speciation in NEAT, but is a natural mathematical property

of the hierarchical partitioning method.

The hierarchical partitioning algorithm can be easily generalized to

other search spaces where there is a hierarchy of criteria useful for partitioning

points.

13.2.5 Network Mutations

Once neuroannealing has selected a network to mutate, a sequence of

mutations is applied to modify the network. Eight types of mutation are

employed, in the following order: (1) uniform crossover, (2) addition of a

hidden layer, (3) removal of a hidden layer, (4) addition of a node to a hidden

layer, (5) removal of a node from a hidden layer, (6) addition of a link between

any two unconnected layers, (7) removal of an existing link, and (8) mutation

of the weights with an area-sensitive Gaussian.

After selecting a network, neuroannealing applies crossover with prob-
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ability 0.5. Crossover combines two networks to form a third network that

shares properties of the two parents. When crossover is used in neuroanneal-

ing, a second network is selected independently of the first using annealed

tournament selection. The structure of the networks is aligned according to

the indices of their layers, then the weights from any shared links are recom-

bined using either uniform crossover as in Equation 4.17 with probability 0.6

or intermediate crossover as in Equation 4.26 with probability 0.4. The com-

bined network retains the topology of the first parent, but integrates weights

and biases from the second parent where they share structure.

In the context of neural networks, crossover is useful because networks

are naturally modular. A subset of weights or structure from a network can

increase the objective value of the network independent of the other network

parameters. Ideally, crossover would be performed by identifying different

modules within the network and creating a new network by recombining the

modules from successful networks. In the present case, it is not clear how

to identify such modules, and so neuroannealing randomly chooses weights

from one or the other parent. Preliminary experiments suggest that the use

of crossover on about half of the population improves neuroannealing.

After crossover, further mutations are attempted in the order presented

below. Only one such mutation is allowed. Once a layer, node, or link has

been added or removed, no further structural changes are permitted.

First, neuroannealing adds a chained layer to a network with probabil-

ity 0.01. A chained layer is a layer of hidden nodes that copies an existing layer
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of the network and adds two links. The first link runs from the copied layer to

the chain layer with the identity matrix as the link weight matrix. The second

link connects to a random layer in the network other than the chain layer,

including possibly the copied layer. If the copied layer was already connected

to the target layer, then the weights are also copied from the existing to the

new link. Otherwise, the new weights are sampled from a Gaussian with con-

figurable variance σ̂2, defaulting to σ̂ = 0.01. A chain layer preserves the prior

state of the copied layer into the next step. This mutation was intended to

allow the creation of limit cycles within the network, in accordance with the

results in [174]. Successive chain layers can quickly add a short-term memory

to the RNN that would otherwise be difficult to attain randomly.

Next, if no chain layer was added, neuroannealing deletes a random

hidden layer and all of its associated links with probability 0.01. Removing

layers allows unneeded structure to be culled once good solutions are located.

If no modifications are made to the network layers, a node is added

to a random hidden layer with probability 0.01. The weights and bias for

the new node are sampled from a Gaussian using the same variance σ̂2 as

described above for new layers. The new node’s connections are determined

by the existing links over the layered structure. If no node is added, a node

is removed from a random hidden layer with probability 0.01, and all of its

connections are deleted.

The next two structural mutations alter the network connections if no

layers or nodes have been mutated. A new link is added between two random
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layers with probability 0.025. Nothing is done if the randomly selected layers

are already connected. Any new weights are sampled from the same Gaussian

as is used for adding nodes and layers, with variance σ̂2. If no link is added, a

random link is removed with probability 0.025. Once again, the link is removed

by selecting two random layers. If the layers are not connected, nothing is done.

Link removal is performed this way so that it is less likely that links will be

removed from a sparsely connected network.

If no structural mutations have been performed, then the existing weights

of the network are randomly modified with probability 0.5 using a Gaussian

that reflects the structure of the current partition of the space. The parti-

tion tree is traversed to obtain the current upper and lower boundaries on the

weights of the potentially recombined network. The upper and lower bound-

aries are used to determine distinct variances for each weight or bias. Let u

and ` be the upper and lower partition boundaries for the network’s weights.

Because the weight space is unbounded, these vectors may be infinite on either

side. When the upper and lower boundaries are finite, the desired standard

deviation for each parameter is half the distance between the upper and lower

boundaries. To account for unbounded weights, u and ` are modified by using

the cumulative distribution of the Gaussian,

Φγ(z) =
1√
2πγ

∫ z

−∞
exp

(
−x

2

γ2

)
dz, (13.7)

reflecting the warping of the weight space that is also applied by the base

measure of Section 13.2.2. The standard deviation for mutating each weight
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or bias is then given by

σn,i =
Φγ(ui)− Φγ(`i)

2 log n
, (13.8)

where n is the number of the generation and i is the index of the component

within the weight and bias vector as used for partitioning in Section 13.2.4.

Each weight or bias is mutated independently. Scaling the variance in this

way preserves well-explored parameters, for which the distance between the

upper and lower boundaries is small, while forcing exploration of parameters

that have not been partitioned much. The extra logarithmic factor is used to

compel faster convergence in higher dimensional spaces, as was done in the

25-dimensional experiments on REA in Chapter 12.

13.2.6 Neuroannealing Instantiation

With the previous subsections in mind, the complete neuroannealing

algorithm can be stated. Neuroannealing is evolutionary annealing in the

space of layered RNNs with annealed tournament selection using using the

base measure from Section 13.2.2 and the hierarchical partitioning algorithm

of Section 13.2.4. Selected networks are mutated using the chain of mutations

described in Section 13.2.5. The hidden and output layers of the RNNs uses

hyperbolic tangent activations.

The initial population of networks is sampled as follows. All initial

networks have the same topology, which consists of a single input layer and a

single output layer, with the input layer fully connected to the output layer.
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Within this topology, the initial weights and biases are chosen uniformly at

random inside [−σ̂, σ̂] where σ̂ is the variance to be used when adding layers,

nodes, and links. At initialization, the weights are intended to be small so

that the activation can quickly change with new mutations, promoting fast

exploration of the space.

As presented, neuroannealing has four parameters that must be config-

ured: (1) the population size K, (2) the learning rate η, (3) the space scale

γ, and (4) the standard deviation of the components, σ̂. Based on prelimi-

nary experiments, a reasonable set of defaults is K = 50, η = 0.1, γ = 1.0,

and σ̂ = 0.1. The defaults work well for all of the experiments below ex-

cept for double pole-balancing with reduced inputs, where the values K = 50,

η = 0.025, γ = 2.5 and σ̂ = 0.25 were used instead.

With the algorithm fully described, a set of experiments will be pre-

sented to compare neuroannealing with NEAT.

13.3 Neuroannealing Experiments

Experiments were performed in four domains, two in which NEAT per-

forms well, and two in which it does not. The domains and experiments are

described below.

13.3.1 Experimental Setup

For the experiments in this section, except as noted otherwise, both

neuroannealing and NEAT were run for 1, 000 generations with a population
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size of 50, totaling 50, 000 evaluations. The parameters for NEAT were set

according to the defaults distributed with the publicly available C++ pack-

age, except for non-Markov double-pole balancing, where they were set to

match [197]. In contrast to previous experiments, each of the tasks below

is stated as a maximization problem. To maximize with neuroannealing, the

ranking used for tournament selection simply sorts from highest to lowest score

rather than the opposite.

Results are reported for each experiment using the performance criteria

of Chapter 8: success probability (σNε ), hitting time on success (ψ̂Nε ), final error

(ζTn), average error (φ1), and weighted average error (φ2). The three error-

based performance criteria are scaled between 0 and 1 where possible. The

error threshold ε was chosen separately for each task and is given in the table.

Each task is now described in turn along with its experimental results. The

results for all experiments are also compiled and presented in Appendix A as

Table A.51.

13.3.2 Double Pole-Balancing

The double pole-balancing task is a control problem in which two poles

are attached to a moving cart with hinges. The first pole is 1m in length with

mass 0.1kg, and the second is 0.1m with mass 0.01kg. The 10kg cart moves

along a track 4.8 meters in length, and must balance the two poles simultane-

ously by keeping them with 36 degrees of vertical. A motor is attached to the

cart that outputs a force up to 10N in either direction along the track at each
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point in time. Interactions are assumed to be frictionless. This physical sys-

tem is simulated using a fourth order Runge-Kutta method with state updates

every 0.2 seconds. The system starts with the cart in the middle of the track,

the smaller pole upright, and the larger pole at 4 degrees from vertical. A

successful controller must remain on the track and keep both poles within the

tolerance for 100, 000 steps, or about half an hour of real time. The physical

equations for the system and further details of the simulation can be found in

the literature [79, 80, 197].

The neural network is tasked with controlling the direction of the force

and is queried after each state update. Six state variables are available: the

position and velocity of the cart, x and ẋ, the angle and angular velocity of

the first pole, θ1 and θ̇1, and the angle and angular velocity of the second

pole, θ2 and θ̇2. There are two versions of this task. In the first version, all

six variables are provided to the network, and the network output is scaled to

[−10, 10] and applied as the force. This Markov version of the problem can be

solved without any hidden nodes. A second, more difficult version of the task

provides only the position and angles to the network, requiring the network to

infer the velocities over time. This non-Markov version can be solved with as

few as two hidden nodes [197].

The objective value of a network for double pole-balancing with or

without velocities is the number of steps for which the cart remains on the

track with the poles upright. The version with the velocities is termed Markov,

and the version just the position and angles is termed non-Markov.
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Table 13.1: Published results for selected methods on both versions of the
Double Pole-Balancing task, as given by Gomez et al [80]. Reported quantity
is the average number of evaluations before success, with failed trials excluded
(i.e., ψ̂N0 , N = 100, 000 for new results). Results for neuroannealing are new
(as indicated by the asterisks), as well as the results for NEAT (determined
experimentally using the parameters published by Stanley [197]).

Method Markov non-Markov
SANE 12,600 262,700
Q-MLP 10,582 –
Neuroannealing *7,767 *7,499
ESP 3,800 7,374
NEAT *1,819 *4,676
CMA-ES 895 3,521
CoSyNE 954 1,249

For NEAT, the parameters for non-Markov double-pole balancing were

chosen to match those used by Stanley [197]. Most importantly, the population

size for NEAT was increased to 150. For neuroannealing, the settings K = 50,

η = 0.025, γ = 2.5, and σ̂ = .25 were used in place of the defaults to promote

larger weights and more thorough exploration of the space.

The Markov version of the task has been solved by a number of meth-

ods, including reinforcement learning (Q-MLP), and both versions have been

solved by neuroevolution methods (SANE, ESP, NEAT, CMA-ES, CoSyNE) [80].

The non-Markov task is more challenging and has so far only been solved

through neuroevolution. The number of network evaluations required to solve

the problem is available for each method and can be compared with the results
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for neuroannealing, as is done in Table 13.1. As these results together with Ta-

ble 13.2 show, neuroannealing is able to solve the pole-balancing task, but re-

quires twice as many evaluations as NEAT does. Neuroannealing takes longer

because it searches more thoroughly around previously observed solutions.

While such a search is not particularly useful on this problem, it turns out to

be valuable on the next two tasks.

13.3.3 Multiplexers

A multiplexer is a circuit that selects one of several input lines using a

binary address. Multiplexers are used to implement computer memory circuits

and are easily implemented in hardware. The function of a multiplexer is

difficult for a network to learn because it requires the use of a large percentage

of the binary input space. A single perceptron can only distinguish a fraction

of the binary numbers, and thus multiple neurons must be used in concert to

solve the multiplexer problem. As a result, methods like NEAT have difficulty

discovering the required complexity [110].

The experiments below test the ability of neuroannealing to learn mul-

tiplexers with four different inputs. Mux12 has one address line and four

binary inputs. Mux24 uses two address lines and four binary inputs. Mux35

has three address lines and five binary inputs, while Mux36 has three address

lines and six inputs. The versions with three address lines use less than the

possible eight data inputs in order to simplify the task for neural networks.

The task in each case is to learn a network that reads the binary address lines
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(a) Mux12 (b) Mux24 (c) Mux35 (d) Mux36

Figure 13.1: The multiplexer learning problem. The correct output is deter-
mined by the value of the data input at the address specified. With three
address bits (Mux35 and Mux36), not all addresses were used to simplify the
problem for a neural network.

and outputs the binary input at the specified address line. The data inputs

are numbered in the standard binary order. Figure 13.1 shows a visualization

of the multiplexer problem, taken from Kohl [110].

The objective function (i.e. the fitness function) sums the error at each

feasible address and data input. The network outputs are scaled to [0, 1] for

this purpose. If net(a, d) is the scaled output of the network for an address a

and a data input d and da is the addressed data, the objective is given by

f(net) =
∑
a,d

|da − net(a, d)|. (13.9)

Importantly, the objective function is structured to maximize the error and

hence the learning signal; in practice, it is sufficient to measure the results by

checking whether the net output exceeds a threshold.
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The results in Table 13.3 show that neuroannealing performs better

than NEAT on the multiplexer problems. On 13% of all runs, neuroannealing

completely solves Mux12, whereas NEAT was unable to find a solution after

200 runs. The best solution discovered by neuroannealing for Mux24 was also

completely correct, although the average solution achieved a fitness of 0.75

against an average of 0.72 for NEAT. On the versions of the problem with

three address lines, Mux35 and Mux36, neuroannealing similarly performed

well, with an average fitness of 0.72 and 0.70, compared to an average fitness

of 0.68 and 0.65 for NEAT. The best fitness in 200 trials for neuroannealing

on Mux35 was 0.97, and on Mux36 it was 0.92. The best networks on this

task were indeed large. Typical solutions for neuroannealing used 4-6 layers

with about 20 nodes. Thus neuroannealing is able to solve the multiplexer

problems better than NEAT because it is able to discover complex networks

with high objective values that NEAT is unable to reach. The next task,

learning concentric spirals, reinforces this point.

13.3.4 Concentric Spirals

In the Concentric Spirals problem [159], the state space is divided into

two interlocking spirals, one “black” and the other “white”, and the task is

to identify whether each point in the space falls inside of the black or white

spiral [110, 159]. The black spiral is determined by 97 points, given in polar

coordinates by

ri =
6.5

104
(104− i) , θi =

π

16
i (13.10)
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for i = 0, . . . , 96. The white spiral is defined by inverting the sign of ri.

The 194 points are shown in Figure 13.2(a). The spate space is then divided

between the two spirals by classifying each point to match the closest spiral.

The resulting state space is shown in Figure 13.2(b). An evenly spaced 100×

100 grid was overlaid on the state space over the region [−6.5, 6.5]2, and the

resulting 10, 000 points were classified in this manner.

The neural network has two inputs and one output. The Cartesian

coordinates of the state space are passed to the network as input, and the sin-

gle output should read 1.0 for black, and 0.0 for white. For this experiment,

the objective function summed the errors at each output for every point on

the 100 × 100 grid, scaled between 0.0 and 1.0. Thus the sigmoidal outputs

of NEAT were used directly, and the hyperbolic tangent outputs of neuroan-

nealing were shifted and scaled as required. If net(x, y) is the scaled output

of the network for the given Cartesian coordinates and c(i, j) is the correct

classification for position (i, j) on the grid, then the objective function (i.e.

the fitness function) is

f(net) =
100∑
i=1

100∑
j=1

|c(i, j)− net(xi, xj)|. (13.11)

It is possible to score a fitness of 0.67 on this problem by learning a correctly

angled hyperplane on the state space. To achieve higher scores, the network

must learn the spiral structure. Concentric spirals tests the ability of a net-

work to distinguish nearby points in the state space that should be classified

differently. In Kohl’s terms, the state space is fractured. Such a task requires

457



(a) Control Points (b) State Space

Figure 13.2: Illustration of the Concentric Spirals Problem, in which points
must be correctly classified as belonging to interlaced black and white spirals.
The left panel shows the 197 control points used to define the problem, and
the right panel shows the state space divided according to whether a black or
white point is closer. The percentage of correct classifications on the points in
the 100× 100 grid in the right panel was used for training neural networks.

networks with many nodes to represent the space, which were shown by Kohl

to be difficult for NEAT to discover [110].

Experiments were performed for both neuroannealing and NEAT for

1, 000 generations with a population size of 50 and 200 trials. As expected,

NEAT performed poorly, rarely exceeding the basic hyperplane solution with

fitness 0.67. By contrast, neuroannealing outperformed the hyperplane ap-

proximation on about half of the runs, correctly classifying 69% of the points

on the average. Complete results are in Table 13.4.
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Figure 13.3 shows the learned classifications from several runs of neu-

roannealing. Over time, neuroannealing eventually discovers solutions that

correspond to a spiral shape on the state space. Such solutions generally cor-

respond to larger networks. Only one of the solutions shown in the figure

comes from a network with less than 20 nodes. Networks in the figure gener-

ally consisted of 4−7 layers: The largest network, with 77 nodes, had a chained

layer of size 37 that allowed correct classification of 30 extra points more than

the network without the chained layer. As the networks become larger, they

are better able to model the concentric spirals, but the learning progress slows

down because larger networks have higher dimension. Neuroannealing was

still improving at the end of 50, 000 evaluations (1, 000 generations), and it

is possible that much better networks would have been discovered with more

evaluations. In general, it may be conjectured that neuroannealing is more

capable of discovering complex solutions in part because annealed selection

allows it to follow suboptimal intermediate steps to arrive at more complex

optima.

13.3.5 Currency Trading

Both neuroannealing and NEAT were also tested on the task of au-

tomated currency trading. In this task, a neural network is presented with

input data derived from the hourly exchange rate between two currencies.

The network must decide which currency to hold each hour and with how

much leverage. This task is a new benchmark, introduced in this dissertation.
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(a) f = .7222, 34 nodes (b) f = .7240, 21 nodes (c) f = .7255, 29 nodes

(d) f = .7264, 13 nodes (e) f = .7277, 31 nodes (f) f = .7318, 39 nodes

(g) f = .7343, 20 nodes (h) f = .7371, 77 nodes (i) f = .7385, 31 nodes

(j) f = .7389, 37 nodes (k) f = .7494, 30 nodes (l) f = .7511, 40 nodes

Figure 13.3: State space classification for the concentric spirals problem as
learned by neuroannealing. Objective values and network sizes are shown for
each solution. More accurate solutions require larger networks. Neuroanneal-
ing is able to discover these solutions, whereas NEAT does not.
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The complexity of the task is unknown, but it is of interest as a real-world

problem where optimization of neural networks could prove useful.

The task of an automated currency trader is to progressively read a

sequence of technical indicators for an arbitrary currency exchange rate and

output trading decisions. Performance on this task was tested using a dataset

with six months of hourly exchange rate data for nine different currency pairs.

Complete details of the task and the associated datasets are provided in Ap-

pendix B.

The sequence of technical indicators for this experiment consists of ten

real-valued inputs derived from the exponential moving average at five, 20, and

50 periods, the relative strength index at 14 periods, the fast and slow stochas-

tics at 14 and three periods respectively, the width of the Bollinger Bands, the

position of the closing price within the Bollinger Bands, the absolute difference

between the opening and closing price, and the difference between the high

and low price. Each of these indicators were scaled to remove the price details,

as described in Appendix B.

In addition to these ten technical indicators, three trading inputs were

used to describe the automated trader’s current position. The first trading

input specifies the trader’s current long position as a percentage of the possible

long value if the trader were operating at full leverage. This input is zero if

the trader’s position is currently short or neutral. The second trading input

gives the trader’s current short position as a percentage of the possible short

value in the same way. The third trading input provides the length of time
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the trader’s current position has been held under an exponent. If the number

of time steps the current position has been open is `, then the value of this

input is exp(−`), so that this input exponentially tends toward zero the longer

the position is held. These three trading inputs allow the network to be aware

of the status of its trades, which is necessary since not every network decision

can be implemented, and the simulator may impose a margin call after a bad

trade.

The networks for this task have three outputs. The output values are

normalized so that the three outputs total to 1. The first output is for buy

decisions, and the second for sell decisions. The third output represents risk

aversion and is only used to normalize the other two. If the normalized value

of first output exceeds the second by 0.05, a buy decision is entered, or a long

position is held. If the normalized value of the second output exceeds the

first by 0.05, a sell decision is entered, or a short position is held. Otherwise,

the current position is liquidated. The amount of leverage is decided as a

percentage of the possible leverage (up to 50:1 in currency trading) based on

the absolute difference of the normalized buy and sell signals.

The objective value of a currency trader is determined by the account

value after trading each of the nine currency pairs in succession for six months.

The network starts with an account value of 1 and is queried once per hour

on historical data. Objective values less than 1 represent an overall loss, and

values above 1 correspond to a gain. Six months of trading on nine pairs

equates to four and a half years of trading time, so a 10% annual gain would
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result in a fitness of 1.14.5 = 1.54. A fitness of 10 implies an annual gain of

66%.

Table 13.5 presents the results for this task. Since the true optimum is

unknown, the raw fitness values were reported rather than the error. A fitness

of 250 or more was considered a success. In the columns for ζT , φ1, and φ2,

the final fitness, average fitness, and weighted average fitness were reported

instead of the standard values for these performance criteria.

On this task, neuroannealing achieved a substantially higher average fit-

ness than NEAT over 200 trials. Neuroannealing attained a fitness of 31, 016.331

on average, versus 43.365 for NEAT. Due to the definition of the fitness, the

account value grows exponentially when a neural network trader succeeds, ac-

counting for the large numbers. Neuroannealing also posted higher account

values more frequently than NEAT, as reflected in the value for σNε in Ta-

ble A.51, which shows that neuroannealing attained an account value of 250

or more on 74.9% of all runs, versus 2.8% for NEAT. This difference is statis-

tically significant. The highest fitness value discovered by NEAT was 803 for

NEAT, compared with the average fitness for neuroannealing at 31, 016. Both

neuroannealing and NEAT performed well on this task overall. It is unclear

whether these results will generalize to real-world trading contexts, since it

is possible that both algorithms are overfitting the data. Nonetheless, higher

objective values suggest greater success in this task. Of the two methods,

neuroannealing performs considerably better.
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13.4 Neuroannealing Discussion and Future Work

The experiments show that neuroannealing is an effective method for

training neural networks in three different domains: multiplexers, concentric

spirals, and currency trading. Neuroannealing works well on these problems

because it searches more thoroughly through complex networks and is not

constrained by population size. Annealed selection makes it possible for neu-

roannealing to attempt more ways of increasing network complexity without

forgetting previously successful solutions. This property allows neuroanneal-

ing to step through regions of suboptimal fitness in order to find successful

complex networks. When simple solutions exist, neuroannealing usually finds

them, because it searches simple networks first. When complexity is required,

however, neuroannealing considers progressively more complex solutions.

In double pole-balancing, neuroannealing does not find solutions as

quickly as NEAT, ESP, or CoSyNE, but it does solve the problem. This suc-

cess is achieved despite the fact that neuroannealing is designed to focus on

thorough optimization rather than speed. Neuroannealing is a robust opti-

mizer even in domains where NEAT performs well.

On the multiplexer problems and on concentric spirals, neuroannealing

performs substantially better than NEAT because it is more capable of discov-

ering complex networks. The size of these networks can exceed those of NEAT

networks by a full order of magnitude, as demonstrated by the networks with

up to 77 nodes in Figure 13.3. As noted by Kohl [110], these problems require

complexity in order to be solved, and neuroannealing is able to deliver.
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Neuroannealing thus demonstrates the power of fully leveraging infor-

mation in order to drive optimization. As an instance of evolutionary anneal-

ing, neuroannealing proves that evolutionary annealing can work well in at

least some high-dimensional domains and further reinforces the value of the

annealed selection methods.

Future research into neuroannealing could focus on determining the

effect of the various mutation operators and tuning their parameters. In addi-

tion, the good use of chain layers suggest that there may be other large-scale

agglomerative combination methods for constructing large neural networks

from known modular components. One approach in this direction would be to

refine the partition method so that partitions reflect network behavior. Mod-

ular networks could then be constructed by merging networks from different

behavioral regions. Similar work with NEAT has already yielded valuable

results in this direction [125].

For evolutionary annealing in general, the principle that partition re-

gions should reflect meaningful distinctions in the search domain is one that

deserves further considerations. The current partitions based on axis-parallel

hyperrectangles are a rudimentary tool that could be substantially refined.

Also, it can be argued that methods like DE and CMA-ES are effective

because they compress the prior search history into a very brief and compact

form. By contrast, evolutionary annealing performs no compression and uses

the entire evaluation history. It is likely that there is some useful middle

ground. Perhaps the results of evolutionary annealing can be achieved while
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retaining a summarized version of the evaluation history.

Furthermore, the mutation operators for an evolutionary annealing in-

stance will be more successful if they are better aligned with the function

prior from which problems are drawn. In neuroannealing as in NEAT, the

progressive addition of network structure is intended to mirror the principle

of Minimum Description Length, aligning the search methodology with the

general assumptions about the nature of the universal prior, as discussed in

Chapter 10. The success of both NEAT and neuroannealing in a wide range

of domains bolsters this assumption. Still, it seems that neither neuroanneal-

ing nor NEAT fully implements the principles of modularity and locality to a

satisfactory degree at this time. More work needs to be performed to quantify

and implement these principles.

13.5 Conclusion

Neuroannealing was shown to be an effective optimizer in diverse do-

mains, including pole-balancing, multiplexers, concentric spirals and currency

trading. In fractured domains, neuroannealing solidly outperforms NEAT due

to its ability to discover larger networks with higher objective values. These

results demonstrate that neuroannealing is an effective method for optimizing

neural networks.

This chapter brings to a close the experimental portion of this disserta-

tion. Evolutionary annealing has been defined as an information-maximizing

approach. It has been tested in Euclidean space and neural network with pos-
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itive results. It is expected that similar information-maximizing optimizers

will continue to prove their usefulness in the near future.
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Chapter 14

Disscussion and Future Work

The three main contributions of this dissertation are (1) the formal-

ization of iterative stochastic optimizers for static objective functions, (2) a

rigorous analysis of optimizer performance suggesting that general-purpose

optimizers exist for real-world problems, and (3) evolutionary annealing as

an effective information-maximizing optimizer. In this chapter, the broader

implications of each of these results are discussed, and potential avenues for

future research are presented.

14.1 Formalization of Optimizers

Although the study of optimization has a long history, this dissertation

has examined the space of iterative stochastic optimization methods formally,

based on the sequence of evaluation points proposed by each method. This

perspective enabled new insights, but the results of this dissertation have only

scratched the surface of what is possible within the formal framework adopted

here. The next several sections propose different ways in which the formalism

could be extended or applied to create new optimizers.
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14.1.1 Dynamic and Stochastic Objectives

This dissertation has focused on static objectives only. That is, the

objective is given beforehand and does not change during the optimization

process. Such an objective was described as an element in RX . But what

if the objective changes over the course of optimization, as is the case with

dynamic functions? Or what if the objective is a random function, whose

values can be sampled but not measured exactly?

The formal context of this dissertation can be extended to dynamic

functions with little change. The space of dynamic functions can be repre-

sented as either RX×N or RX×[0,∞), depending on whether discrete or continu-

ous time is needed. An optimizer on this space can be regarded as a function

from T[X] × RX×N to P[X]. This set is once again a closed, convex subset

of a normed vector space with a slightly different norm that takes the supre-

mum over dynamic functions. It seems reasonable to speculate that all of the

continuity results from Chapter 5 still hold for continuous functions.

The major changes regard the analysis of performance. A dynamic ob-

jective may be viewed as an adaptive environment. Such environments have

been extensively studied in the context of evolutionary computation. Com-

petitive coevolution in particular is an example of dynamic objective, in which

the objective value of a solution depends on the other solutions being evalu-

ated concurrently. The information-maximizing perspective from Chapter 10

no longer applies as strongly in an adaptive environment, since previous ob-

jective evaluations may be stale or irrelevant. With a dynamic objective,
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forgetting can become strategic if the changes to the environment are slow

and unpredictable. Or, it may be advisable for the optimizer to model the

dynamics of the environment explicitly if changes are predictable, in which

case information maximization may still be useful.

If the objective is stochastic and not just dynamic, the same kind of for-

malization can be applied with optimizers drawn from T[X]×P[RX ]→ P[X].

This space is also likely to be a normed vector space, and continuity results

probably still apply. But now information must be handled even more care-

fully, and multiple evaluations of nearby points are required for an optimizer

to determine correctly where it should search for better optima.

In either case, a formalism similar to the one proposed here could be ap-

plied in order to study the performance of optimizers on dynamic or stochastic

objectives analytically. Such formal approaches are likely to yield interesting

and practical results.

14.1.2 Alternative Characterizations

From the beginning of Chapter 3, a particular norm was chosen and

remained fixed throughout the text. Alternative characterizations of the space

of optimizers are possible and may be useful for obtaining further results.

As an example, suppose that the space of optimizers is restricted to

those optimizers that are absolutely continuous with respect to some finite

positive measure µ. Such a space possesses more internal structure, which

allows stronger theoretical results to be achieved. As an example, this as-
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sumption gives rise to an inner product space in which optimizers may be

projected onto each other geometrically.

Definition 14.1.1. A generalized optimizer G ∈MF0 [X,µ] is absolutely con-

tinuous with respect to µ, written G << µ, if for all t ∈ T and f ∈ L1 [X,µ]

G[t, f ] is absolutely continuous with respect to µ, that is, if G[t, f ](A) = 0

whenever µ(A) = 0 for all A ∈ Bτ .

If G << µ, there exists a function G : T × L1 → (X → R) such that

G[t, f ](A) =

∫
A

G[t, f ](x)µ(dx)

as a consequence of the Radon-Nikodym Theorem. The output of the func-

tion G[t, f ] on a particular trajectory and objective is the Radon-Nikodym

derivative of G[t, f ] with respect to G. In this section, the notation DµG will

represent the pointwise Radon-Nikodym derivative of G with respect to µ, so

that G = DµG.

An inner product can be constructed from this derivative. Consider

the set S⊥R =
⋃
nRn−1 × {t ∈ T | Tm(t) = |t|}. Using the notation from that

proof, for G1,G2 ∈MFtr both absolutely continuous with respect to µ, define

(G1,G2)m =

∫
S⊥R
DµG1[t

m−1
1 , ym−11 ](tm) DµG2[t

m−1
1 , ym−11 ](tm) µ(dtm)

×
m−1∏
i=1

µ(dti)

µ(X)
PF
(
F (ti) = dyi | F (ti−11 ) = yi−11

)
dyi, (14.1)

remembering that µ(X) <∞ by assumption. The operation (G1,G2) compares

the µ-density of G1 with the µ-density of G2 at the mth position in a trajectory
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randomly selected according to µ with evaluations randomly selected according

to PF . This operation is an inner product:

Proposition 14.1.1. For G1,G2 ∈ MFtr with G1,G2 << µ, the operation

(G1,G2)m is an inner product for all m ≥ 1. Additionally, |(G1,G2)m| <∞.

Proof. To be an inner product, (G1,G2)m must be symmetric and linear in the

first argument. Symmetry is obvious from Equation 14.1. Linearity follows

from the linearity of the Radon-Nikodym derivative and the linearity of the

integral. To obtain finiteness, notice that

ν(dtm−11 , dy) =
m−1∏
i=1

µ(dti)

µ(X)
PF
(
F (ti) = dyi | F (ti−11 ) = yi−11

)
dyi

is a probability measure and

(G1,G2)m = Eν
[∫

X

DµG1[t
m−1
1 , ym−11 ](tm) G2[t

m−1
1 , ym−11 ](dtm)

]
.

Finiteness will follow from fact that the term inside the expectation is finite

on all trajectories and objectives. G2 << µ and DµG1 is µ-integrable, so DµG1

is G2-integrable. That is, the inner term is finite, so |(G1,G2)m| <∞.

The complexity of Equation 14.1 can be hidden by defining a measure

κm(dt, dy) = µ(dtm) ν(dtm−11 , dy)

using the measure ν from the proof of Proposition 14.1.1. If µ is a probability

measure (and µ̃ = µ/µ(X) always is), (G1,G2)m is just the expectation of the

products of the Radon-Nikodym derivatives with respect to κm,

(G1,G2)m = Eκm [DµG1DµG2 ] .
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As an inner product, (G1,G2)m only compares the mth unique point of a trajec-

tory. To account for all points in a trajectory, fix M as a large finite number

and define

(G1,G2) =
1

M

M∑
m=1

(G1,G2)m .

The following proposition is a trivial consequence of Proposition 14.1.1.

Proposition 14.1.2. (G1,G2) is an inner product on MF
µ
tr, and |(G1,G2)| <

∞.

Let κ = 1
M

∑M
m=1 κm, and as before, if µ is a probability measure,

(G1,G2) = Eκ [DµG1DµG2 ] .

The space of optimizers in MFtr that are absolutely continuous with respect

to µ is therefore an inner product space.

This inner product space is an alternative way of analyzing the space

of optimizers, one that places a geometry over optimizers and should permit

stronger theoretical results. In some sense, though, the norm used throughout

this dissertation and the inner product above are somewhat unnatural, since

the values of both of them depend on what an optimizer does with evaluation

points it may never see. An ideal characterization would be related to the

performance of the optimizer, since it would organize optimizers according to

their practical utility for particular problems. The seed of such a character-

ization is visible in the discussion of performance-based linear projections of

optimizers in Chapter 10. There remains substantial work that can be done

to elucidate the meaning and practical utility of these concepts.
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One aspect of the formalism that was defined but not emphasized was

the role of computability. Since only computable optimizers can be run on

a digital computer, computable optimizers are an important class of prob-

lems. Among other properties, computable optimizers must be information

restricted, or else they would not halt. Additionally, programs that halt must

have finite length. There are only countably many such programs. Thus the

space of computable optimizers is countably infinite. One can choose stochas-

tically between programs, but the space of stochastic computable optimizers

with uncountable precision still has a countable basis. The space of com-

putable optimizers is therefore much smaller than the space of all information-

restricted optimizers, a fact which may lead to new insights upon further study.

14.1.3 Convex Control of Optimizer Portfolios

Chapter 3 proved that convex combinations of computable optimizers

are also computable optimizers. Chapter 7 demonstrated that performance

varies nonlinearly as the convex combination changes, and some of the results

in Chapter 8 even suggested that convex combinations may outperform any of

the optimizers being combined.

In light of these facts, can one choose a good optimizing strategy by

convexly combining existing optimizers? One way to do so is to test several

strategies and allocate resources to the strategies that perform best. This

approach is termed convex control of optimizers; it is explored theoretically in

this section.

476



Suppose that there is a finite set of trajectory-restricted optimizers

G = {G1, . . . ,Gm} ⊆ Otr, each of which is known to perform well on a ver-

satile set of function priors. Such a set will be termed an optimizer port-

folio, and it might include general-purpose methods such as simulated an-

nealing, hill climbing with random restarts, or differential evolution. The

convex control problem can be stated as follows: Given a set of optimizers,

a prior PF , and a performance criterion φ, choose a time-varying probabil-

ity vector α(n) = α1(n), . . . , αm(n) with
∑

i αi(n) = 1 for all n such that

Gα[t, f ] =
∑

i αi(|t|)Gi[t, f ] minimizes g(α̃) = 〈Gα̃,PF 〉φ.

At each time step, Gα is a convex combination over the optimizer set

G. As a result, Gα can only depend on evaluations along the trajectory. So

Gα is trajectory-restricted. As a function of time, Gα moves along a trajectory

contained in the convex span of G. Because the probability vector changes

with time, Gα itself cannot be expressed directly as a convex combination over

G.

The convex control problem can be addressed from two perspectives. In

the first, the goal is to find a single, stable convex combination that is adapted

to a given objective function. In the second, a dynamic control procedure is

sought that makes the most efficient use of the optimizer set. Both of these

directions are interesting lines of research for future work.

For now, suppose that the probability vector α does not vary with time,

i.e. α = α1, . . . , αm independent of the length of the trajectory. Then Gα is a

single convex combination over G contained within the convex span of G. A
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convex combination of optimizers can be regarded as a choice over optimizers.

At each time step, the probability vector α is sampled to choose one of the

Gk, and then Gk is sampled to choose the next evaluation point. Section 3.3.3

introduced the terminology a history of Gα as the sequence of such choices, e.g.

G3G1G4G1G2G2G2G3 . . . . The set of all histories of Gα may be regarded as the

set of optimization strategies available to Gα within the Optimization Game

of Chapter 10.

Since the objective strategy PF is fixed, the second player may be re-

garded as a chance node and the set of histories of Gα can be thought of as

tracing out an m-ary game tree with chance nodes omitted. A fundamental

question is whether convex combinations over a set G can outperform the best

element in G. If G contains just two members, e.g. G1 and G2, then the game

tree is a binary tree. The question then resolves to whether one of the two

outer histories, G1G1G1G1 . . . or G2G2G2G2 . . . , outperforms all other histories.

Each choice in this binary tree can be represented as a zero if the left

branch is followed, and a one if the right branch is followed. A single history

contains infinitely many such choices. Thus the set of histories corresponds to a

binary representation of the real numbers between zero and one and is therefore

uncountable. On this basis, it would be surprising if the outer two histories

were the only two interesting ones from the perspective of performance.

Recall from Section 10.2 that the performance criterion φ(G, F ) =

〈G,PF 〉φ is linear over A [Otr]. However, this linearity only applies to con-

vex combinations that are sampled once for the entire history. Thus a convex
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combination in A [Otr] is a single choice between the two outer histories men-

tion above. But Gα is a convex combination over Otr, since it makes one choice

at each time step. As discussed in Section 7.2.1, φ(G, F ) is non-linear over

Otr. If φ(G, F ) were linear over Otr, then only the outer histories could be

optimal. Because it is non-linear, it is possible that one of the uncountably

many internal histories could perform best.

Research on applying algorithm portfolios to optimization has been

performed by Silverthorn and Miikkulainen [187] with promising results. The

discussion above provides further theoretical basis for this research and places

it within the context of general-purpose optimization.

14.1.4 Formalization Conclusion

As this section has demonstrated, the formal perspective in this disser-

tation opens up a new way of looking at optimization methods and provides

numerous starting points for future research. This section suggested further

research into non-static objectives, alternative formal representations, and con-

vex control. Several other directions are possible as well. For example, how do

common analytic notions such as compactness, integrability, and differentia-

bility apply to the space of iterative optimizers? As another idea, it might be

possible to conceive of optimizers that operate in continuous time. Such opti-

mizers might be approximated by contracting or dilating the time scale during

optimization depending upon the volatility of the optimization trajectory. The

breadth of each of these topics taken independently suggests that the formal
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perspective of this dissertation is a useful tool for studying optimization.

14.2 General-Purpose Optimizers

The NFL Identification Theorems were presented in Chapters 9, prov-

ing simultaneously that NFL still applies in arbitrary measure spaces, but that

an NFL makes learning impossible by design. Given that learning does occur

in the real world, it is reasonable to conjecture that the set of general problems

encountered in reality are not subject to NFL. As stated, these results did not

apply to gradient-based methods; it would be interesting to know whether the

results also apply to broader domains.

14.2.1 Extending NFL to Information-Restricted Optimizers

The NFL results in this dissertation pertained to trajectory-restricted

optimizers. Do the same results apply to information-restricted optimizers as

well? In fact they do, provided that the information function is fixed. This

section sketches the mechanisms for applying NFL type results to Oir. The

proofs in this section will describe how to generalize the results from previous

sections while leaving many details for future work.

The main problem in dealing with Oir is that the information functions

are not shared among optimizers. The definition of Oir was based on the

existence of an information function I : RX × X → T [R]. Each optimizer

may determine for itself the information it wishes to obtain from function

evaluation. An extension of the NFL Identification Theorem and the duality of
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priors and optimizers can be obtained for Oir, but the results must be qualified

to account for distinct information functions. Recall from Section 10.2 the

set OI
ir consisting of all information-restricted optimizers compatible with the

information function I.

Definition 14.2.1. A random variable F over RX (or its function prior PF ) is

information-path independent of an information function I : RX ×X → T [R]

if for any x ∈ X, F (x) and I(F, x) are separately and jointly independent

of F (y1), . . . , F (yn) and I(F, y1), . . . , I(F, yn) for any sequence y1, . . . , yn ∈ X

such that x 6= yi for all i.

Information-path independent priors do exist. In particular, any NFL

prior is information-path independent on the information function Ĩ(f, x) =

f(x) by the NFL Identification Theorem. Because of the explicit reference to

the information function, the concept of information-path independence only

allows the NFL Identification Theorem to be expanded to subsets of Oir that

share a specific information function.

Theorem 14.2.1. NFL Identification Theorem (Extended). Given an

information function I : RX × X → T [R], a function prior PF over RX ] is

strongly NFL on OI
ir and ζTm if and only if PF is information-path independent

on I and identically distributed on any finite collection of points.

The proof of the Extended NFL Identification Theorem is broadly anal-

ogous to the proof of the NFL Identification Theorem for Otr. The main dif-

ference is that the information function must be included in the probability of
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the function prior, replacing the function evaluation itself, i.e.

|t|∏
i=1

PF
(
I
(
F, ti

)
| I
(
F, tj

)
∀j < i

)
=

|t|∏
i=1

PF
(
I
(
F, ti

))
. (14.2)

The remaining logic of the proofs is nearly identical given this change.

It would be tempting to conclude from the extended NFL Identifica-

tion Theorem that a similar theorem holds over all of Oir. Such a conclusion

is illegitimate, however, since a particular prior may be information-path in-

dependent on one information function but not on another. Thus there is no

obvious definition that generalizes information-path independence across all

of Oir.

This fact suggests that it may be possible to avoid NFL by switching in-

formation functions (and therefore necessarily altering the optimizer). At this

time, such a claim is merely speculative, but it seems intuitively plausible. Im-

portantly, an NFL prior does not necessarily exist for an arbitrary information

function. However, if the information function is of bounded information (as

defined in Section 10.2, then an NFL prior does exist. Hence gradient-based

methods are subject to NFL. Unbounded growth of information is required in

order to prevent an NFL prior from being constructed.

The weak version of the NFL Identification Theorem also applies to

OI
ir through the use of uncorrelated information-paths defined analogously to

information-path independence.

It is an interesting question to ask whether an NFL result is possible

for arbitrary subspaces of PF. In general, one might think of each optimizer
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as having a knowledge function that encapsulates the information it is able to

discover about an objective given an evaluation history. This knowledge func-

tion would differ from an information function in that its cardinality could

be arbitrary, where information functions can only return finitely many real

numbers. In computational terms, the knowledge function is just the com-

putational state of the optimizer. Every optimizer in PF should possess a

knowledge function that completely describes it. For example, the omniscient

optimizer has as its knowledge function a function mapping every objective to

its optima. A strongly NFL prior for an arbitrary class of optimizers would

need to be constructed explicitly to confound the knowledge function. When-

ever it is possible to do so, an NFL result could be obtained.

14.2.2 General-Purpose Optimization Conclusion

The NFL Identification Theorem formalizes certain objections to NFL

that have been made over the years, and shows that for large search domains,

NFL violates the principle of Occam’s razor. This result opens up several

avenues of research, particularly regarding the nature of an optimal optimizer

for a given function prior. In addition, the nature of the true prior governing

reality is unknown in general, and thus a good general-purpose learner ought

to be designed to handle this uncertainty about the true prior against which

it is optimizing. Several theoretical approaches to solving this problem are

possible, and the perspectives developed in this dissertation are expected to

help identify them.
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14.3 Martingale Optimization

Chapter 10 proposed the information-maximization principle, that the

optimal optimizer should fully utilize all available information about the ob-

jective function. This principle was used to derive evolutionary annealing as

a martingale optimization method. There remains substantial future work to

verify the theory of information maximization. Additionally, several improve-

ments to the evolutionary annealing method may be possible as well.

14.3.1 Proving the Optimality of Information Maximization

In Section 10.4.4, it was conjectured that a particular information-

maximizing strategy may be optimal, given by

Zopt
n+1 = argminx∈X EPF

[
h(Z) | Hn, Z

∞
n+1 = x

]
(14.3)

for a function prior PF , a performance criterion φ(G, f) = EGf [h(Z)], and an

evaluation history Hn.

Further consideration may lead to a proof that this strategy or a simi-

lar one is theoretically optimal. In general, optimality is necessarily tied to a

particular performance criterion. In order to prove that such a strategy is opti-

mal, one might utilize the fact that the conditional expectation is the estimate

of a particular random quantity that minimizes the variance. Additionally, it

might be useful as a subgoal to prove that the conditional expectation of the

performance criterion is a submartingale and that Zopt is the minimum such

martingale. A proof of the optimal optimization method would be a valuable
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result legitimating the line of research adopted in this dissertation.

14.3.2 Semantic Partitioning

In evolutionary annealing, the partitioning method was used to deter-

mine how annealed selection apportions probability mass among previously

observed evaluation points. For Euclidean space, REA employed axis-parallel

hyperrectangles as an efficiently computable partitioning approach. Neuroan-

nealing generalized this partition method to use hierarchical partitioning on

a larger space, but at its base, neural networks were also partitioned using

axis-parallel hyperrectangles to separate the weights.

What if the partitions of the search space could be arranged to match

the natural structure of the objective function? Such semantic partitions might

be better able to locate the optima of an objective function by allocating

probability more efficiently among the different regions. In a way, hierarchical

partitioning as used by neuroannealing is a rudimentary step in this direction.

Additionally, it might be possible to recognize fractal structure within semantic

regions, and to propagate this structure across different partition regions in

order to build a more accurate model of the objective function. For example,

the RNN space in neuroannealing contains redundant network representations.

If the similarities between two network topologies could be identified, then the

objective evaluations from one network topology could be used to estimate the

fitness structure of networks in the other network topology without additional

objective evaluations. This type of approach could substantially improve the
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accuracy of evolutionary annealing.

14.3.3 Applications to Other Search Domains

It was mentioned in Chapter 11 that evolutionary annealing has been

tested in several domains, including bit strings, structure-learning for Bayesian

networks, and game-playing strategies. In each of these domains, competitive

results were obtained on benchmark problems. Nonetheless, there is substan-

tial effort involved in applying evolutionary annealing to a new domain. A

partitioning method must be developed, along with a base measure and a set

of effective mutation distributions. Further experiments in other domains will

promote the development of a generalized methodology for instantiating these

objects.

14.3.4 Information Compression

Evolutionary annealing retains the complete results for every objective

evaluation it performs. The requirements to store this data are manageable,

but they also introduce substantial overhead. In addition, computing the next

point with evolutionary annealing requires logarithmic rather than constant

time in terms of the number of previously evaluated points. It would be

desirable to reduce or eliminate this overhead where possible.

As a martingale method, evolutionary annealing is primarily concerned

with preserving the full information provided by prior evaluations. However, it

is possible that the complete information or a nearly complete approximation
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can be achieve by compressing the previously evaluated points into a smaller

representation. A compressed representation would also have the benefit of

generalizing the information learned from the previous evaluations so that

objective evaluations are chosen more efficiently in regions where they are

more likely to improve performance.

14.3.5 Information Maximization in Stochastic and Dynamic En-
vironments

The information-maximization principle was formulated in the context

of static fitness functions. As discussed in Section 14.1.1, if the environment

is dynamic or stochastic, then the information-maximizing approach requires

some alterations. In the case of stochastic domains, selection of partition

regions could be performed in a way that selects a larger region higher in the

tree containing several points, effectively averaging over the points in order to

avoid committing to a point with spuriously optimal fitness.

In adaptive environments, the compression of information might be-

come especially important if the dynamics of the environment are predictable.

In this case, it might work well to extract a set of invariant principles govern-

ing the dynamics and to use these principles in conjunction with the observed

objective values to determine which points to explore next. If the environ-

ment is unpredictable, then some form of strategic forgetting may be helpful.

Evolutionary annealing with strategic forgetting would become similar to evo-

lutionary algorithms in which individuals have a “lifetime” that might span
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several generations.

14.3.6 Information Maximization Conclusion

Overall, the information-maximization principle presents a fresh per-

spective on optimization that yields several interesting paths for future work.

Methods such as semantic partitioning and information compression could

result in powerful new optimization techniques. Mutation operators for evo-

lutionary annealing that capture the regularities of general-purpose function

priors may also produce substantial advances in optimization technology that

are more capable of searching high-dimensional to find elegant solutions for

important problems.

14.4 Conclusion

Overall, the most significant aspect of this dissertation is to suggest

that general-purpose optimization is not only possible, but can be performed

in an optimal way. The concepts of information maximization and martingale

methods are introduced as examples of how general-purpose learning might

be approached. But the important point is that an effective optimizer may be

derived from first principles by considering what sort of function prior governs

the sorts of problems that occur in the real world. A robust optimizer can

then be developed by considering the path dependencies that arise when a

particular function prior is assumed.

In fact, this is exactly the process by which human research is car-
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ried out. A problem is analyzed to observe its inherent nature and internal

regularities. Then, a hypothesis is generated that encapsulates a proposed

compression of the problem into a simpler representation. Such a hypothesis

may then be tested and either rejected or further refined. The information

obtained through the testing process is added back to the body of observa-

tions subject to analysis, and the process continues until a suitable solution is

found.

There is no reason why a general-purpose optimizer cannot employ

these same principles to solve complex problems. The key point is that the

proposed hypotheses must correctly match the universal prior that governs

reality. Such a prior should be characterized by local regularity, sparsity,

modularity, repeated and analogous structure, and other principles that are

observed in the physical world. Information-maximizing optimization strate-

gies that fully utilize their prior observations together with these principles

should be capable of finding substantially better solutions than is possible at

the current time.
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Chapter 15

Conclusion

This dissertation has studied optimization methods from a formal per-

spective. This perspective made it possible to uncover several important in-

sights into how existing optimization methods may be compared to each other

theoretically and experimentally and how the optimization task may be per-

formed optimally. This final chapter reviews the significant contributions of

the dissertation and offers concluding remarks to summarize the perspective

on general-purpose optimization that has emerged as a result of this work.

15.1 Contributions

As discussed in Chapter 14, this dissertation makes three main contri-

butions to the study of optimization: (1) the development of a mathematically

formal approach to iterative stochastic optimization, (2) the discovery of the

NFL Identification Theorems and the recognition that general-purpose learn-

ing is possible, and (3) the introduction of information-maximizing optimizers

such as evolutionary annealing. In this section, each of these contributions is

discussed in turn.
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15.1.1 Significance of the Formal Approach

While optimization has been studied for centuries, the analytic rela-

tionships between distinct optimization methodologies has previously received

little attention. In this dissertation, arbitrary optimizers for static functions

were studied from a functional analytic point of view, with some surprising

results.

In Chapter 3, iterative stochastic optimizers were formalized based on

the evaluation points they propose given a particular objective and an evalua-

tion history. This formalization revealed that the space of iterative stochastic

optimizers is a closed, convex subset of a normed vector space. Interestingly,

this result still holds true when optimizers are considered based upon the infi-

nite sequence of evaluation points they propose for a given objective, as shown

in Chapter 6.

The profusion of optimization methods and the clear distinctions in the

way they have been presented would lead an observer to initially conclude that

methods such as gradient descent and Monte Carlo optimization have nothing

to do with each other. The results of this dissertation instead imply that

between any two optimizers there is a line in optimizer space that smoothly

transforms one optimizer into the other. This fact was explored experimentally

in Chapter 8, where it was shown that in many cases the performance of the

optimizers along that line changes continuously as well.

The proposed methodology for formalizing optimizers is fully general.
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Chapter 4 demonstrated that the most common population-based optimization

methods can be expressed naturally within this formalism. The formalization

even makes it possible to compare methods directly in a mathematical setting,

as was done in Theorem 4.2.3, where the (1+1)–ES was shown to be the norm

limit of Simulated Annealing in Euclidean space.

Chapters 5 and 7 exhibited the power of the formalization as a vehi-

cle for mathematical analysis by proving the exact conditions under which

optimizers are continuous. As shown in those chapters, genetic algorithms,

evolution strategies, swarm optimizers, differential evolution, and stochastic

gradient descent are continuous in most circumstances, especially on trajecto-

ries of unambiguous fitness. This continuity even carries over to performance

criterion, so that the performance of most popular methods changes continu-

ously along with the objective or the optimizer.

In Chapter 14, several extensions of these results were proposed. First,

many of the same results should also apply to stochastic or dynamic objectives.

Also, there are other ways that the space of optimizers could be formally

analyzed, for example, by adding a base measure and considering only those

optimizers that are defined with respect to that measure. The problem of

convex control was also suggested as a way to leverage the best aspects of

existing optimization methods on different problems.
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15.1.2 Significance of the NFL Identification Theorems

In Chapters 9 and 10, the question of optimizer performance was stud-

ied in the context of the NFL theorems for optimization, which have been

used to suggest that general-purpose learning is impossible. Perhaps surpris-

ingly, No Free Lunch holds in arbitrary topological spaces subject to certain

conditions. But the nature of these conditions are somewhat unreasonable,

and under general assumptions of compressibility there exist general-purpose

optimization methods.

Over the past decade, it has become a fundamental assumption within

machine learning research that general-purpose learners do not exist, since

NFL implies that every optimization method performs equivalently when av-

eraged over all problems. In this light, general-purpose algorithms have come

to be viewed with suspicion and distrust, primarily due to the truism that a

good problem-specific solution will always outperform a general approach.

The exact nature of the conditions for NFL casts some doubt on this

point of view. As the NFL Identification Theorem in Chapter 9 proved, a

random test procedure for optimization methods produces an NFL result if

and only if the corresponding function prior is independent and identically

distributed at any finite collection of points. That is, NFL only holds if it is

impossible to make any general assumptions about the nature of the universe

on the basis of any finite set of observations.

The principle of Occam’s razor, equally revered with NFL in machine
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learning research, suggests to the contrary that simple solutions should be more

likely than complex solutions. This line of thinking was explored in Chapter 10,

where it was suggested that with respect to general-purpose optimization,

either Occam’s Razor or NFL must hold. Both cannot be true at the same

time. Occam’s razor implies compressibility, and compressibility of any form

prevents the objective value of solutions from being uncorrelated. Occam’s

razor is the older of the two concepts, and the more useful. NFL was found

to imply that the world is unlearnable, a claim that is contradicted by the

fact that humans frequently make useful predictions based on past events. As

the study of the Optimization Game in Chapter 10 suggests, the idea that

real-world problems are subject to NFL is almost tantamount to assuming the

existence of a malevolent intelligence that purposely prevents learning. As a

consequence, it is reasonable to assume that general-purpose optimization is

possible.

The existence of general-purpose optimizers in no way implies that they

outperform problem-specific optimizers. If the optimal solutions to a problem

are known, then the optimizer that produces the known solutions will clearly

perform best on a problem. It is often stated that specific solutions perform

best, but this statement overlooks the effort expended to locate such solu-

tions. In fact, the search for specific solutions to specific problem classes may

be regarded as a general-purpose optimization method in which the human

researcher applies his own native learning abilities as the primary tool. The

very fact that researchers often succeed at finding successful problem-specific
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methods supports the hypothesis that strong general-purpose learners exist,

and one should search for such learners by examining the techniques employed

by successful researchers.

The discussion of linear projections in Chapter 10 suggests that for each

problem class, represented as a specific function prior, there is some optimizer

or subset of optimizers that perform optimally on it. A good general-purpose

optimizer should perform well on a particular general-purpose function prior.

It is an important line of future research to establish exactly what this means

and how one might classify or describe function priors and the optimizers that

perform well on them. An initial step in this direction was taken in Chapter 10

with the description of the information-maximizing optimization strategy that

led to the development of evolutionary annealing. Still, there remains consid-

erable theoretical work to be done in this regard. The characterization of NFL

can be extended to information-restricted optimizers instead of just trajectory-

restricted optimizers. It may even be possible to give conditions for NFL over

the entire space of optimizers. Even so, NFL can potentially be avoided by a

change of information function, a topic that deserves further study. Finally,

the evidence strongly suggests that a prior that prefers shorter solutions over

longer ones cannot be subject to NFL. This claim could be made more rigorous

by presenting a formal proof.
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15.1.3 Significance of Information Maximization

If indeed real-world problems are not subject to NFL, then what is

the optimal optimizer?. Chapter 10 introduced the information-maximization

principle to answer this question: The optimal trajectory-restricted optimizer

should be the one that makes the full use of the information obtained from

function evaluations. The information-maximization principle led to the intro-

duction of evolutionary annealing as a general-purpose optimization method

that explicitly leverages all prior function evaluations. Evolutionary anneal-

ing was shown to converge asymptotically to the global optimum in Chap-

ter 11. Its effectiveness was demonstrated experimentally in Chapter 12 for Eu-

clidean space and Chapter 13 for neural networks, validating the information-

maximization approach.

The information-maximization principle arises naturally by negating

the requirements for an NFL prior. Since an NFL prior must be path inde-

pendent, it stands to reason that the optimal optimizer for a non-NFL prior

should maximally utilize whatever path dependencies are available. It would

be of interest to derive a formal proof of this claim.

Information-maximization methods are inherently martingale methods,

in contrast to the Markov Chain Monte Carlo (MCMC) methods that have fig-

ured prominently in statistical approaches to optimization [109, 147, 173, 221].

Where MCMC relies on the principle of detailed balance to guarantee that an

iterated sample converges to some equilibrium distribution, martingale meth-

ods build a model of a desired random variable that is asymptotically correct
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by leveraging a source of increasing refined information. The Markov and

martingale properties are the two most well-studied properties of stochastic

processes. While the Markov property has been substantially exploited in

artificial intelligence research, the martingale property has received less atten-

tion. The experimental results for evolutionary annealing in this dissertation

suggest that martingale methods deserve further consideration for machine

learning applications.

This dissertation introduced evolutionary annealing as a first example

of an explicitly information-maximizing optimizer. The experimental results in

Euclidean space in Chapter 12 demonstrated the effectiveness of this approach

against a wide array of other optimization methods. The success of neuroan-

nealing at learning complex neural networks in Chapter 13 made the case that

evolutionary annealing is indeed a general-purpose optimization method.

There is still substantial room to improve evolutionary annealing. The

methods for partitioning the search domain were designed to be simple to

understand and implement. The quality of results might be improved by se-

mantic partitioning. Additionally, the mutation distributions for evolutionary

annealing determine how well evolutionary annealing will be aligned with a

particular prior, and future work may discover a method of deriving muta-

tion distributions to promote this alignment. Finally, it may be possible to

derive a more compact information-maximizing optimizer by compressing pre-

vious evaluations so that the information obtained from previous evaluations

is preserved without having to store or process all previously observed points.
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The successful application of the information-maximization principle in

this dissertation is a promising result. It is likely that this principle can be

used to derive even more powerful optimizers in the future by more accurately

mining evaluation information to reflect the nature of the prior governing real-

world problems.

15.2 Final Thoughts

Optimization tasks are ubiquitous throughout the engineering disci-

plines. This observation is especially true of artificial intelligence and machine

learning, where nearly every problem is expressed in terms of searching for

a solution that is optimal according to some criterion. Thus the study of

optimization is central to the quest for a strong artificial intelligence.

This dissertation studied the relationships among optimization methods

at a general level by examining the probability distribution over the sequence of

evaluation points produced by the optimization process. This study produced

several results that perhaps seemed unintuitive at the outset. Optimizers are

vectors. There is a well-defined objective measure of distance between any

two optimizers. Between any two optimizers there is an entire spectrum of

optimizers, and in most cases behavior and performance changes smoothly

along this line. The discovery of these facts was made possible by analyzing

the optimization process as a mathematical object.

The results presented only scratch the surface of what is possible to

achieve using such an analysis. Future work on convex control of optimization
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portfolios could provide a way to allocate resources automatically to the best

optimizer for a particular problem. The study of performance-based linear

projections could even make it possible to analytically construct optimizers

that are well-aligned with specific problem classes. Accurate approximations of

optimizer methods may enable the implementation of near-optimal optimizers

in cases where the theoretically optimal optimizer is uncomputable. Each of

these topics can be explored by applied advanced mathematical theory to the

space of optimizers as described in this dissertation.

The most important immediate contribution of this dissertation is the

discovery of the No Free Lunch Identification Theorems, which proved that

the only cases in which optimizer performance averaged over all problems is a

constant consist of prior assumptions that objective evaluations at one point

provide no information whatsoever about the value of the objective at any

other point. Since it is patently absurd to claim that objective evaluations

in real-world problems are completely uncorrelated, this theorem refutes the

claim that no effective general-purpose optimization algorithms exist. A suc-

cessful general-purpose optimizer should therefore structure its search so as to

prioritize solutions that are more likely to be correct. In line with the princi-

ple of Occam’s razor, simpler solutions should be preferred over more complex

ones. For real-world problems, physical principles such a locality, smoothness,

periodicity, and fractal structure should be used to guide the optimization

process efficiently.

The construction of the diffusion prior proved mathematically that
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there exist very general problem classes on which certain optimization strate-

gies outperform others. The recognition that the No Free Lunch theorems

do not preclude general-purpose optimization led to the articulation of the

information-maximization principle, which conjectures that the optimal op-

timization method for any particular problem class is the one that makes

the full use of the information obtained from function evaluations. Explic-

itly information-maximizing optimizers form a new class of martingale-based

optimization methods that deserve further theoretical and experimental study.

As an initial step in this direction, this dissertation proposed evolution-

ary annealing, which samples the same distribution as simulated annealing, but

replacing the Markov-based Metropolis algorithm with a martingale represen-

tation that successively partitions the search domain. A proof of asymptotic

global convergence stated the conditions under which evolutionary annealing

can be expected to find the true global optimum. More importantly, experi-

ments with real vectors and neural networks demonstrated the effectiveness of

evolutionary annealing as a practical optimization method. Neuroannealing

in particular was structured in such a way as to implement the information-

maximization principle in accordance with Occam’s razor, preferring simple

network solutions over more complex ones until the simple networks have been

ruled out.

Future research into information-maximizing optimizers will find more

compact ways of partitioning the search space to represent the knowledge

obtained through the optimization process. They will leverage the physical
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principles that govern the natural world in order to develop more effective

means for choosing the next evaluation points. And they should ultimately

outperform existing methods by a wide margin in more complex domains.

The greatest known optimizer at present is the human brain. By me-

thodically applying scientific principles in conjunction with a creative instinct,

human researchers have utilized knowledge gained from experience to construct

increasingly refined and accurate models of the natural world. The exact na-

ture of this creative instinct is poorly understood at present, but it may be

surmised that human creativity comprises a set of hidden mental operations

that project past observations into highly probable future states that accord

with a core set of fundamental physical principles. If this hypothesis is true,

then the most important endeavor in the search for a general artificial intel-

ligence is to identify these fundamental principles. Once enumerated, these

principles can be used to construct a general-purpose information-maximizing

optimization method capable of human-level discoveries.

Thus the study of all optimization methods taken together has rein-

forced a fundamental insight regarding the nature of learning and artificial

intelligence. General-purpose learners can be effective to the degree that their

assumptions and biases reflect the physical laws of their environment. The

study of artificial intelligence must in fact be a study of the abstract pillars

of reality. By incorporating these principles, it should be possible to develop

general-purpose learners of increasing capability and true intelligence.
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Appendix A

Performance Experiment Results

The appendix contains the results for the performance experiments in

Chapters 8 and 12 in tabular form. Tables are presented for each of the

performance criteria σNε (success probability with threshold ε), ψ̂Nε (number of

evaluations until success), ζTm (average error after m evaluations), φ1 (average

error over all evaluations), and φ2 (weighted average error over all evaluations)

in order on the following pages (see Chapter 8 for details). Tables are grouped

by the dimension of the experiments, with d = 5, 10, and 25. Additionally,

the results for the neural network experiments in Chapter 13 are aggregated

in a single chapter at the end of this appendix.

The values of ζTm , φ1, and φ2 are scaled as described in Chapter 8.

The scaling factors for each benchmark are listed in Table A.1. Additionally,

variances are provided for ζTm , φ1, and φ2 in separate tables so that statistical

significance can be checked. All values are based on 200 trials. The variances

for ψ̂Nε were not given, since these averages were only computed for successful

trials, and the number of successful trials varies in every case. The estimated

values of σNε are accurate up to ±0.005 with p < 0.05. Any values greater

than 100, 000 appeared only in rare cases and were written simply as “∞”.
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Table A.1: Scaling factors used for the scaled variants of ζTm , φ1, and φ2 by
dimension d.

d = 5 d = 10 d = 25
sphere 1.247 12.552 84.481
ackley 2.442 4.059 5.509
log-ackley 0.393 24.250 184.941
whitley 43.998 20,726.140 5,018,118.903
shekel 10.472 10.247 –
rosenbrock 100.254 2,926.197 64,226.113
rastrigin 16.567 70.078 272.727
salomon 0.927 2.453 5.740
langerman 0.746 0.965 –
schwefel 99.070 187.058 270.419
griewank 5.125 43.479 290.635
weierstrass 3.248 10.275 34.156

Some of the algorithms were run with different parameters. The specific

parameters are shown in the second column of the table. For CMA-ES and

CMA-ES-R, the parameter is the population size. For DE, the parameters are

given as CR / F, so that “.2/.9” means a crossover rate of .2 and a learning

rate of .9. For PSO, the parameters are listed as ω/φg in the same way. The

algorithms REA-P and REA-T were run with different learning rates as shown

in Table 12.2, reproduced in this appendix as Table A.2 for convenience. The

different results for each learning rates are shown order from top to bottom for

each benchmark, matching the order of the values in Table 12.2 from left to

right. That is, the smallest learning rates are given at the top, and the largest

learning rates at the bottom. Extra entries in the table were marked with “–”.
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Appendix B

Automated Currency Exchange Trading

This appendix describes the automated currency exchange trading task

for the experiments in Chapter 13, including the relevant background, datasets,

and input preprocessing.

B.1 Currency Trading Background

The exchange rates of currencies that are freely floated present a stochas-

tic sequence that is difficult to predict. Speculators attempt to make money by

buying and selling currencies at high leverage. Most of these forex traders lose

money, but a few consistently average a profit, suggesting that there is some

structure to the problem that can be learned. The advantage to the domain

is that there are relatively few inputs and outputs, allowing for fast proto-

typing and exploration. The high stochasticity of the signal is challenging,

especially in light of the relevance of exogenous information, such as Central

Bank announcements that cannot easily be modeled in a numeric setting.

Trading currencies bears substantial similarities to trading stocks in

terms of market function and techniques. Most speculative trading takes place

through brokers on exchanges that are separate from retail currency exchange
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markets; speculation is generally regarded as playing the role of price discovery

for other markets. Speculative traders primarily trade with each other.

The focus of this study is short-term trading using Technical Analy-

sis [108, 145, 161]. Technical Analysis is an approach to trading that is charac-

terized by the mechanistic use of a set of statistics termed technical indicators.

These technical indicators can be computed for any price sequence but are

considered more effective or meaningful in the context of markets with high

liquidity and large trading volumes, two features that are preeminently char-

acteristic of foreign exchange (or forex) markets.

Price in technical trading is typically broken up into segments, the size

of which depends on the desired frequency of trading. Within each period,

four prices are recorded, specifically the high, low, opening and closing price.

The closing values are used to compute technical indicators. Typical techni-

cal indicators include various averages, Stochastics, Relative Strength Index

(RSI), Bollinger Bands, and Fibonacci levels [108]. The Simple Moving Aver-

age (SMA) is an unweighted average over a fixed number of periods starting

from the current period. The Exponential Moving Average (EMA) is defined

by a discrete update rule, EMA(t + 1) = αEMA(t) + (1 − α)Close(t), where

0 ≤ α ≤ 1; the EMA is said to be taken over N periods where N = 2
α
− 1. A

common use of moving averages is to identify trends by examining the ratio

between two moving averages computed from different periods, with the aver-

age over a shorter period on top [161]. If the ratio is greater than 1, then the

price is concluded to be in an uptrend since the older data is less than newer
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data on average. If the ratio is less than 1, then the price is in a downtrend.

Stochastics (Stoch) and Relative Strength Index (RSI) are oscillators

that vary between 0 and 100. The Stochastic is given by

Stoch(t) = 100
Close(t)− Low(t)

High(t)− Low(t)

where the high, low and close are taken over all periods involved, e.g. a three

period stochastic takes the high and low as the extrema of the prior 3 periods

and the close from the last period [145]. The Stochastic encodes whether the

current price (the most recent close) is high or low relative to recent history.

Because the stochastic focuses on recent history, it tends to change faster than

EMA ratios. It is also possible to compute a Stochastic from the EMA instead

of the price; this is called the Slow Stochastic. As with moving averages, ratios

of fast and slow Stochastics as well as ratios between Stochastics of different

periods are used as trend change indicators. Stochastics also tend to exhibit a

behavior termed divergence near price peaks. Negative divergence occurs when

the Stochastic makes a peak above 80 and then makes a secondary peak at a

lower value while the price makes a new high; this behavior often indicates a

coming shift in trend to a bear market and can be used as a trading signal [108].

Positive divergence refers to the reverse situation with a trough below 20, and

indicates a change to a bull market. RSI is defined differently, but tends to

exhibit similar behavior.

Bollinger bands are a pair of lines placed around the price above and

below at a distance from the price on either side equal to the standard deviation
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of the price from its average over a fixed number of preceding periods [161].

Prices can tend to reverse after penetrating the Bollinger bands on either side.

Additionally, when the Bollinger bands contract due to a reduction in price

variation, it generally indicates a period of volatility to follow.

A currency trader makes decisions consisting of orders to buy or sell

currencies. Currencies are expressed as pairs, e.g. EUR/USD. For EUR/USD,

the euro is the base currency, and the US dollar is the counter currency.

An order has a type and an associated value. The order type can be BUY,

SELL, SELL SHORT or BUY TO COVER. In a BUY order, the counter

currency is traded for the base currency in the amount specified; once executed,

the trader is said to have entered a long position. A SELL order exits all or a

portion of a long positions depending on the value. A SELL SHORT order

borrows the base currency in the amount specified in order to buy the counter

currency, thereby entering a short position. A BUY TO COVER order exits

all or part of an existing short position, repaying the borrowed money. The

value of an order is expressed in lots, denominated in US dollars for the purpose

of this research. A standard lot is US$100,000; a mini-lot is worth US$ 10,000.

When a trade is entered where neither currency is USD, the actual currency

amount purchased or sold is determined based on the current exchange rate

with the US dollar.

Currency traders are allowed to purchase an amount up to 100 times

the current value of the trader’s account. The actual multiple of the account

value currently held in long or short positions is termed leverage. After trades
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are entered, then the trader is allowed to hold the position until the account

value dwindles to the margin, usually at 200 times the value of the trader’s

account. At that point, the positions are liquidated by the brokerage; this is

termed a margin call. As long as the value of the account remains above the

margin, the trader has discretion as to when the trade should end.

Orders can be executed by several means. A market order queues up

for execution at the current exchange rate, which may fluctuate prior to exe-

cution, since trades must execute in order. A limit order specifies a maximum

exchange rate for long trades, and will only execute if the price falls to or below

the maximum; for short trades, the limit specifies a minimum rather than a

maximum. Limit orders are given preference to market orders for execution.

Finally, a stop loss order, or simply stop is the mirror image of a limit order; it

specifies a maximum exchange rate for executing a short trade, or a minimum

exchange rate for executing a long trade. Stops are used to protect against

catastrophic loss on a trade. Several other order types are available that will

not be used in this research.

B.2 Currency Trading Experiments

Automated currency trading was used to verify the application of evo-

lutionary annealing to RNNs experimentally. The task of currency trading

was described in Section B.1 along with applicable technical indicators. It is

an advantage of the currency trading domain that it involves relatively few in-

puts and outputs while still providing a difficult task where success is subject
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to uncertainty. These aspects make the currency domain a solid testbed for

experimental verification of neuroannealing. This section describes how neural

network controllers can be evaluated for the currency trading task.

B.2.1 Experimental Setup

The task of an automated currency trader is to progressively read a

sequence of technical indicators and output trading decisions. The sequence

of technical indicators for this experiment consists of ten real-valued inputs de-

rived from the exponential moving average at five, 20, and 50 periods (EMA-

5, EMA-20, EMA-50), the relative strength index at 14 periods (RSI), the

fast and slow stochastics at 14 and three periods respectively (FSTOCH and

SSTOCH), the width of the Bollinger Bands (BB-W), the position of the

closing price within the Bollinger Bands (BB-P), the absolute difference be-

tween the opening and closing price (OC), and the difference between the

high and low price (HL). All of these indicators are commonly used and def-

initions can be readily found in any materials on the subject of Technical

Analysis [108, 145, 161].

In order to train currency traders on multiple currency pairs, it is nec-

essary to remove any reference to the absolute magnitude of the price. Three

inputs are used for the ratio of price to EMA-5, EMA-20, and EMA-50, re-

spectively. One input each is used for RSI, FSTOCH, and SSTOCH, since

these indicators are already independent of price. Two more inputs are used

for BB-P and the log ratio of BB-W to its exponential moving average. The
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final two inputs include the log ratio of OC and HL to their respective moving

averages. Inputs are centered to have both positive and negative values and

scaled to approximately the same order of magnitude.

For these experiment, several simplifying assumptions regarding trad-

ing are made. During each training and testing run, a trader trades a single

currency pair at a time. Whenever the trader has no position in the currency,

then the trader can issue BUY or SHORT decisions to enter a trade in a

long or short position respectively; alternately, the trader may WAIT and do

nothing. Leverage is determined by the strength of the BUY signal versus

the SHORT signal or vice versa. Once a position is entered, the trader may

either EXIT the position or HOLD it at each time step; the trader may also

increase or decrease the leverage on the position. Positions are entered with a

limit order fixed to the close of the prior period. In the simulation, all of these

limit orders succeed, which is realistic if the limit order is issued substantially

close in time to the closing price. Stop loss limits are not used in these sim-

ulations to simplify the problem. In a practical implementation, a large stop

could be entered to prevent catastrophic loss, representing the portion of the

account value to be placed at risk during the next hour. These assumptions are

intended to give structure to the experiment and do not significantly restrict

the generality of the task. However, these choices do exclude some trading

strategies, including arbitrage trades, where a sequence of trades involving at

least three currencies exploits short-term imbalances among currencies, and

staged entry approaches where the position size is increased at set points if
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the trade proceeds as expected.

The goal of currency trading is to maximize gain during a trading run.

A secondary goal is to simultaneously minimize risk, typically volatility. Thus

a trader that steadily increases its account value without substantial losses

during the run is preferable over a trader that increases the account value

very quickly, but at the cost of substantial volatility and drawdown. In the

current experiments, the objective value of a trader was measured solely based

on the final account value without taking risk into account specifically. Future

implementations may explore a multi-objective setting in which gain must be

maximized while minimizing risk over any period.

Training takes place in a simulated trading environment using a fixed

data set described below. Since the data set consists only of hourly trading

data, it is not possible to tell during simulation whether a limit or a stop

would have been executed if both prices were reached in the same trading

period. For the purpose of simulation, limits were always executed and stops

were not used. This decision has the effect of potentially inflating gains, but

as such it affects all the trading networks evenly. As mentioned above, the

assumption that limits execute is realistic if the network makes decisions in

real time at the close of each period.

B.2.2 Currency Exchange Rate Data Set

The available training data consists of six months of hourly trading

data from September 2009 to February 2010 on 18 separate currency pairs,

562



obtained from a commercial brokerage. These include the six forex majors,

EUR/USD, AUD/USD, USD/CAD, GBP/USD, USD/JPY, USD/CHF, as

well as twelve other currency crosses, EUR/JPY, EUR/GBP, EUR/AUD,

GBP/JPY, GBP/CHF, CHF/JPY, CAD/JPY, AUD/JPY, NZD/USD, AUD/NZD,

AUD/CAD, and AUD/CHF.

The neural networks in the experiments are tested on a subset of nine of

these trading sets: EUR/USD, GBP/USD, USD/CHF, USD/JPY, NZD/USD,

USD/CAD, AUD/CAD, and AUD/NZD. These pairs are interesting since all

but two of them include the US dollar. The further simplifying assumption

is made that the trading account is denominated in the counter currency. In

a practical implementation, the trading account would be denominated in a

single currency, likely in US dollars.

The use of a dataset from a single time period incurs a risk that the

dataset contains internal correlations that would not be reflected during other

time periods. This problem is mitigated somewhat by including a variety of

currencies from countries with substantially different economies, and by the

inclusion of two pairs without the US dollar. Also, since trading is performed

at an hourly scale, the use of six months of data (over 3, 000 hours) means

that a large variety of trading situations are encountered.

There is also a risk that an automated trader trained on a particular

dataset will overfit the data, learning a trading strategy that only works on this

particular dataset. In some sense, this risk exists no matter what data is used.

The presumption that the past is predictive of the future underlies all forms
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of learning. In this particular case, the use of fixed technical indicators should

hide any specific price cues that are not also of general use as trading signals.

Hopefully, simply memorizing the best output for each inputs should be a

dangerous strategy given 27, 000 hours of trading on distinct currency pairs.

It is unknown at this time whether memorizing the data is a viable strategy.

Even if so, in the current context, this experiment is simply treated as an

objective function to maximize, which is of value for assessing the learning

abilities of neuroannealing in any case.
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