Modelling and simulations of hydrogels with coupled solvent diffusion and large deformation

dc.contributor.advisorHuang, Rui, doctor of civil and environmental engineering
dc.contributor.advisorLandis, Chad M.
dc.creatorBouklas, Nikolaosen
dc.date.accessioned2015-02-10T15:34:33Zen
dc.date.issued2014-12en
dc.date.submittedDecember 2014en
dc.date.updated2015-02-10T15:34:34Zen
dc.descriptiontexten
dc.description.abstractSwelling of a polymer gel is a kinetic process coupling mass transport and mechanical deformation. A comparison between a nonlinear theory for polymer gels and the classical theory of linear poroelasticity is presented. It is shown that the two theories are consistent within the linear regime under the condition of a small perturbation from an isotropically swollen state of the gel. The relationships between the material properties in the linear theory and those in the nonlinear theory are established by a linearization procedure. Both linear and nonlinear solutions are presented for swelling kinetics of substrate-constrained and freestanding hydrogel layers. A new procedure is suggested to fit the experimental data with the nonlinear theory. A nonlinear, transient finite element formulation is presented for initial boundary value problems associated with swelling and deformation of hydrogels, based on nonlinear continuum theories for hydrogels with compressible and incompressible constituents. The incompressible instantaneous response of the aggregate imposes a constraint to the finite element discretization in order to satisfy the LBB condition for numerical stability of the mixed method. Three problems of practical interests are considered: constrained swelling, flat-punch indentation, and fracture of hydrogels. Constrained swelling may lead to instantaneous surface instability. Indentation relaxation of hydrogels is simulated beyond the linear regime under plane strain conditions, and is compared with two elastic limits for the instantaneous and equilibrium states. The effects of Poisson’s ratio and loading rate are discussed. On the study of hydrogel fracture, a method for calculating the transient energy release rate for crack growth in hydrogels, based on a modified path-independent J-integral, is presented. The transient energy release rate takes into account the energy dissipation due to diffusion. Numerical simulations are performed for a stationary center crack loaded in mode I, with both immersed and non-immersed chemical boundary conditions. Both sharp crack and blunted notch crack models are analyzed over a wide range of applied remote tensile strains. Comparisons to linear elastic fracture mechanics are presented. A critical condition is proposed for crack growth in hydrogels based on the transient energy release rate. The applicability of this growth condition for simulating concomitant crack propagation and solvent diffusion in hydrogels is discussed.en
dc.description.departmentEngineering Mechanicsen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/28394en
dc.language.isoenen
dc.subjectHydrogelen
dc.subjectFractureen
dc.subjectSwellingen
dc.subjectIndentationen
dc.subjectMixed finite element methoden
dc.subjectTransient responseen
dc.titleModelling and simulations of hydrogels with coupled solvent diffusion and large deformationen
dc.typeThesisen
thesis.degree.departmentEngineering Mechanicsen
thesis.degree.disciplineEngineering Mechanicsen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BOUKLAS-DISSERTATION-2014.pdf
Size:
3.35 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.85 KB
Format:
Plain Text
Description: