Multiple-Material Topology Optimization of Compliant Mechanisms Created via Polyjet 3D Printing
Abstract
Compliant mechanisms are able to transfer motion, force, and energy using a monolithic
structure without discrete hinge elements. The geometric design freedoms and multi-material
capability offered by the PolyJet 3D printing process enables the fabrication of compliant
mechanisms with optimized topology. The inclusion of multiple materials in the topology
optimization process has the potential to eliminate the narrow, weak, hinge-like sections that are
often present in single-material compliant mechanisms. In this paper, the authors propose a
design and fabrication process for the realization of 3-phase, multiple-material compliant
mechanisms. The process is tested on a 2D compliant force inverter. Experimental and
theoretical performance of the resulting 3-phase inverter is compared against a standard 2-phase
design.