• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Video quality assessment based on motion models

    Icon
    View/Open
    seshadrinathank.pdf (5.219Mb)
    Date
    2008-08
    Author
    Seshadrinathan, Kalpana, 1980-
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    A large amount of digital visual data is being distributed and communicated globally and the question of video quality control becomes a central concern. Unlike many signal processing applications, the intended receiver of video signals is nearly always the human eye. Video quality assessment algorithms must attempt to assess perceptual degradations in videos. My dissertation focuses on full reference methods of image and video quality assessment, where the availability of a perfect or pristine reference image/video is assumed. A large body of research on image quality assessment has focused on models of the human visual system. The premise behind such metrics is to process visual data by simulating the visual pathway of the eye-brain system. Recent approaches to image quality assessment, the structural similarity index and information theoretic models, avoid explicit modeling of visual mechanisms and use statistical properties derived from the images to formulate measurements of image quality. I show that the structure measurement in structural similarity is equivalent to contrast masking models that form a critical component of many vision based methods. I also show the equivalence of the structural and the information theoretic metrics under certain assumptions on the statistical distribution of the reference and distorted images. Videos contain many artifacts that are specific to motion and are largely temporal. Motion information plays a key role in visual perception of video signals. I develop a general, spatio-spectrally localized multi-scale framework for evaluating dynamic video fidelity that integrates both spatial and temporal aspects of distortion assessment. Video quality is evaluated in space and time by evaluating motion quality along computed motion trajectories. Using this framework, I develop a full-reference video quality assessment algorithm known as the MOtion-based Video Integrity Evaluation index, or MOVIE index. Lastly, and significantly, I conducted a large-scale subjective study on a database of videos distorted by present generation video processing and communication technology. The database contains 150 distorted videos obtained from 10 naturalistic reference videos and each video was evaluated by 38 human subjects in the study. I study the performance of leading, publicly available objective video quality assessment algorithms on this database.
    Department
    Electrical and Computer Engineering
    Description
    text
    URI
    http://hdl.handle.net/2152/17765
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin