
Copyright

by

Kalpana Seshadrinathan

2008



The Dissertation Committee for Kalpana Seshadrinathan
certifies that this is the approved version of the following dissertation:

Video Quality Assessment Based on Motion Models

Committee:

Alan C. Bovik, Supervisor

Wilson S. Geisler

Lawrence K. Cormack

Gustavo de Veciana

Sriram Vishwanath



Video Quality Assessment Based on Motion Models

by

Kalpana Seshadrinathan, B.Tech., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2008



Dedicated to Appa, Amma, Archu and Vandu.



Acknowledgments

I did not want to write this section at the beginning when I started off

writing my dissertation. Firstly, I was not really in a mood to write it when

I thought about the monumental task of writing up the entire dissertation.

Plus, I was not really sure I would be able to graduate as planned and it felt

like writing the acknowledgments would jinx it. Most important of all, I used

to dream of the day when I would have the leisure to write this and give it

complete justice. Well, the day has finally arrived now that my dissertation

draft has been turned in to the committee.

I am going to write this in chronological order of events that brought

me to the U.S.A. to pursue my Ph.D. Well, Master’s degree actually. I changed

my mind down the lane.

First and foremost, I would like to thank my family for all their support

and understanding. My parents for their constant encouragement, unwavering

belief and confidence in me, for giving me everything I ever wanted - including

my unmarried status while I studied. My sister, Archu, for always looking

out for me and making it possible for me to come to UT. My sister, Vandu,

for always taking care of me. My brother-in-law, Amitesh, for his constant

support and being a fellow “techie” in the family. My cousin, Nandu anna, for

all his encouragement and help with my graduate applications - I wouldn’t be

v



here if it were not for him. My cousins in the U.S. for giving me the emotional

support that I needed when I first arrived all alone in the U.S.A.

I would like to thank two of my teachers from my high school days,

who really challenged my intellectual ability and inspired me - K.S.R. and

Sankaran Sir. They showed me the wonderful world of mathematics and I

learnt about my own interests and abilities. I can say with full confidence that

my educational journey since would not have been the same without them.

I would like to thank Prof. Baxter Womack for offering me a TA in my

first year at UT and all the hugs since.

The biggest thanks of all goes to Prof. Al Bovik, my adviser. For

taking me on as a student and filling the role of adviser in every sense of the

word. I wish every student in this world could have an adviser as great as

Dr. Bovik. He inspired me with his teaching, which was the reason I joined

his lab. He continues to inspire and awe me with his razor-sharp intellect and

insight. He is always looking out for his students and I would like to thank

him for his endless patience, understanding, and consideration. Words fail me

in describing what it means to me to have had the good fortune to be his

student.

I would like to thank Dr. Bovik and Golda for all the wonderful times

we had at conferences and at parties in their house. They are two of the most

wonderful people, with the unique ability of never making you feel like an

outsider. Dr. Bovik once even told me that I was family and I can’t even

vi



begin to explain what that meant to me. I want to thank Dhivya and Mercy

for some wonderful times and giving me the joy of being with kids, something

I have always missed since I came to UT. I remember I was very nervous about

how they would react to me when I first met them in Italy. I had always got

along well with kids in India, but was not sure if American kids would like me.

I learnt that kids are the same everywhere. I would also like to thank Golda’s

dad for his support and affection.

I would like to thank all the members of my dissertation committee.

In particular, a big thanks to Dr. Geisler and Dr. de Veciana for writing

letters of recommendation for me. Also, a special thanks to Prof. de Veciana

for advice and taking the time to talk to me several times during my 6 years

at UT. I would like to thank Dr. Cormack for his help with the subjective

study. I would like to thank Prof. Vishwanath for agreeing to serve in my

committee at the last moment. I would like to thank Prof. Garg for serving

in my qualifying exam committee.

I would like to thank all the wonderful teachers I have had here at UT

for sharing the wonderful gift of learning. I would like to thank Pierre Costa

for several years of support and both Pierre and Djoko Astronoto for a great

working relationship at AT&T Research. I would like to thank many others

at UT for their support. Melanie Gulick, the friendliest face you see when you

first come to UT and the friendliest face you will ever see the rest of your time

at UT. Shirley Watson, Selina Keilani, Janet Preuss and Paul White for all

the help with administrative matters and appointments. Mary Matejka and

vii



Gabriel Hernandez for the IT support. Merydith Turner for everything else.

Finally, my friends. Anyone who has been a member of LIVE in the

“Golden age of Umesh” cannot thank anyone else before him, most of all

me. I would like to thank Umesh for all the wonderful times together playing

ping pong, tennis, learning to swim, sampling Austin restaurants, watching

UT football games in the magic year of the national championship and so

much more. Not to mention always giving me feedback on posters and papers,

helping me pack, bringing me food when I came back depressed after an India

trip. Umesh is solely responsible for patiently teaching me what little hand-eye

coordination I have today. I would like to thank him for being my rock.

I would like to thank Balaji for being my first real friend at UT and all

the support, encouragement and disagreements since. He helped me grow into

a more mature person in many ways and I would like to thank him for always

being there for me. A big thanks for sharing Rowdy with me this last year,

helping me get over my fear and learning to love Rowdy and other animals.

I would like to thank Abraham for all the support the past 10 years.

I would like to thank Farooq for eating all the food I cooked, his sense

of humor and being a wonderful friend. Hamid for his loud, amusing, annoying

yet endearing personality and always being a good friend. Sumohana for his

support, some wonderful times together at AT&T, help anytime I ever asked

him for anything and putting up with my tantrums. Mehul, for being a won-

derful friend - always considerate, affectionate and looking out for me. I would

viii



like to thank Krupa and Pallavi for the great parties and movies. Joonsoo, for

always helping me out when I was in a jam and his sense of humor that made

the lab so much fun. Sina, for his unique, wonderfully outgoing personality

that I wish everyone in this world could have and forgetting to invite me to

movies. Liu, for all the research discussions that bordered on fighting, initi-

ating us into Chinese movies, games and culture, his amazing intelligence and

his great sense of humor. James - for being his funny and entertaining self, for

giving us a glimpse of American life and that wonderful day on his boat. Choi,

for all the marriage advice. Abtine, for his friendship. Ian, for his friendliness

and excellent imitation of Abtine in the gym. Tom Arnow for his wacky sense

of humor and interest in Indian culture. I also want to thank Hyung, Rajiv,

Anush, William, Rana, Shalini, Raghu and Preethi for some great times at

LIVE.

ix



Video Quality Assessment Based on Motion Models

Publication No.

Kalpana Seshadrinathan, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Alan C. Bovik

A large amount of digital visual data is being distributed and commu-

nicated globally and the question of video quality control becomes a central

concern. Unlike many signal processing applications, the intended receiver of

video signals is nearly always the human eye. Video quality assessment algo-

rithms must attempt to assess perceptual degradations in videos. My disserta-

tion focuses on full reference methods of image and video quality assessment,

where the availability of a perfect or pristine reference image/video is assumed.

A large body of research on image quality assessment has focused on

models of the human visual system. The premise behind such metrics is to

process visual data by simulating the visual pathway of the eye-brain system.

Recent approaches to image quality assessment, the structural similarity in-

dex and information theoretic models, avoid explicit modeling of visual mech-

anisms and use statistical properties derived from the images to formulate

x



measurements of image quality. I show that the structure measurement in

structural similarity is equivalent to contrast masking models that form a crit-

ical component of many vision based methods. I also show the equivalence of

the structural and the information theoretic metrics under certain assumptions

on the statistical distribution of the reference and distorted images.

Videos contain many artifacts that are specific to motion and are largely

temporal. Motion information plays a key role in visual perception of video

signals. I develop a general, spatio-spectrally localized multi-scale framework

for evaluating dynamic video fidelity that integrates both spatial and temporal

aspects of distortion assessment. Video quality is evaluated in space and time

by evaluating motion quality along computed motion trajectories. Using this

framework, I develop a full-reference video quality assessment algorithm known

as the MOtion-based Video Integrity Evaluation index, or MOVIE index.

Lastly, and significantly, I conducted a large-scale subjective study on

a database of videos distorted by present generation video processing and

communication technology. The database contains 150 distorted videos ob-

tained from 10 naturalistic reference videos and each video was evaluated by

38 human subjects in the study. I study the performance of leading, publicly

available objective video quality assessment algorithms on this database.
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Chapter 1

Introduction

1.1 Motivation

The arrival of the personal computer and the Internet has ushered in a

remarkable digital video revolution, the products of which pervade our daily

lives in many ways. Digital video acquisition, communication, storage and

display devices have advanced to an extraordinary degree of efficiency, leading

to the rapid rise of popular applications such as Internet Video, Interactive

Video on Demand (VoD), Wireless Video, HDTV, Digital Cinema and so on.

With such a large amount of digital visual data being distributed and com-

municated globally, it is natural that the question of video quality control

become a central concern. Unfortunately, rapid advances in video processing

and communication have not been matched by similar progress in methods

for video quality analysis. Unlike many signal processing applications, the in-

tended receiver of video signals is nearly always the human eye. Image quality

assessment (IQA) and video quality assessment (VQA) algorithms refer to au-

tomatic methods that attempt to predict perceptual degradations in images or

videos. In other words, objective IQA/VQA algorithms quantify the quality

of a given image/video as seen by a human observer.
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The development of successful VQA algorithms will enormously further

the cause of digital services to consumers, as well as researchers. Applications

such as video-on-demand, wireless video services, digital cinema, and video

conferencing with mobile devices will particularly benefit from this research,

while new algorithms in biomedical imaging, astronomy, geophysics (and many

others) will benefit from the availability of effective IQA/VQA algorithms as

a means of testing algorithm results. The design of algorithms for image and

video processing based on perceptual criteria is a nascent area of research that

is driven by effective IQA/VQA models. Finally, IQA/VQA research promises

to improve our basic understanding of human visual information processing,

specifically with regard to mechanisms that contribute to quality perception.

1.2 Concepts in Quality Assessment

I begin by reviewing some of the essential concepts involved in IQA

and VQA. Subjective judgment of quality must be regarded as the ultimate

standard of performance by which IQA/VQA algorithms are assessed. Sub-

jective quality is measured by displaying images or videos to human observers.

The subject then indicates a quality score on a numerical or qualitative scale.

To account for human variability and to assert statistical confidence, multiple

subjects are required to view each image/video, and a Mean Opinion Score

(MOS) is computed. While subjective IQA/VQA is the only completely reli-

able method, subjective studies are cumbersome, expensive, and more complex

than they may seem. For example, statistical significance of the MOS must

2



be guaranteed by using sufficiently large sample sizes; subject naivety must

be imposed; the dataset of images/videos must be carefully calibrated; the

display monitors should be calibrated; and so on. Subjective QA methods are

impractical for nearly every application other than benchmarking automatic

IQA/VQA algorithms.

There are three loosely agreed-upon categories of objective algorithms.

Full reference algorithms operate on distorted images while having a

pristine, ideal reference image available for comparison. The vast majority

of IQA and VQA algorithms fall into this category, because of the relative

simplicity of making quality judgments relative to a standard. An example

reference and distorted image are shown in Fig. 1.1.

Reduced reference algorithms operate without the use of a pristine refer-

ence, but do make use of additional (side) information along with the distorted

image or video signal. Reduced reference algorithms may use features such as

localized spatio-temporal activity information, edge locations extracted from

an original reference, or embedded marker bits in the video stream as side

information to estimate the distortion of the channel [1]. Other algorithms

use knowledge that has been independently derived regarding the distortion

process, such as foreknowledge of the nature of the distortion introduced by

a compression algorithm, e.g., blocking, blurring, or ringing. Sometimes al-

gorithms of this latter type are referred to as “blind”, but in my view, these

should be categorized separately or as reduced reference algorithms.

3



(a) (b)

Figure 1.1: Example showing (a) a reference image and (b) a test image that
are available to a full reference IQA algorithm.

No reference algorithms, also known as blind methods, attempt to as-

sess the image/video quality without using any information other than the

distorted signal. This process has proved daunting and there is very little sub-

stantive work on this topic. Yet, human beings can perform the task almost

instantaneously, which suggests that there is hope in this direction, but in the

long term.

I believe that much yet remains to be learned regarding full reference

and reduced reference techniques, and especially regarding human visual per-

ception of quality, before generic no reference algorithms become feasible. This

dissertation deals exclusively with full reference methods of IQA and VQA.

1.3 Contributions

The following is an overview of the contributions presented in this dis-

sertation.
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1.3.1 Understanding Image Quality Assessment Methods

Diverse approaches to the full reference IQA problem have been pro-

posed over the past three decades. A large class of methods, broadly classified

as human visual system (HVS) based methods, build models of several stages

of low level processing in the HVS and pass the reference and distorted images

through these models to compute perceptual quality. The Structural SIMi-

larity (SSIM) index attempts to quantify the loss of structural distortions in

images, arguing that humans equate loss of structural information with visual

quality. Information theoretic methods, such as the Information Fidelity Cri-

terion (IFC) and the Visual Information Fidelity (VIF) index, equate loss of

visual quality with the amount of information that can be extracted by hu-

mans from the reference and distorted images using models of natural scene

statistics.

I analyze the SSIM and information theoretic philosophies for full ref-

erence image quality evaluation in a general probabilistic framework to deepen

our understanding of these indices and enable a unification of ideas derived

from different first principles. I also explore the relationship between the SSIM

index and models of contrast gain control used in HVS-based methods. I show

that the structure term of the SSIM index is equivalent to certain models of

contrast gain control in HVS-based methods and can hence account for con-

trast masking effects in human vision. I establish the equivalence of IFC and

multi-scale SSIM models, assuming that the same linear decomposition is used

in both models and that the statistical model assumed by the IFC is valid on

5



the resulting scale-space representation of the images. I also study the rela-

tionship between the SSIM and VIF indices and reveal certain instabilities in

the VIF formulation. My analysis shows a unifying link between certain IQA

models based on signal statistics and IQA models based on visual processing

of these signals. My analysis also reveals the strengths and weaknesses of dif-

ferent methods and it is my hope that future research into IQA techniques will

benefit from this.

I describe the unified treatment of full reference of IQA algorithms in

Chapter 3.

1.3.2 Spatio-temporal Quality Assessment of Natural Videos

VQA has traditionally been addressed using simple extensions of IQA

methods to handle the temporal dimension. Although current full reference

VQA algorithms incorporate features for measuring spatial distortions in video

signals, very little effort has been spent on directly measuring temporal distor-

tions or motion artifacts. While video signals do suffer from spatial distortions,

they are also degraded by severe temporal artifacts such as ghosting, motion

compensation mismatch, jitter, smearing, mosquito noise amongst numerous

other types. Motion plays a very important role in visual perception of videos.

Humans are very sensitive to motion, and considerable resources in the HVS

are expended on computation of the velocity and direction of motion of image

intensities from the time-varying images captured by the retina. People have

the ability to execute smooth pursuit eye movements and visual attention is

6



drawn to moving objects in a scene. Hence, visual perception of motion plays

a very important role in video quality assessment. It is imperative that video

quality indices account for both visual perception of motion and the deleteri-

ous effects of temporal artifacts, if objective evaluation of video quality is to

accurately predict subjective judgment.

I develop a general framework for achieving spatio-spectrally localized

multi-scale evaluation of dynamic video quality. In this framework, both spa-

tial and temporal (and spatio-temporal) aspects of distortion assessment are

accounted for. Video quality is evaluated not only in space and time, but

also in space-time, by evaluating motion quality along computed motion tra-

jectories. Using this framework, I develop a full reference VQA algorithm

known as the MOtion-based Video Integrity Evaluation index, or MOVIE in-

dex. MOVIE integrates explicit motion information into the VQA process

by tracking perceptually relevant distortions along motion trajectories, thus

augmenting the measurement of spatial artifacts in videos. I validate the

performance of MOVIE on a publicly available database of videos and demon-

strate significant improvements using such an approach in matching visual

perception.

I have sought to use principles derived from the analysis of IQA methods

to improve the ability of MOVIE to capture spatial distortions in video. I also

show how models used to track video quality along temporal trajectories in

MOVIE relate to computational models of motion perception in the HVS. I

believe that my work delivers the much-needed tool of motion modeling and
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temporal distortion modeling to the VQA community, to reach the ultimate

goal of matching human perception.

I describe the framework for spatio-temporal evaluation of video quality

and the MOVIE index in Chapter 4.

1.3.3 Subjective Quality Assessment of Natural Videos

I conducted a study to assess the subjective quality of videos. The study

included 10 raw naturalistic reference videos and 150 distorted videos obtained

from the references using four different real world distortion types. Each video

was assessed by 38 human subjects using a single stimulus, continuous quality

scoring procedure. The resulting database of videos is known as the Laboratory

for Image and Video Engineering (LIVE) Video Quality Assessment Database.

Currently, the only publicly available subjective data that is widely used

in the VQA community comes from the study conducted by the Video Quality

Experts Group (VQEG) as part of its FR-TV Phase I project in 2000 [2].

This database has several limitations that I seek to address in my study. The

videos in the LIVE VQA Database are all captured in progressive scan formats.

The LIVE video quality database includes videos distorted by MPEG-2 and

H.264 compression, as well as videos resulting from the transmission of H.264

packetized streams through error prone Internet Protocol (IP) and wireless

communication channels. The LIVE database spans a wide range of quality -

the low quality videos were designed to be of similar quality as videos typical

of streaming video applications on the Internet (for example, Youtube). Great
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care was taken to ensure precise display of these psychophysical stimuli to

human subjects in my study.

The goal of my study was to develop a database of videos that will

challenge automatic VQA algorithms. I included diverse distortion types to

test the ability of objective models to predict visual quality consistently across

distortions. Compression systems such as MPEG-2 and H.264 produce fairly

uniform distortions/quality in the video, both spatially and temporally. Net-

work losses, however, cause transient distortions in the video, both spatially

and temporally that appear as glitches in the video. My database is unique in

this respect, since the VQEG Phase I database does not include such spatio-

temporally localized distortion types.

Additionally, I adjusted the distortion strengths manually so that the

videos obtained from each source and each distortion category spanned the

same range of visual quality. This tests the ability of objective VQA models

to predict visual quality across content and distortion types consistently.

I present an evaluation of the performance of leading, publicly available

objective VQA algorithms on this database. The LIVE database provides a

valuable tool to researchers in the VQA community for performance evaluation

and advancement of current and future VQA algorithms.

I describe the LIVE VQA database and the performance evaluation of

objective VQA algorithms on this database in Chapter 5.

I conclude this dissertation, with a discussion of avenues for future work

9



in Chapter 6.
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Chapter 2

Background

In this chapter, I review previous work on the full reference image

quality assessment (IQA) and video quality assessment (VQA) problems. In

Section 2.1, I review previous work on full reference IQA. In Section 2.2, I

describe previous progress in the development of algorithms for VQA.

2.1 Image Quality Assessment

A large body of work has focused on using models of the human visual

system (HVS) to develop quality metrics, broadly classified as HVS-based

metrics. The basic idea behind these approaches is that the best way to predict

the quality of an image, in the absence of any knowledge of the distortion

process, is to attempt to “see” the image using a system similar to the HVS.

I describe some well known HVS-based metrics in Section 2.1.1. I briefly

describe some quality assessment models based on signal fidelity measures in

Section 2.1.2. A review of quality assessment techniques for still images can

be found in [3].
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Figure 2.1: Block diagram of HVS-based quality metrics

2.1.1 HVS-based metrics

The earliest and most commonly used full reference quality metric is

the Mean Squared Error (MSE) or equivalently, the Peak Signal to Noise

Ratio (PSNR). This metric is popular due to its simplicity and mathematical

tractability, although it is well known that it correlates poorly with visual

quality [4]. PSNR is a simple mathematical measure and belongs to the class

of metrics that do not incorporate any knowledge of the HVS. Other simple

measures that weight different regions in frequency space differently have also

been proposed as quality metrics and a discussion of these approaches can

be found in [5]. These metrics can be thought of as a refinement to PSNR,

since they incorporate modeling of some aspects of the HVS in designing the

weights. In general, however, they have not been found to correlate well with

visual quality across different images and varying types of distortions.

The premise behind HVS-based metrics is to process the visual data

by simulating the visual pathway of the eye-brain system. As depicted in Fig.

2.1, HVS-based IQA systems typically begin by preprocessing the signal to

correct for non-linearities, since lightness perception is a non-linear function

of luminance. A filterbank decomposes reference and distorted or test signals

into multiple spatial frequency- and orientation-tuned channels in an attempt
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to model similar processing by the cortical neurons. The luminance masking,

contrast masking and contrast sensitivity features of the HVS are then modeled

to account for perceptual error visibility. The response of the HVS to variations

in luminance is a nonlinear function of the local mean luminance and this is

commonly referred to as luminance masking. It is called masking because

the variations in the distorted signal are masked by the base luminance of

the reference image. Contrast masking refers to the reduction in visibility

of one frequency component due to the presence of a stronger component of

similar frequency or orientation in adjacent spatial locations. Additionally, the

HVS has a bandpass characteristic and the frequency response is described by

the Contrast Sensitivity Function (CSF). Baseline contrast sensitivity is the

minimum amount of energy required to detect a particular channel component

and can be computed for each channel using the CSF. The masking block uses

the baseline contrast sensitivity, models for luminance and contrast masking

and the image component in each channel to compute the sensitivity threshold

for that channel. A space-varying threshold map is then created for each

channel, which describes the sensitivity of each spatial location to errors in

that particular channel. In the final stage, the error between the reference

and test images in each channel is normalized by its corresponding sensitivity

threshold and these normalized errors are known as Just Noticeable Differences

(JND’s). Finally, the JND values for all the channels at each spatial location

are combined, usually using the Minkowski error metric, to generate a space-

varying map of the image. This map predicts the probability that an observer
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will be able to detect any difference between the two images in local regions

and can be combined suitably to generate a single number that represents the

quality of the entire image, if desired.

This approach to IQA is intuitive and has met with considerable suc-

cess. Different quality metrics proposed in the literature use different mod-

els for the blocks shown in Fig. 2.1. Popular approaches that followed the

above paradigm include the pioneering work by Mannos and Sakrison [6], Lu-

bin’s laplacian-pyramid-based approach [7, 8] used in the Emmy award win-

ning Sarnoff JNDMetrix technology [9], Daly’s Visible Differences Predictor

[10] using the Cortex Transform [11] and Teo and Heeger’s steerable pyramid

approach [12, 13].

Many of these models attempt to predict whether an observer will suc-

cessfully discriminate between the reference and distorted images [7, 9, 10].

Discriminability, however, does not necessarily equate to visual quality, since

different visible distortions have different annoyance levels. Further, most of

these models are derived using stimuli such as sine waves and Gabor patches.

The applicability of such models to natural images is questionable, in view of

the highly non-linear nature of visual processing. Visual Signal to Noise Ratio

(VSNR) is a method that attempts to ameliorate these effects [14]. Firstly,

the computational models used in VSNR are derived based on psychophysical

experiments conducted to quantify the visual detectability of distortions in

natural images. Second, VSNR attempts to quantify the perceived contrast

of supra-threshold distortions and the model is not restricted to the regime of

14



Figure 2.2: Block diagram of SSIM quality assessment system

threshold of visibility. Third, VSNR attempts to capture a mid-level property

of the HVS known as global precedence, while most other models discussed

here only consider low level processes in the visual system.

Different HVS-based approaches have had varying degrees of success.

However, all of these methods suffer from certain drawbacks [15]. Although a

lot is known about the early stages of the visual pathway, vision science has a

long way to go before arriving at a clear understanding of the functioning of the

entire HVS. Developing computational models of human vision is also an active

research area and currently, much of the work on computational modeling is

restricted to low level visual processing. A HVS-based quality metric can only

be as good as the underlying model of human vision which is imperfect, to say

the least, today [1, 16]. Further, HVS-based metrics generally require extensive

calibration derived from human studies to determine the model parameters.

2.1.2 Signal Fidelity based Methods

The Structural SIMilarity (SSIM) approach to IQA assumes that the

HVS has evolved to extract structural information from an image [15, 17].
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Figure 2.3: Block diagram of VIF quality assessment system

The quality of the image is described using error metrics that quantify the

loss of structural information in the image. Illumination does not affect the

structure of objects in a scene and the structure comparison is designed to

be independent of illumination. Luminance and contrast are computed using

the mean and standard deviation of local image patches. The crucial step in

the development of SSIM is in defining the structure comparison term, which

should capture the structural distortions in an image as seen by the human eye.

The correlation or the inner product between mean and variance normalized

image patches is used as a simple and effective measure to quantify structural

similarity. Despite its simplicity, SSIM correlates extraordinarily well with

perceptual image quality. Several improvements to the structural similarity

framework have been proposed, including multi-scale structural similarity and

translation insensitive Complex Wavelet SSIM (CWSSIM) [18, 19].

A more recent development is the Visual Information Fidelity (VIF)

Index. This approach views IQA as an information fidelity problem, as op-

posed to a signal fidelity problem. The VIF index hypothesizes that visual
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quality is related to the amount of information that the HVS can extract from

an image. Figure 2.3 summarizes the VIF approach. Reference images are as-

sumed to be the output of a natural image source represented using a powerful

natural scene statistical (NSS) model [20–23]. The simple, yet powerful NSS

model that VIF employs is a Gaussian Scale Mixture (GSM) model [23]. The

test image is assumed to be the output of a distortion channel through which

the reference image passes. A blur plus additive noise distortion model in the

wavelet domain is used as the channel model. Further, the HVS is modeled as

a noisy channel, since neural noise and other factors limit the information it

can extract from an image. The ratio of the information communicated in the

test image channel to that in the reference image channel serves as the quality

index. Also, a precursor to VIF, known as the Information Fidelity Criterion

(IFC), is described in [24].

2.2 Video Quality Assessment

VQA research has evolved along the same trajectory as IQA. MSE and

PSNR are still heavily used due to their simplicity. A large portion of research

into video quality metrics over the past twenty years has concentrated on HVS-

based quality metrics. A block diagram of a generic HVS-based quality metric

is illustrated in Fig. 2.4.

This system is identical to the generic HVS-based IQA system described

earlier, except for the block termed “temporal filtering”. It is believed that

two kinds of temporal mechanisms exist in the early stages of processing in
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Figure 2.4: Block diagram of HVS-based video quality assessment system

the visual cortex, one lowpass and one bandpass. HVS-based VQA algorithms

attempt to model these temporal mechanisms of the HVS in the temporal

filtering block. For example, an early HVS-based VQA metric, known as the

Moving Pictures Quality Metric (MPQM) [25], analyzed the video signal using

a spatial Gabor filterbank and a temporal mechanism consisting of one band-

pass and one low-pass filter. Separable spatio-temporal models inadequately

describe human visual response; rather, visual motion sensing is better mod-

eled using temporal filters whose response depends on the spatial frequency

[25]. Hence, measurement of the CSF as a non-separable function of spatial

and temporal frequencies was performed using psychophysical experiments in

the develpment MPQM. This metric was improved upon using a more recent

model consisting of two IIR filters to model the lowpass and bandpass mecha-

nisms in the HVS [26] to develop the Perceptual Distortion Metric (PDM) [27].

Likewise, the Sarnoff JND vision model was extended to video by including

temporal filters similar to those used in PDM [9]. Watson proposed a compu-

tationally efficient VQA algorithm known as the Digital Video Quality (DVQ)

Metric, using the DCT in the linear transform stage and a single-channel IIR

temporal mechanism [28]. A more recent scalable wavelet based video distor-
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tion metric [29] uses a single channel filter to model the temporal mechanisms

in the HVS and an orthonormal Haar wavelet spatial decomposition.

Very simple and preliminary extensions of both SSIM and VIF have

been proposed for VQA [30, 31]. For example, [30] explains a simple frame-

by-frame SSIM implementation that proved competitive with the proponents

in the VQEG Phase I FR-TV tests. The performance of this index was found

to be less stable in areas of large motion, since the frame level SSIM index in-

corporates no motion information. To make the metric more robust, a simple

motion weighting adjustment was proposed where motion vectors are com-

puted using block matching [30]. More recently, the SSIM index was used

in conjunction with statistical models of visual speed perception [32]. This

method applies the SSIM index frame by frame on the video and uses motion

information in designing weights to combine local SSIM measurements into a

single quality score for the entire video sequence.

The VIF index was extended to video by applying the same statistical

model used for static images on spatio-temporal derivatives of the reference

and test videos and by using the same information-theoretic formulation [31].

However, the accuracy of using NSS models developed for static images in the

video scenario is questionable. Nevertheless, this approach has also proved to

be competitive with the best algorithms in the VQEG tests.

As an indication of their performance, three of the indices mentioned

above, namely the Sarnoff JND metric, PDM and DVQ were proponents in

the evaluation conducted by the Video Quality Experts Group (VQEG) as
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part of their Phase 1-FRTV study in 2000 [2]. This study concluded that

the performance of all the proponents were statistically equivalent and that

the performance of all models were statistically equivalent to PSNR! HVS-

based video quality metrics suffer from the same drawbacks that were pointed

out earlier for HVS-based image quality metrics. Additionally, they suffer

from inaccurate modeling of the temporal mechanisms in the HVS. All the

metrics mentioned above use either one or two temporal channels and model

the temporal tuning of the neurons in area V1 of the visual cortex only. This is

insufficient as it is well known that area MT of the extra-striate cortex plays an

important role in motion perception. More recently, the response of neurons

in area MT have been studied and models of motion sensing in the human

eye have been proposed [33, 34]. To the best of my knowledge, no HVS-based

quality metric incorporates these models to account for the second stage of

motion processing in area MT of the HVS.

Thus, in recent years, there has been an increased interest in models

that describe the distortions in the video sequence that the human eye is sen-

sitive to and that equate with loss of quality; for example, blurring, blocking

artifacts, fidelity of edge and texture information in the signal, color informa-

tion, contrast and luminance of registered patches in the spatial and frequency

domain etc. The VQEG conducted another study in 2003, labeled Phase-II

FR-TV study, to obtain finer discrimination between models than the Phase-

I study [35]. Five of the six proponent models tested by the VQEG in its

Phase II testing utilized feature vectors such as those described above in pre-
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dicting quality [35]. Although the proponent models performed better in this

study than in Phase-I, the Phase-II study emphasized a specific, and hence

limited application domain, focusing on digitally encoded television. One of

the prominent VQA algorithms that belongs to this class and was a proponent

in the Phase II study is the Video Quality Metric (VQM) developed at the

National Telecommunications and Information Administration (NTIA) [36].

VQM has been standardized by the American National Standards Institute

(ANSI) and has been included as a normative method in two International

Telecommunications Union (ITU) recommendations.

2.3 Conclusion

There is a need for improvement in the performance of objective quality

metrics for video. Most current metrics are benchmarked using the metrics in

Phase I of VQEG testing, which have been shown to be statistically equivalent

to PSNR in the study. This indicates the potential for improvement in the

performance of video quality metrics. Most of the metrics proposed in the lit-

erature have been simple extensions of quality metrics for images. Biological

vision systems devote considerable resources to motion processing. Presenta-

tion of video sequences to human subjects induces visual experience of motion

and perceived distortion in video sequences is a combination of both spatial

and motion artifacts. For example, motion artifacts such as ghosting, jitter

etc. are clearly visible in video signals distorted by compression. Thus, VQA

is not a straight forward extension of IQA. I believe that metrics specific to
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video, and that incorporate modeling of motion as well as temporal distortions

in video, need to be developed for accurate quality prediction. To date, there

has been little work done in these directions which greatly motivates my work.
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Chapter 3

Unified Treatment of Full Reference Image

Quality Assessment Algorithms

Perceptual Quality Assessment (QA) algorithms predict the subjective

visual quality of an image or video sequence. Full reference QA algorithms

assume the availability of a “perfect” quality reference signal and have con-

tributed to a large body of work on QA. Several different full reference image

QA algorithms exist in the literature. These algorithms differ in a variety

of ways, including the philosophy behind the design of the algorithm, the

computational complexity, the presumed viewing conditions incorporated in

the model, and the format of the output (local quality measures for differ-

ent regions of the image, a single global quality measure for the entire image,

probability of discrimination between the reference and test images). What,

then, is the right algorithm to use in a given application? Typically, this

question has been addressed by comparing the performance of each algorithm

against human subjective evaluation of visual quality. A database of distorted

images is constructed and ground truth quality scores for these images are

collected from human observers. To assess the performance of a QA system,

algorithm predictions are fitted to the subjective scores using a monotonic

function and comparisons are made using statistical tests such as the corre-
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lation coefficient, Spearman Rank Order Correlation Coefficient (SROCC), or

Root Mean Squared Error (RMSE) between ground truth scores and algorithm

predictions.

Such an analysis, while valuable, may present certain drawbacks and

need not necessarily correlate well with the performance of a QA system. First

of all, the results obtained are only indicative of the performance of the QA

system on the particular database of images used in the performance evalua-

tion. The performance indices obtained from such a study cannot necessarily

be used to predict the performance of the same QA system on other databases

containing images having different content, different distortion types and dis-

tortion strengths, different experimental setups such as viewing distances or

display devices and so on. Additionally, the results depend on the form of

the fitting function that is used to map algorithm predictions to human Mean

Opinion Scores (MOS) and the optimization algorithm used to determine the

parameters of the fitting function. Finally, most QA systems have several free

parameters which, when varied, result in different performance indices even

while testing on the same database.

I envision that a suitable analysis of different QA indices in a general

mathematical framework may deepen our understanding of these indices and

enable a unification of ideas derived from different first principles. In this

chapter, I study two recently developed, popular image QA paradigms - the

Structural SIMilarity paradigm (SSIM) [15, 17] and the Visual Information Fi-

delity (VIF) paradigm [24, 37] in a general probabilistic framework. I attempt
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to relate the SSIM and VIF QA paradigms to each other as well as to tra-

ditional QA indices: the Mean Squared Error (MSE) and perception based

image QA algorithms.

In this dissertation, I use “QA metric” and “QA algorithm” inter-

changeably, although the output of a QA algorithm is not truly a metric in

the mathematical sense of the word. However, due to its rampant use in QA

literature, I also use the term “metric” acknowledging my own abuse of ter-

minology. In Section 3.1, I explain the notation that will be used throughout

this chapter. In Section 3.2, I describe the SSIM paradigm for image QA and I

relate structural similarity metrics to more traditional approaches to QA that

have dominated much of the research on this problem for the past two or three

decades: the Mean Squared Error (MSE) and Human Visual System (HVS)

modeling based methods. In particular, I express the SSIM index as an MSE

between certain normalized variables. I also demonstrate that the SSIM index

performs a contrast masking normalization, similar to HVS based QA metrics.

In Section 3.3, I study the VIF paradigm for image QA. I show that a pre-

cursor to the VIF index, known as the Information Fidelity Criterion (IFC),

is equivalent to the structure term of the SSIM index applied in the sub-band

filtered domain. I also study the relation of the more sophisticated VIF index

to the SSIM index.
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3.1 Notation

I begin by introducing the notation that I will use throughout this

chapter. Let F (i) denote a random variable that models a pixel at spatial

location i in the reference image. Similarly, let G(i) denote a random variable

that models the corresponding pixel from the test image. Let f̃(i) and g̃(i)

denote the reference and test images respectively. Define two sequences of

vectors f(i) and g(i) of dimension N , where f(i) is composed of N elements

of f̃(i) spanned by a window B1 and similarly for g(i). Thus, if the window

B1 is specified by a set of relative indices, then f(i) = {f̃(i + j), j ∈ B1}. To

index each element of f(i), I use the notation f(i) = [f1(i), f2(i), . . . , fN(i)]T .

Although the window B1 can be of any shape, in practice, it usually spans

a rectangular region of connected pixels. Consider the linear shift-invariant

filtering of f(i) and g(i) by a family of two-dimensional sub-band kernels, de-

noted h(i, k), where k indexes over each filter in the family. Let X(i, k) and

Y (i, k) denote random variables that model the coefficient at spatial location

i obtained by filtering the reference and test image patches with the kth filter

h(i, k) respectively. I will also be interested in random vectors defined by a col-

lection of these coefficients. Define the M -dimensional random vector X(i, k)

that contains M coefficients of X(i, k) spanned by a window B2. A similar

definition applies for Y(i, k). Let x̃(i, k) and ỹ(i, k) denote the coefficients of

the kth sub-band of the reference and test images, respectively. Finally, define

M dimensional vectors x(i, k) and y(i, k) that contain M coefficients of x̃(i, k)

and ỹ(i, k) spanned by B2 respectively, i.e. x(i, k) = {x̃(i + j, k), j ∈ B2} and
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similarly for y(i, k). I use similar notation to index each element of x(i, k) and

y(i, k), i.e. x(i, k) = [x1(i, k), x2(i, k), . . . , xM(i, k)]T etc.

3.2 Structural Similarity Metrics

3.2.1 The SSIM Index

A new philosophy for image QA based on the measurement of structural

information in an image was proposed in [15, 17], which has since received sig-

nificant visibility in the research community, in addition to widespread adop-

tion in the image and video industry. The SSIM philosophy attempts to avoid

the drawbacks of the traditional error sensitivity philosophy that motivated

many earlier HVS based QA models [1, 7, 10, 28, 38]. The structural similarity

paradigm hypothesizes that the visual quality of a given image is related to

the loss of structural information with respect to the reference [15, 17]. The

structure of objects in a scene is presumed to be independent of the illumina-

tion of the scene. Hence, the effects of illumination (luminance and contrast)

are ignored in defining the structural content of a scene. Since a QA index

is intended to predict human performance, the SSIM index tacitly assumes

that subjective evaluation can be separated into three corresponding tasks -

luminance comparison, contrast comparison and structure comparison. All of

these comparisons are carried out locally over image patches.

The luminance of an image patch f(i) is estimated as its mean intensity

µf(i) =
1

N

N
∑

j=1

fj(i)
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The contrast of an image patch is estimated as the standard deviation

of the patch

σ2
f(i) =

1

N

N
∑

j=1

(

fj(i) − µf(i)

)2
(3.1)

The luminance comparison function l[f(i),g(i)] and the contrast com-

parison function c[f(i),g(i)] between image patches f(i) from the reference

image and g(i) from the test image are then defined as

l[f(i),g(i)] =
2µf(i)µg(i) + C1

µ2
f(i) + µ2

g(i) + C1

(3.2)

c[f(i),g(i)] =
2σf(i)σg(i) + C2

σ2
f(i) + σ2

g(i) + C2

(3.3)

The constants C1, C2 are added to prevent numerical instability when

the denominators are small. The structure comparison is performed after nor-

malizing the image patches for mean luminance and contrast and the structure

comparison function s[f(i),g(i)] is given by

s[f(i),g(i)] =
σf(i)g(i) + C3

σf(i)σg(i) + C3

(3.4)

where the sample covariance between f(i) and g(i) is

σf(i)g(i) =
1

N

N
∑

j=1

(

fj(i) − µf(i)

) (

gj(i) − µg(i)

)

(3.5)

The sample standard deviation and covariance as defined in (3.1) and

(3.5) differ slightly from the original definition in [15]. The estimates in (3.1)

and (3.5) correspond to the moment estimates or the Maximum Likelihood
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(ML) estimates assuming a Gaussian distribution on the quantities [39], as

opposed to the unbiased estimates used in [15]. I have defined these terms here

with N in the denominator, as opposed to N−1, to avoid inconvenient notation

and better clarity of analysis. This modification does not affect estimates of

the quantities significantly. Finally, the SSIM index between image patches

f(i) and g(i) is defined as

SSIM[f(i),g(i)] = l[f(i),g(i)] . c[f(i),g(i)] . s[f(i),g(i)] (3.6)

The original metric based on structural similarity, known as the Uni-

versal Quality Index (UQI), is also defined by (3.6), with C1 = C2 = C3 = 0.

The constants C1, C2, C3 were included to stabilize the (renamed) SSIM index

to avoid instability when the denominators of the luminance, contrast and

structure comparison terms became too small. Although the SSIM index is

defined by three terms, the structure term in the SSIM index is generally re-

garded as the most important, since variations in luminance and contrast of

an image do not affect visual quality as much as structural distortions [17].

Moreover, most commonly occurring distortions (with the exception of expo-

sure correction) modify the local average luminance only slightly. Since I will

be dealing with the structure term of the SSIM index without the constant C3

repeatedly throughout this chapter, I use the following notation to describe

the normalized covariance or the structure term.

ρ̂[f(i),g(i)] =
σf(i)g(i)

σf(i)σg(i)

(3.7)
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The reason for this notation will be obvious from the discussion in

Section 3.2.2.

3.2.2 Probabilistic SSIM Index

I now describe the SSIM index in a probabilistic framework. First of all,

observe that ρ̂[f(i),g(i)] is the square root of the coefficient of determination

in a simple linear regression model between {fj(i), 1 ≤ j ≤ N} and {gj(i), 1 ≤

j ≤ N} [40]. Regression analysis assumes that the independent or regressor

variable (the reference pixels in my case) is controllable, while gj(i) are samples

of a random variable that I denote by G(i). However, since I am interested

in assessing the quality of any given image amongst infinite possibilities, it

would be fair to assume that the regressor is not controllable and that the

reference image pixels fj(i) are samples of a random variable F (i). Such

an assumption corresponds to correlation analysis [40] and ρ̂[f(i),g(i)] is the

ML estimate of the correlation coefficient between F (i) and G(i) under the

assumption that [F (i), G(i)] are jointly Gaussian. Based on this observation,

define a probabilistic SSIM index between random variables F (i) and G(i),

whose structure term is given by:

ρ[F (i), G(i)] =
Cov[F (i), G(i)]

√

Var[F (i)]
√

Var[G(i)]
(3.8)

which is the correlation coefficient between the random variables.

The distinction between the structure terms of the probabilistic SSIM

index defined by (3.8) and the sample SSIM index defined by (3.7) is quite
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significant. Notice that (3.7) coincides with the ML estimate of the correlation

coefficient only under the assumption that [F (i), G(i)] are jointly Gaussian.

In all other cases, the estimate of the correlation coefficient as defined by

(3.7) is inaccurate and does not incorporate any information regarding the

distribution of the reference image pixels. Additionally, note that the use of

the correlation coefficient in the SSIM index implies measurement of the degree

of linear dependence between the reference and test images as a measure of

visual quality.

3.2.3 Relation to MSE

In this section, I will relate the structure term in the SSIM index to

MSE. The MSE between image patches f(i) and g(i) is

MSE[f(i),g(i)] =
1

N

N
∑

j=1

[fj(i) − gj(i)]
2

Define normalized random variables

F ′(i) =
F (i) − E[F (i)]
√

Var[F (i)]
(3.9)

G′(i) =
G(i) − E[G(i)]
√

Var[G(i)]
(3.10)

where E stands for the expectation operator. Observe that:

E
{

[F ′(i) − G′(i)]2
}

= 2 {1 − ρ[F (i), G(i)]} (3.11)

It is straightforward to show that the relation (3.11) holds for the es-

timates of the correlation coefficient and MSE as well, assuming once again
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that [F (i), G(i)] are jointly Gaussian:

MSE

(

f(i) − µf(i)

σf(i)

,
g(i) − µg(i)

σg(i)

)

= 2

(

1 − σf(i)g(i)

σf(i)σg(i)

)

= 2[1 − ρ̂(f(i),g(i))] (3.12)

Thus, the structure term in the SSIM index essentially computes an

MSE between image patches, after normalizing them for their mean and stan-

dard deviations. This is not surprising in view of the fact that the structure

term of the SSIM index is defined to be independent of the mean and standard

deviation of the image intensity values. However, this observation would prove

valuable in optimizing image processing algorithms for the SSIM index, since

optimization with respect to MSE is a well studied and tractable problem.

Indeed, recent work studies optimization of de-noising and other algorithms

by minimizing the SSIM index between the de-noised and original images,

as opposed to traditional techniques that minimize the MSE between these

[41–44].

3.2.4 Relation to HVS Based Metrics

HVS based metrics use psychophysical measurements of the character-

istics of the vision system to compute visual quality [38]. QA models based on

the HVS are, in general, rather elaborate and model several different aspects of

the HVS such as luminance masking, contrast sensitivity and resolution drop-

off with eccentricity, as well as aspects of viewing conditions such as viewing

distance and display device characteristics. Here, I only consider modeling
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of the contrast masking property of the HVS. Specifically, I show that the

structure term of the SSIM index is equivalent to certain contrast masking

models of the HVS. Contrast masking refers to the reduction in visibility of a

signal component due to the presence of another signal component of similar

frequency and orientation in a local spatial neighborhood. In the context of

IQA, the presence of large signal energy in the image content (masker) masks

the visibility of noise or distortions (target) in these regions.

Contrast masking has been modeled in a variety of ways in the litera-

ture. The Daly model uses a threshold elevation approach to model contrast

masking [10]. Threshold elevation refers to the difference in contrast at which

an observer is able to distinguish between a masker of a certain contrast and

a signal plus masker, when both signals are identical except for their con-

trast. Threshold elevation has been studied extensively [45–47] and models

obtained therein are used to normalize the differences between the reference

and test signal. The disadvantage of a threshold elevation approach is that

it is less suitable in the case of supra-threshold distortions, although it works

very well in predicting whether an observer can simply discriminate between

the reference and test images.

Contrast masking has also been modeled using contrast gain control

models, which generalize better to supra-threshold distortions. Gain control

models a mechanism that allows a neuron in the HVS to adjust its response

to the ambient contrast of the stimulus, thereby keeping the neural responses

within their permissible dynamic range [48]. The contrast response function,
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which relates the response of a neuron to the input contrast, is modeled using

a non-linear function that is expansive at lower contrasts and compressive

at high contrasts [12, 49–52]. This model usually takes the form of a divisive

normalization, where the response of a neuron has an accelerating nonlinearity,

but is also inhibited divisively by the response of a local pool of neurons plus a

saturation constant. It has been suggested that divisive normalization results

in efficient encoding since it eliminates the statistical dependencies that are

present when typical natural images are decomposed using linear filters [52].

The saturation constant determines the range of contrasts that the neuron is

responsive to and is important for a number of reasons. First of all, it prevents

division by zero. Secondly, there is a range of very low masking contrasts (lower

than the threshold of detection of the stimulus) for which the masker has little

or no effect in detecting the target. In fact, several studies report that when

the contrast is close to the threshold of detection of the target, the presence

of a mask may in fact facilitate the detection of the target [45, 47, 50]. The

saturation constant explains the response in this regime where the masker

contrast is close to the baseline contrast sensitivity threshold.

Different models for contrast gain control exist in the literature that

share similar properties as outlined above. For brevity, I only discuss some

models that have been used in the IQA framework. HVS based metrics typi-

cally decompose the image using a linear sub-band decomposition, and mask-

ing is modeled in the sub-band decomposed domain. Teo and Heeger [12] use

the following gain control model to define the response R[x̃(i, k)] of a neuron
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with input x̃(i, k):

R[x̃(i, k)] = κ
x̃(i, k)2

∑

k∈K1
x̃(i, k)2 + C

(3.13)

Here, κ and C restrict the dynamic range of the response and C is a

saturation constant. Summation over the sub-bands in the denominator is

only carried out over those sub-bands with the same frequency, but different

orientations. A related model has also been proposed by Watson et. al. in

[51].

Safranek and Johnson [53] use the following normalization:

R[x̃(i, k)] =
x̃(i, k)

max{1,
[
∑

k∈K2
αkx̃(i, k)

]γ}

where αk are weights determined based on HVS measurements and γ is a con-

stant. In this model, summation over the sub-bands in the denominator is

carried out over all sub-bands except the DC band. Instead of an additive sat-

uration constant, the Safranek-Johnson model uses the maximum to account

for low signal contrast regions.

Lubin [7] uses a sigmoid nonlinearity to model masking:

R[x̃(i, k)] =
|x̃(i, k)|

1 + κ|x̃(i, k)|α + |x(i, k)|γ

where κ,α,γ are constants.

It is evident that the definition of the normalized variables in (3.9),(3.10)

is very similar to divisive normalization models of contrast gain control in HVS
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based metrics. The SSIM contrast masking model can be defined by:

R[fj(i)] =
fj(i) − µf(i)

√

1
N

∑N

j=1

[

fj(i) − µf(i)

]2
(3.14)

HVS based QA systems compute a Minkowski error between the out-

puts of the contrast gain control model (as well as models of other aspects of

the HVS incorporated in QA) to the reference and test image patches as an

index of quality, often with a Minkowski exponent of 2 [7, 12, 38]. Similarly,

observe that the structure term of SSIM in (3.11) is a monotonic function of

the square of the Minkowski error between the outputs of the SSIM contrast

gain control model in (3.14) with exponent 2.

Relating the SSIM metrics to contrast masking models used in HVS

based QA algorithms provides insights on the need for the constant C3 in the

denominator of (3.4). C3 is added to the numerator of (3.4) only to ensure

that the structure term is always bounded to lie between 0 and 1 and is

not as important as the constant in the denominator. C3 in SSIM plays a

similar role as the saturation constants in HVS based metrics, since contrast

masking effects are minimal in low signal energy regions. This is the reason

that the performance of the SSIM index is superior to the UQI index, as

demonstrated in [15]. I could define the contrast gain control model with a

saturation constant as

R[fj(i)] =
fj(i) − µf(i)

√

1
N

∑N

j=1

[

fj(i) − µf(i)

]2
+ κ

(3.15)
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Using this gain control model to compute the MSE between normalized

variables, as opposed to (3.12), yields

MSE
{

R[f(i)], R[g(i)]
}

=
σ2

f(i)

(σf(i) + κ)2
+

σ2
g(i)

(σg(i) + κ)2
− 2

σf(i)g(i)

(σf(i) + κ)(σg(i) + κ)
(3.16)

Note that the the constant κ in (3.16) plays the same role as C3 in

(3.4). The choice of adding C3 to the product of σf(i) and σg(i) was made by

the designers of the SSIM index to account for the observed effects of instability

in low signal energy regions. They may as well have chosen to add a constant κ

to each of σf(i) and σg(i) separately to account for the same observation, which

would have been more consistent with a contrast gain control normalization.

The effect of κ is to saturate the contrast masking normalization at low signal

energy regions, i.e., when σf(i), σg(i) u κ.

The divisive normalization performed by SSIM has several interesting

interpretations. The SSIM index uses the standard deviation in a local spatial

neighborhood to model inhibition with the mean intensity of the signal fixed

at zero, since the mean of the signal is subtracted in the numerator. The

use of the standard deviation is related to the definition of the Root Mean

Squared (RMS) contrast of an image patch. Indeed, the RMS contrast is

defined as the ratio of the sample standard deviation of the intensities to the

sample mean. The RMS contrast is generally considered a better measure of

contrast for natural images than the bandpass contrast measure that is used

in many HVS based models, including the Daly and Lubin models [54, 55].

Additionally, this normalization is consistent with recent studies of the gain
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control mechanism in the Lateral Geniculate Nucleus (LGN) of cats that show

that the gain of a neuron is set by the standard deviation of the intensity values

when the mean is fixed [56]. In other words, the measure of contrast that is

used by the contrast gain control mechanisms is, in fact, the RMS contrast

of the stimulus. Experiments reveal that changes in gain entirely counteract

changes in standard deviation, and dividing the standard deviation by a factor

multiplies the gain by the same factor [56]. Thus, although the SSIM index

was derived from very different first principles, at least part of the reasons for

its success can be attributed to similarities it shares with models of the HVS.

Of course, I make no claims regarding the suitability of (3.14) as a model for

contrast gain control in the HVS. The purpose of this discussion has simply

been to draw parallels between the SSIM index and traditional HVS based

quality metrics.

3.2.5 Discussion

In this section, I discussed the similarities between the SSIM index and

more traditional approaches to QA: MSE and HVS based metrics. I first gen-

eralized the concept of structural similarity by defining a probabilistic SSIM

index that is “aware” of the underlying statistical distributions of the refer-

ence and test pixels. I showed that the structure term of the SSIM index is

equivalent to the MSE between the variables after normalizing for their mean

and variances. A different relation between SSIM and the MSE between the

original variables (f(i) and g(i)) has been reported [57]. My analysis describes
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the relation between SSIM and the MSE between normalized variables, a dis-

tinction that is significant since I attempt to cast the role of this normalization

as accounting for contrast masking effects in the HVS.

I also showed that the structure term in the SSIM index is similar

to certain models of contrast gain control mechanisms in the HVS. Such an

interpretation explains the need for the constants in the definition of the SSIM

index. The constants cause saturation of neuronal responses when the contrast

of the image is very small and masking effects do not occur. The need for this

constant is not explained adequately in the current design philosophy of the

SSIM index [15] since the only explanation provided is that it helps avoid

numerical instabilities. It has been previously observed that the standard

deviations of the reference and test image patches in the denominator of (3.7)

reflect masking and that the constant C3 attempts to account for visibility

of distortions when these standard deviations are small [58]. However, the

study in [58] was not supported by any analysis. My analysis supports these

observations and explicitly links SSIM and contrast masking models.

It is important to note that the SSIM indices perform the gain control

normalization in the image pixel domain. However, contrast masking in the

HVS is a phenomenon that occurs in a frequency-orientation decomposed do-

main. For example, the masking effect is maximum when the orientation of

the masker and the target are parallel and decreases when their orientations

are perpendicular [59]. Many divisive normalization models can account for

this behavior, since divisive normalization is modeled after decomposition us-
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ing linear filters that are frequency and orientation selective. Thus, the pool

of inhibitory neurons include the outputs of linear filters at different orienta-

tions and the suppressive weights of neuronal responses in the divisive pool are

higher when their orientation is close to the orientation of the neuron whose re-

sponse is being modeled and lower when the orientation is orthogonal [52, 53].

However, the SSIM metric will not be able to account for such effects. The

analysis here suggests that applying the SSIM index in the sub-band filtered

domain would result in better performance. Improved versions of the SSIM

index that use such frequency decomposition have been proposed [18, 19] and

my analysis of the SSIM index within a contrast gain control framework helps

us understand the reasons for the improved performance of these metrics. The

Complex Wavelet SSIM (CW-SSIM) proposed in [19] operates in a scale-space

decomposed space, although CW-SSIM was designed for affine invariance. The

Multi-Scale SSIM (MS-SSIM) index also decomposes the image into different

scales and calibrates the relative importance of different scales to produce an

improved SSIM index [18]. However, the decomposition used in MS-SSIM is

limited since it uses a simple low pass filtering (using an average filter) and

downsampling procedure. This does not achieve a true frequency and orien-

tation decomposition that is required to explain the masking effects in human

vision discussed above. In Section 3.3, I discuss the close relation between the

information theoretic metrics and multi-scale structural similarity models.

Interestingly, the square of the response of the SSIM contrast gain

control model defined by (3.14) is equal to the response of the Teo and Heeger
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gain control model defined by (3.13) with κ = N and C = 0, if the same

inhibitory pool of neurons is used. This assumes that the coefficients obtained

by decomposing the image using a filter bank are zero mean, which is usually

true of all sub-bands except the DC band [21, 23].

I briefly discuss the other two terms in the SSIM index - namely the

luminance and contrast comparison terms. The SSIM index defines the con-

trast term using the standard deviation of the pixel values. A more standard

definition of contrast, namely the RMS contrast, is defined as the ratio of the

standard deviation to the mean of the pixel values. I believe that the contrast

comparison term could be better defined using RMS contrast as

c[f(i),g(i)] =
2
(

σf(i)

µf(i)

) (

σg(i)

µg(i)

)

+ C2

(

σf(i)

µf(i)

)2

+
(

σg(i)

µg(i)

)2

+ C2

(3.17)

It has been found that the luminance and RMS contrast of natural

images are statistically independent and that the adaptive gain control mech-

anisms in the HVS for luminance and contrast operate independently of each

other [55]. Comparing the luminance and the standard deviation separately

in the SSIM index will result in dependencies between these comparisons that

are eliminated by using the RMS contrast instead of the standard deviation.

Using (3.2) and (3.17) for luminance and contrast comparison would agree

both with the statistics of natural scenes and with HVS processing of natural

images. I refer to this modification of the SSIM index as the RC-SSIM (RMS

contrast SSIM) index.
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Luminance and contrast gain control allows neuronal mechanisms to

adjust to the ambient levels of luminance and contrast [55, 60, 61]. Contrast

gain control is particularly important in QA since it accounts for masking

effects that affect the visibility of distortions in an image. However, in addition

to masking, the visibility of these ambient levels of luminance and contrast or

the ambient illumination needs to be accounted for. To illustrate this effect,

Fig. 3.1 shows a reference image patch and several distorted patches, obtained

by multiplying the reference patch by a constant and adding white Gaussian

noise. The correlation coefficient and the RMS contrast of Fig. 3.1(c) and

3.1(e) have been adjusted to be identical. However, the mean luminance of

Fig. 3.1(c) is lower than that of Fig. 3.1(e). Clearly, the visual quality of

the two patches are different. Similarly, the correlation coefficient and the

mean luminance of Fig. 3.1(d) and 3.1(f) have been adjusted to be identical.

However, the RMS contrast of Fig. 3.1(d) is lower than that of Fig. 3.1(f).

Again, the difference in visual quality is obvious. The luminance and contrast

comparison terms of the SSIM index explain such changes in illumination,

although the structure term lies at the heart of the success of the SSIM index in

predicting visual quality. For illustrative purposes, I have used image patches

that are far bigger than the 11 × 11 patches that are used to compute the

SSIM index in [15]. Such global changes in illumination result in rather drastic

changes in visual quality, while the effect is less pronounced in smaller patches.

Global illumination changes occur in contrast enhancement and brightness

correction, and are not typical of commonly occurring distortions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Illustration of the need for the luminance and contrast comparison
terms.
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3.3 The Information Theoretic Metrics

3.3.1 The IFC and VIF Indices

3.3.1.1 The Information Fidelity Criterion

In the information theoretic approach to QA, the test image is assumed

to be the result of the reference image passing through a distortion channel,

and its visual quality is hypothesized to be related to the capacity of this com-

munication channel [24, 37]. The sub-band filtered coefficients of the reference

image are modeled as random variables using natural scene statistic models.

The preliminary version of the information theoretic framework, known as the

Information Fidelity Criterion (IFC) [24], uses the scalar Gaussian Scale Mix-

ture (GSM) model [62, 63] and each scalar coefficient is modeled as a random

variable:

X(i, k) = Z(i, k)U(i, k)

where Z(i, k) is a random gain field also known as the mixing density and

U(i, k) is assumed to be an Additive White Gaussian Noise (AWGN) field of

unit variance. The distortion channel is modeled as

Y (i, k) = β(i, k)X(i, k) + V (i, k)

where β(i, k) is the deterministic channel gain and V (i, k) is AWGN of vari-

ance σv(i, k)2. V (i, k) and X(i, k) are assumed to be independent. A nice

property of the GSM model that makes it analytically tractable is that X(i, k)

is normally distributed when conditioned on Z(i, k). This fact is used in the

development of the IFC index which is defined as the capacity of the dis-

tortion channel, when conditioned on Z(i, k). Thus, the IFC index between
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X(i, k) and Y (i, k) is defined as the mutual information between these random

variables conditioned on Z(i, k) [64]:

IFC[X(i, k), Y (i, k)] = I[X(i, k), Y (i, k)|Z(i, k)]

=
1

2
log2

(

β(i, k)2Z(i, k)2 + σv(i, k)2

σv(i, k)2

)

(3.18)

Although the analysis of the IFC index in [24] uses the scalar GSM

model, the actual implementation uses the more sophisticated vector GSM

model [21, 23] to model the distribution of vectors of coefficients obtained

from a sub-band decomposition of an image. The vector model improves over

the scalar model since it does not make the poor assumption that wavelet

coefficients at adjacent locations, scales and orientations are uncorrelated and

models the correlations between these coefficients. The generic GSM model

defines a probabilistic model for a vector of coefficients that contains a given

coefficient and a collection of its neighbors at adjacent spatial locations, ori-

entations and scales [23]. However, the IFC index uses a simpler model where

each sub-band is treated independently and a vector of coefficients is defined

as a given coefficient in a sub-band and a collection of its spatially adjacent

neighbors in the same sub-band. Such a collection is identical to the vector

X(i, k) defined in Section 3.1 obtained by applying a window on each sub-band.

The GSM model for such a vector is defined by:

X(i, k) = Z(i, k)U(i, k) (3.19)

Here, Z(i, k) is a scalar multiplier and U(i, k) is a zero mean Gaussian random

vector with covariance matrix CU(k). Since CU(k) is a positive definite covari-

45



ance matrix, it has an eigen decomposition given by CU(k) = Q(k)Λ(k)Q(k)T .

Λ(k) is a diagonal matrix containing the eigen values {λj(k), 1 ≤ j ≤ M} of

CU(k) and Q(k) is an orthogonal matrix. The distortion channel is given by

Y(i, k) = β(i, k)X(i, k) + V(i, k) (3.20)

Again, β(i, k) is a deterministic gain and V(i, k) is a zero mean AWGN vector

with covariance matrix σv(i, k)2I. V(i, k) and X(i, k) are assumed to be inde-

pendent. Then, the vector IFC index, where the subscript v is used to denote

the vector metric, is given by

IFCv[X(i, k),Y(i, k)] = I[X(i, k),Y(i, k)|Z(i, k)] (3.21)

=
1

2
log2

( |β(i, k)2Z(i, k)2CU(k) + σv(i, k)2I|
|σv(i, k)2I|

)

(3.22)

|I| denotes the determinant of a matrix I.

3.3.1.2 The Visual Information Fidelity Criterion

Although the VIF index uses the vector GSM model, I first describe

the scalar version of the VIF metric since understanding this metric will prove

useful in analyzing the vector model. The VIF model also uses a more sophis-

ticated distortion model. In addition to the gain and additive noise distortion

channel, the HVS is itself modeled as a distortion channel that both the ref-

erence and distorted images pass through.

Y (i, k) = β(i, k)X(i, k) + V (i, k) + W (i, k) (3.23)

T (i, k) = X(i, k) + W (i, k) (3.24)
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Here, W (i, k) is an AWGN field that has a constant variance κ for all sub-bands

and models the “neural noise” in HVS. W (i, k) is assumed to be independent

of X(i, k) and N(i, k). T (i, k) is the output of the HVS channel that the

reference image passes through. The visual quality of the test image is then

defined as the ratio of the capacity of the test channel to that of the reference

image channel. Hence, the VIF index VIF[X(i, k), Y (i, k)] is given by

VIF[X(i, k), Y (i, k)] =
I[X(i, k), Y (i, k)|Z(i, k)]

I[X(i, k), T (i, k)|Z(i, k)]

I[X(i, k), Y (i, k)|Z(i, k)] =
1

2
log2

(

β(i, k)2Z(i, k)2 + σv(i, k)2 + κ

σv(i, k)2 + κ

)

(3.25)

I[X(i, k), T (i, k)|Z(i, k)] =
1

2
log2

(

Z(i, k)2 + κ

κ

)

(3.26)

I will now describe the vector VIF model. Modeling of the reference image

coefficients is identical to the vector GSM model.

X(i, k) = Z(i, k)U(i, k) (3.27)

The distortion channels are given by

Y(i, k) = β(i, k)X(i, k) + V(i, k) + W(i, k) (3.28)

T(i, k) = X(i, k) + W(i, k) (3.29)

Here, W(i, k) is a zero mean AWGN vector that models the HVS with co-

variance matrix κI. W(i, k) is assumed to be independent of X(i, k) and

N(i, k). T(i, k) is the output of the HVS channel that the reference image
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passes through. The vector VIF index is subsequently given by

VIFv[X(i, k),Y(i, k)] =
I[X(i, k),Y(i, k)|Z(i, k)]

I[X(i, k),T(i, k)|Z(i, k)]

I[X(i, k),Y(i, k)|Z(i, k)] =
1

2
log2

( |β(i, k)2Z(i, k)2CU(k) + (σv(i, k)2 + κ)I|
|(σv(i, k)2 + κ)I|

)

(3.30)

=
1

2

M
∑

j=1

log2

(

1 +
β(i, k)2Z(i, k)2λj(k)

σv(i, k)2 + κ

)

(3.31)

I[X(i, k),T(i, k)|Z(i, k)] =
1

2
log2

( |Z(i, k)2CU(k) + κI|
|κI|

)

(3.32)

=
1

2

M
∑

j=1

log2

(

1 +
Z(i, k)2λj(k)

κ

)

(3.33)

3.3.2 Relation of IFC to SSIM

3.3.2.1 Scalar Model

In this section, I explore the relation between the IFC metric and SSIM.

First of all, the GSM model used in the information theoretic metrics results in

the sub-band coefficients being Gaussian distributed, when conditioned on the

mixing density. The linear distortion channel model results in the reference

and test image being jointly Gaussian. Recall that this was the assumption

made in defining the structure term of the SSIM index using the correlation

coefficient in Section 3.2.1. These observations hint at the possibility that the

IFC index may be closely related to SSIM. Having established a monotonic

relationship between these metrics, I discovered that it is a well known result

in the field of statistical inference and information theory. When two variables

are jointly Gaussian, the mutual information between them is a function of
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just the correlation coefficient [65, 66]. Due to the source and channel model

assumptions described in Section 3.3.1.2, [X(i, k),Y(i, k)] are jointly Gaussian

when conditioned on Z(i, k). Hence, the following relation holds [65].

I[X(i, k),Y(i, k)|Z(i, k)] =
1

2
log2

(

1

1 − ρ[X(i, k), Y (i, k)|Z(i, k)]2

)

(3.34)

I will now show that the relation (3.34) holds for the estimates of these

quantities as well; in other words, that the IFC index in [24] and the structure

term of the SSIM index in [15] satisfy the same relation. The computation

of the IFC index as described by (3.18) depends on the way the parameters

Z(i, k) and β(i, k) are estimated. The sample IFC index is defined using

estimates of these parameters in (3.18). To obtain estimates of Z(i, k) and

β(i, k), a local neighborhood of coefficients surrounding the spatial location i is

considered [24]. In the IFC framework, each sub-band is treated independently

and hence, a local neighborhood is extracted by considering coefficients in the

same sub-band at adjacent spatial locations [24]. Consistent with my earlier

notation, I denote this local neighborhood extracted using a window B2 as

x(i, k) = [x1(i, k), x2(i, k), . . . , xM(i, k)]T for the reference image coefficients

and y(i, k) = [y1((i, k), y2(i, k), . . . , yM(i, k)]T for the test image. Let Ẑ(i, k)

denote an estimate of Z(i, k) and similarly for β̂(i, k). Now, if I assume that

both parameters are estimated using the same window B2, the ML estimate

of Ẑ(i, k) is given by [62, 63]

Ẑ(i, k)2 =
1

M

M
∑

j=1

xj(i, k)2 = σ2
x(i,k) (3.35)
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Here, (3.35) follows from the fact that the sub-band coefficients are

assumed to be zero-mean. The least squares estimate of β̂(i, k) and the noise

variance are obtained using linear regression [24].

β̂(i, k) =
σx(i,k)y(i,k)

σ2
x(i,k)

(3.36)

σ̂v(i, k)2 = σ2
y(i,k) − β̂(i, k)σx(i,k)y(i,k) (3.37)

= σ2
y(i,k) −

σ2
x(i,k)y(i,k)

σ2
x(i,k)

(3.38)

Finally, substituting the estimates from (3.35) and (3.36) into (3.18),

it follows that the sample IFC index is given by

IFC[x(i, k),y(i, k)] =
1

2
log2







1

1 −
[

σx(i,k)y(i,k)

σx(i,k)σy(i,k)

]2







=
1

2
log2

(

1

1 − ρ̂[x(i, k),y(i, k)]2

)

(3.39)

Thus, the IFC index at a location in a sub-band is a monotonic function

of the square of the structure term of the SSIM index (defined by (3.7)) com-

puted at the same location in the same sub-band, as long as the window used

in both metrics for estimation purposes are identical. The IFC index is applied

in the sub-band filtered domain and is better able to account for the contrast

masking properties of the HVS than SSIM (see discussion in Section 3.2.5) and

is very closely related to the multi-scale SSIM index in [18]. In fact, my anal-

ysis shows that if the same frequency decomposition and estimation windows

are used in IFC and multi-scale SSIM, the local quality indices obtained using

both metrics would be equivalent due to the monotonic relationship described
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by (3.39). However, note that no saturation constant appears in (3.39) and

therefore, the IFC index will suffer from instability issues in regions where the

signal energy in a sub-band is very low, similar to the UQI index. The discus-

sion in Section 3.3.3 will show that the VIF index attempts to compensate for

this deficiency.

In the original implementation of the IFC, the estimation windows used

for Ẑ(i, k) and β̂(i, k) are both square [24]. However, the size of the window

used in estimating the regression coefficients is bigger than that used to esti-

mate the GSM parameter [24]. My analysis assumes that the same window is

used in estimating both these parameters. Since the choice of window used in

[24] is arbitrary, this is a minor modification of the original framework which

does not significantly alter the resulting sample IFC index.

3.3.2.2 Vector Model

I now consider the vector IFC model and explore its relation to the

SSIM index. The vector GSM models the joint distribution of vectors of coef-

ficients from the reference image. Thus, the SSIM index needs to be generalized

to the case of vector valued random variables by generalizing the definition of

the correlation coefficient. In the theory of multi-variate statistical analysis,

this is accomplished using canonical correlation analysis [67, 68]. Canonical

correlation analysis attempts to find linear combinations of variables in each

vector that have maximum correlation. Then, a second set of linear com-

binations is sought such that the correlation between these is the maximum
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between all linear combinations that are uncorrelated with the first linear

combination, and so on. The canonical correlation coefficients are invariant

to linear transformations of the sets of variables. In this section, I explore

a natural extension of the notion of the probabilistic SSIM index defined in

Section 3.2.2 to vector valued random variables using canonical correlation

analysis. I then show that the vector IFC index and the canonical correlation

coefficients satisfy a monotonic relationship, thus establishing the equivalence

between vector models of the structural similarity and information theoretic

paradigms of image QA.

Under the distortion model specified by (3.20) that causes [X(i, k),Y(i, k)]

to be jointly Gaussian when conditioned on Z(i, k), the mutual information be-

tween these random vectors is related to the canonical correlation coefficients

[65]:

I(X(i, k),Y(i, k)|Z(i, k)) =
1

2

M
∑

j=1

log2

(

1

1 − ρj[X(i, k),Y(i, k)|Z(i, k)]2

)

(3.40)

where ρj[X(i, k),Y(i, k)|Z(i, k)] are the canonical correlation coefficients be-

tween these variables.

Once again, it is straightforward to show that the relation (3.40) holds

for the estimates of these quantities as well. The sample IFC index is com-

puted using estimates Ẑ(i, k), ĈU(k), β̂(i, k) and σ̂v(i, k) of the corresponding

quantities in (3.21).

The ML estimates of Ẑ(i, k) and ĈU(k) used in the IFC index are given
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by [21, 23, 37]:

ĈU(k) =
1

L(k)

∑

i∈A(k)

x(i, k)x(i, k)T (3.41)

Ẑ(i, k)2 =
x(i, k)T ĈU(k)−1x(i, k)

M
(3.42)

where A(k) is a set containing the spatial location indices of all vectors in

sub-band k, and L(k) is the cardinality of A(k). Let ĈU(k) have an eigen

decomposition given by ĈU(k) = Q̂(k)Λ̂(k)Q̂(k)T . Λ̂(k) is a diagonal ma-

trix containing the eigen values {λ̂j(k), j = 1, 2, . . . M} of ĈU(k) along the

diagonal.

Since [X(i, k),Y(i, k)] are jointly Gaussian when conditioned on Z(i, k),

the estimates of β̂(i, k) and σ̂v(i, k)2 obtained using linear regression in [37]

coincide with the ML estimates of these quantities. The estimates are given

by the expressions in (3.36) and (3.37). Then, the sample IFC index is given

by:

IFCv[x(i, k),y(i, k)] =
1

2

M
∑

j=1

log2

(

1 +
β̂(i, k)2Ẑ(i, k)2λ̂j(k)

σ̂v(i, k)2

)

(3.43)

Now, I consider estimation of the canonical correlation coefficients.

This requires estimates of the covariance matrices of X(i, k) and Y(i, k) con-

ditioned on Z(i, k) which I denote as ĈXX(i, k) and ĈYY(i, k), as well as the

cross covariance matrix between X(i, k) and Y(i, k) conditioned on Z(i, k)

denoted as ĈXY(i, k) [68]. Under the GSM model, the reference image coeffi-

cients are distributed as zero mean Gaussian random vectors with covariance
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matrix Z(i, k)2CU(k) when conditioned on the mixing field Z(i, k). Replacing

Z(i, k)2 and CU(k) with their ML estimates gives

ĈXX(i, k) = Ẑ(i, k)2ĈU(k) (3.44)

where the quantities on the RHS are defined by (3.41) and (3.42). Under

the assumption that the test image coefficients Y(i, k) are described by the

linear distortion model in (3.28), Y(i, k) is distributed as a zero mean Gaus-

sian random vector with covariance matrix β(i, k)2Z(i, k)2CU(k) + σv(i, k)2I

when conditioned on Z(i, k). The cross covariance matrix between X(i, k) and

Y(i, k) is β(i, k)Z(i, k)2CU(k). Replacing β(i, k),σv(i, k),Z(i, k)2 and CU(k)

with their ML estimates yields

ĈYY(i, k) = β̂(i, k)2Ẑ(i, k)2ĈU(k) + σ̂v(i, k)2I (3.45)

ĈXY(i, k) = β̂(i, k)Ẑ(i, k)2ĈU(k) (3.46)

where (3.36) and (3.37) give estimates of the other quantities in the RHS.

The squares of the canonical correlation coefficients ρ̂j(i, k)2 are then

the eigen values of the matrix Σ given by [68]:

Σ = ĈXY(i, k)ĈYY(i, k)−1ĈXY(i, k)ĈXX(i, k)−1 (3.47)

Using the eigen value decomposition of ĈU(k) given by Q̂(k)Λ̂(k)Q̂(k)T ,

the canonical correlation coefficients are found to be

ρ̂j(i, k)2 =
β̂(i, k)2Ẑ(i, k)2λ̂j(k)

β̂(i, k)2Ẑ(i, k)2λ̂j(k) + σ̂v(i, k)2
, j = 1, 2, . . . ,M (3.48)
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This yields the monotonic relationship between the vector IFC index

and estimates of the squares of the canonical correlation coefficients:

IFCv[x(i, k),y(i, k)] =
1

2

M
∑

j=1

log2

(

1

1 − ρ̂j(i, k)2

)

(3.49)

Observe that I computed estimates of the canonical correlation coeffi-

cients between the reference and test image coefficient vectors, assuming that

the reference image coefficients can be described using the GSM model in

(3.19) and that the coefficients of the distorted image are described by (3.20).

Hence, I have proved that the vector IFC index is equivalent to the (newly

defined) probabilistic vector SSIM philosophy if the same models are used to

describe the distributions of the reference and test image coefficients in both

QA systems.

3.3.3 Relation of VIF to SSIM

In this section, I explore the relation of the VIF index to SSIM. From

the definition of the VIF index in Section 3.3.1.2, it is apparent that the

chief distinction between the IFC and VIF indices is the normalization by the

information in the reference image channel in VIF. The distortion channel that

the test image passes through in VIF is very similar to the channel in IFC, and

the only difference is the addition of a noise component that models human

visual processing. I make use of these observations in my analysis of the VIF

index below.
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3.3.3.1 Scalar Model

The method of estimating Ẑ(i, k) in the scalar VIF model is identical

to the IFC and is described by (3.35). The VIF distortion model is given by

(3.23), which consists of a deterministic gain β(i, k) and AWGN V (i, k). The

estimates of the gain β̂(i, k) and the noise variance σ̂v(i, k)2 are also unchanged

from the IFC index and are given by (3.36) and (3.37). The one additional

parameter in this model, namely the variance of the HVS noise κ, was hand

optimized in [37]. This value is chosen to be 0.1 for all sub-bands, i.e. κ =

0.1 for all k.

Substituting from (3.35),(3.36) and (3.37) into (3.25) and (3.26), the

sample VIF index can be rewritten as

VIF[x(i, k), y(i, k)] =

log

[

1 − ρ̂[x(i, k),y(i, k)]2
(

σ2
y(i,k)

σ2
y(i,k)

+κ

)]

log

[

1 −
(

σ2
x(i,k)

σ2
x(i,k)

+κ

)] (3.50)

Notice that when σ2
x(i,k) is very small, the constant κ dominates the

expression in (3.50). I plot the VIF index as a function of σ2
x(i,k) in Fig. 3.2,

with ρ̂[x(i, k),y(i, k)] = 0.5, σ2
y(i,k) = σ2

x(i,k) and κ = 0.1 as in [37]. The VIF

index has large values for very small values of σ2
x(i,k) and this accounts for

masking effects in low signal energy regions. Thus, the VIF index attempts

to compensate for the lack of a saturation constant in the IFC, which was

a drawback of the IFC that was observed in Section 3.3.2.1. The constant

κ determines the knee of this curve, and the variance of the reference image
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coefficients below which the VIF index attempts to compensate for masking

effects as discussed in Section 3.2.4.

The VIF index includes a structure comparison term ρ̂[x(i, k),y(i, k)]),

and a contrast comparison term (due to the appearance of functions of σ2
y(i,k)

and σ2
x(i,k) in the numerator and denominator respectively), similar to the SSIM

index. One of the properties of the VIF index observed in [37] was the fact

that it can predict improvement in quality due to contrast enhancement. My

analysis of the VIF index explains this effect since the correlation coefficient

between a contrast enhanced image and the reference image is 1. The VIF

index is > 1 in this case since σy(i,k) > σx(i,k) and the contrast comparison in

VIF is not symmetric, unlike the contrast comparison in SSIM. Finally, the

VIF index avoids certain numerical instabilities that occur in the IFC, since

the IFC goes to ∞ as ρ̂[x(i, k),y(i, k)] goes to 1. The use of the constant κ in

(3.50) ensures that the VIF index is 1 when the reference and test image are

identical.
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Figure 3.2: Plot of the VIF index as a function of σ2
x(i,k)

To better understand the role of these constants, i.e. C3 in SSIM and
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κ in VIF, I perform a sensitivity analysis of SSIM and VIF with respect to

the constants. I denote the sensitivity of the structure term of the SSIM index

with respect to C3 as PSSIM(C3) and characterize it using partial derivatives

as

PSSIM(C3) =
∂s[f(i),g(i)]

∂C3

(3.51)

=
σf(i)σg(i) − σf(i)g(i)

(σf(i)σg(i) + C3)2
(3.52)

Firstly, I observe that the sensitivity is maximum when C3 = 0, when

the SSIM index reduces to the UQI index. The sensitivity is plotted as a

function of C3 and σf(i)σg(i), when the correlation coefficient ρ̂[f(i),g(i)] equals

0.5 in Fig. 3.3. The sensitivity of the SSIM index to the constant is high when

both C3 and σf(i)σg(i) are close to 0. This is not surprising in view of the fact

that the constant was added in the SSIM index to avoid numerical instabilities

when σf(i)σg(i) becomes very close to 0. However, the sensitivity of SSIM

rapidly decreases toward zero as C3 is increased, effectively demonstrating the

stabilizing influence of this constant. This is highly desirable as sensitivity

near 0 implies that the index does not change significantly as the constant

changes.

Denoting the sensitivity of VIF with respect to κ using PVIF(κ), I have

58



PVIF(κ) =
∂VIF[x(i, k),y(i, k)]

∂κ
(3.53)

=

log

(

κ
σ2
x(i,k)

+κ

)[

ρ̂[x(i,k),y(i,k)]2σ2
y(i,k)

[σ2
y(i,k)

(1−ρ̂[x(i,k),y(i,k)]2)+κ][σ2
y(i,k)

+κ]

]

[

log

(

κ
σ2
x(i,k)

+κ

)]2 (3.54)

−
log

(

1 − ρ̂[x(i,k),y(i,k)]2σ2
y(i,k)

σ2
y(i,k)

+κ

)[

σ2
x(i,k)

κ(σ2
x(i,k)

+κ)

]

[

log

(

κ
σ2
x(i,k)

+κ

)]2 (3.55)

The sensitivity of VIF is plotted in Fig. 3.4 as a function of σ2
x(i,k) and

κ, with σ2
y(i,k) = 1 and ρ̂[x(i, k),y(i, k)] = 0.5. It can be verified that the

sensitivity of VIF goes to 0 as σ2
x(i,k) goes to ∞. However, using L’Hospital’s

rule, it is seen that the sensitivity of VIF goes to ±∞ as σ2
x(i,k) goes to 0 even if

κ 6= 0 . The sign depends on the values of κ, ρ̂[x(i, k),y(i, k)] and σ2
y(i,k). Thus,

the VIF index is unstable when the variance of the reference image coefficients

is very small, and the constant κ does not assist in stabilizing the index in this

region.

It is interesting to note the similarities between the sensitivities of SSIM

and VIF. The sensitivity of both indices goes to zero as the variance of the ref-

erence image pixels (in SSIM)/coefficients (in VIF) goes to ∞. The sensitivity

of both indices to the constant is higher in regions of very low signal energy.

Both these observations are qualitatively consistent with my interpretation of

the role of the constants, which is to account for masking effects in low signal

energy regions.
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Figure 3.3: Plot of PSSIM(C3) as a function of σf(i)σg(i) and C3

Figure 3.4: Plot of PVIF(κ) as a function of σ2
x(i,k) and κ

3.3.3.2 Vector Model

My interpretation of the normalization performed by the vector VIF

model is very similar to that of the scalar model and I discuss it briefly. Once

again, the normalization serves two purposes - accounts for masking effects

in regions of low signal energy, and incorporates a contrast comparison term

in addition to the structure comparison performed by IFC. The instabilities

deduced using sensitivity analysis in the scalar VIF index in regions of small

reference image energy also occur in the vector VIF model. This is because

Z(i, k)2λj(k) in (3.31) and (3.33) represents the energy of the jth component

of the vector of reference coefficients in a new coordinate system defined by
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the eigen vectors of CU(k).

3.3.4 Discussion

I discussed the relationship between the information theoretic metrics,

SSIM metrics and HVS based metrics that have been proposed for IQA. Simi-

larities between the scalar IFC index and HVS based metrics were also observed

in [24]. However, my analysis framework and conclusions differ significantly

from [24]. In particular, [24] does not discuss the relation between the vector

IFC index and HVS based metrics or the relation between the IFC and SSIM

indices. Additionally, my discussion of contrast masking and contrast gain

control models delves deeper than [24] into the similarities between these HVS

based mechanisms and the divisive normalization interpretation of IFC, and

leads to very different conclusions discussed below.

I showed that the scalar IFC metric is a monotonic function of the

square of the structure term of the SSIM index when the SSIM index is applied

on sub-band filtered coefficients. The reasons for the monotonic relationship

between the SSIM index and the IFC index are the explicit assumption of

a Gaussian distribution on the reference and test image coefficients in the

IFC index (conditioned on certain estimated parameters) and the implicit

assumption of a Gaussian distribution in the SSIM index (due to the use of

regression analysis). With these assumptions in place, the mutual information

used as the quality index in the IFC index becomes equivalent to the correlation

coefficient used in the SSIM index.
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I generalized the concept of the correlation coefficient in SSIM using

canonical correlation analysis and established a monotonic relation between

the squares of the canonical correlation coefficients and the vector IFC index.

Once again, this relation was a direct consequence of two assumptions: a)

The reference coefficients are Gaussian distributed when conditioned on the

mixing field. b) The use of a linear channel model results in the reference and

test image coefficients being jointly Gaussian distributed (conditioned on the

mixing field again). One of the contributions of my work is the generalization

of the structural similarity philosophy to obtain the probabilistic SSIM index

and the vector SSIM index. The scalar probabilistic SSIM index has also

been used in optimization with respect to the SSIM index [41–43]. Use of the

canonical correlation coefficient as opposed to the simple correlation coefficient

has been proposed as an affine invariant measure of quality very recently [69].

My analysis here motivates the canonical correlation coefficient as a natural

extension to the SSIM index from a statistical perspective.

I performed an analysis of the sensitivity of the SSIM and VIF index

with respect to the constants used in both models. I believe that the SSIM

index is superior to the VIF index in terms of its sensitivity to the constant

irrespective of the variance of the reference and test images. Additionally,

it is easy to intuitively interpret the role of the constant C3 in SSIM in low

signal energy regions, unlike the constant κ in VIF. The instability of VIF in

regions of low signal energy is a definite concern and an avenue for possible

improvement, e.g., by introducing a stabilizing influence for such regions.
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From the discussion on the relation between the structural similarity

metrics and HVS based contrast masking models in Section 3.2.4, the rela-

tion between information theoretic metrics and contrast masking models are

also apparent. The similarities between contrast masking models and natural

scene statistical models are not surprising, since HVS modeling and natural

scene modeling are considered dual problems [55, 70]. A growing body of work

suggests that there is a strong match between the statistics of natural signals

and neural processing of these signals [55, 70]. My results show a similar du-

ality within the IQA framework. On the one hand, the GSM model describes

the statistics and dependencies in natural image signals that is used in the

information theoretic framework [23]. On the other hand, the SSIM index and

contrast gain control models in the HVS attempt to eliminate these very same

dependencies by modeling divisive normalization mechanisms in neuronal pro-

cessing of natural signals, whose guiding design principle is hypothesized to be

efficient encoding [52]. My interpretation of the duality of natural scene mod-

els in IFC and divisive normalization in HVS based metrics differs significantly

from [24], which fails to present a cohesive argument for this duality and simply

points out certain similarities between the models. Additionally, [24] argues

that it is hard to model correlation among coefficients in HVS based metrics.

However, my interpretation indicates that this is possible and in fact, divisive

normalization models the dual mechanism and eliminates these dependencies

between coefficients by including them in the divisive inhibition pool [52].

The assumption that the information theoretic metrics make that in-
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dividual sub-bands are independent and can be treated separately is not a

very good one. The discussion in Section 3.2.5 showed that masking occurs

even when the target and the masker have different orientations and the di-

visive inhibition mechanism needs to account for these effects. Similarly, the

coefficients at adjacent orientations and scales of a linear decomposition have

dependencies that are accounted for in the GSM model by including all of

these coefficients in a GSM vector. Thus, I believe that the information the-

oretic metrics can be improved upon by removing the restricting assumption

of independence across sub-bands, and by the construction of vectors of coef-

ficients that include adjacent orientations and scales, in addition to adjacent

spatial locations.

Having discussed the similarities between the structural similarity and

the information theoretic frameworks, I will now discuss the differences be-

tween them. The structural similarity metrics use a measure of linear depen-

dence between the reference and test image pixels, namely the Pearson product

moment correlation coefficient. However, the information theoretic metrics use

the mutual information, which is a more general measure of correlation that

can capture non-linear dependencies between variables. The reason for the

monotonic relation between the square of the structure term of the SSIM in-

dex applied in the sub-band filtered domain and the IFC index is due to the

assumption that the reference and test image coefficients are jointly Gaussian.

Although the information theoretic metrics use a better notion of correlation

than the structural similarity philosophy, the form of the relationship between
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the reference and test images might affect visual quality. As an example, if

one test image is a deterministic linear function of the reference image, while

another test image is a deterministic parabolic function of the reference, the

mutual information between the reference and the test image is identical in

both cases. However, it is unlikely that the visual quality of both images are

identical. I believe that further investigation of suitable models for the distor-

tion channel and the relation between such channel models and visual quality

are required to answer this question.

Finally, I observe that due to the fact that the reference and test im-

ages are assumed to be jointly Gaussian, both the Pearson product moment

correlation coefficient and the mutual information between these variables are

a function of the Signal to Noise Ratio (SNR). When (X,Y ) are jointly Gaus-

sian, they can be described by a linear relation:

Y = βX + γ + N (3.56)

where β,γ are constants and N is a Gaussian random variable with variance

σ2
n that is independent of X. If σ2

x is the variance of X, then the correlation

coefficient and mutual information between these variables is just a function

of SNR defined as: β2σ2
x/σ

2
n. The SNR determines the probability of correct

detection of a signal embedded in noise in signal detection theory. It is not

surprising that SNR is a good indicator of visual quality, since QA can be

interpreted as the detection of a signal (original image) embedded in a noisy

observation (test image). SNR is also widely used in communication systems
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theory, since the probability of error in communication is a function of the

SNR. Thus, the structural similarity and information theoretic metrics differ

significantly from the traditional MSE regime, where the measure of quality

is the energy of the noise signal. The success of the SSIM and VIF indices

show that SNR is a better indicator of visual quality than the energy of the

noise signal, an observation that has been used in image QA in the literature

[71]. Further, MSE assumes the noise to be additive, while a gain factor

β is incorporated in the SSIM (implicitly due to the use of the correlation

coefficient) and VIF (explicitly) indices. Thus, the SSIM and VIF indices

can be regarded as using improved channel models (attenuation and additive

noise), in comparison to MSE (simply additive noise).

3.4 Conclusion

In this chapter, I analyzed two recent philosophies for full reference im-

age QA in a general probabilistic framework - the Structural SIMilarity (SSIM)

and the information theoretic paradigms. I explored the relationship between

the SSIM index and models of contrast gain control used in human vision based

QA systems. I showed that the structure term of the SSIM index is equivalent

to certain models of contrast gain control and can hence, account for contrast

masking effects in human vision. I also showed that the structure term of SSIM

is equivalent to a local computation of mean squared error between reference

and test patches, after normalizing the patches appropriately to account for

masking. I studied the relationship between information theoretic metrics and
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the SSIM index. I showed that the IFC computed locally between the coef-

ficients of the reference and test image patches in a sub-band is a monotonic

function of the square of the structure term of the SSIM index computed be-

tween these patches in the same sub-band. I studied the relationship between

the SSIM index and the VIF criterion and revealed certain instabilities in the

VIF index. This analysis attempts to unify diverse approaches to the full

reference IQA problem derived from different first principles.
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Chapter 4

Spatio-temporal Quality Assessment of

Natural Videos

Humans can, almost instantaneously, judge the quality of an image or

video that they are viewing, using prior knowledge and expectations derived

from viewing millions of time-varying images on a daily basis. The right way to

assess quality, then, is to ask humans for their opinion of the quality of an image

or video, which is known as subjective assessment of image quality. Indeed,

subjective judgment of quality must be regarded as the ultimate standard

of performance by which image quality assessment (IQA) or video quality

assessment (VQA) algorithms are assessed. Subjective quality is measured

by asking a human subject to indicate the quality of an image or video that

they are viewing on a numerical or qualitative scale. To account for human

variability and to assert statistical confidence, multiple subjects are required

to view each image/video, and a Mean Opinion Score (MOS) is computed.

While subjective methods are the only completely reliable method of VQA,

subjective studies are cumbersome and expensive. For example, statistical

significance of the MOS must be guaranteed by using sufficiently large sample

sizes; subject naivety must be imposed; the dataset of images/videos must

be carefully calibrated; and so on [1, 72]. Subjective VQA is impractical for
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nearly every application other than benchmarking automatic or objective VQA

algorithms.

To develop generic VQA algorithms that work across a range of dis-

tortion types, full reference algorithms assume the availability of a “perfect”

reference video, while each test video is assumed to be a distorted version of

this reference.

The discussion in Chapter 2 highlighted the fact that although cur-

rent full-reference VQA algorithms incorporate features for measuring spatial

distortions in video signals, very little effort has been spent on directly mea-

suring temporal distortions or motion artifacts. As described in Chapter 2,

several algorithms utilize rudimentary temporal information by differencing

adjacent frames or by processing the video using simple temporal filters before

feature computation. However, with the exception of [30, 32], existing VQA

algorithms do not attempt to directly compute motion information in video

signals to predict quality. However, even in [30, 32], motion information is only

used to design weights to pool local spatial quality indices.

Yet, motion plays a very important role in the human perception of

moving image sequences [73]. Considerable resources in the human visual

system (HVS) are devoted to motion perception. The HVS can accurately

judge the velocity and direction of moving objects, skills that are essential to

survival. Humans are capable of making smooth pursuit eye movements to

track moving objects. Visual attention is known to be drawn to movement in

the periphery of vision, which makes humans and other organisms aware of
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approaching danger [74]. Additionally, motion provides important clues about

the shape of three dimensional objects and aids in object identification. All

these properties of human vision demonstrate the important role that motion

plays in perception, and the success of VQA algorithms depends on their ability

to model and account for motion perception in the HVS.

While video signals do suffer spatial distortions, they also can be de-

graded by severe temporal artifacts such as ghosting, motion compensation

mismatch, jitter, smearing, mosquito noise (amongst numerous other types),

as described in detail in Section 4.1. It is imperative that video quality indices

account for the deleterious perceptual influence of these artifacts, if objective

evaluation of video quality is to accurately predict subjective judgment. Most

existing VQA algorithms are able to capture spatial distortions that occur in

video sequences (such as those described in Section 4.1.1), but don’t do an

adequate job in capturing temporal distortions (such as those described in

Section 4.1.2).

I seek to address this by developing a general framework for achieving

spatio-spectrally localized multiscale evaluation of dynamic video quality. In

this framework, both spatial and temporal (and spatio-temporal) aspects of

distortion assessment are accounted for. Video quality is evaluated not only

in space and time, but also in space-time, by evaluating motion quality along

computed motion trajectories.

I develop a general framework for measuring both spatial and tempo-

ral video distortions over multi-scales, and along motion trajectories, while
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accounting for spatial and temporal perceptual masking effects. Using this

framework, I develop a full-reference VQA algorithm which I call the MOtion-

based Video Integrity Evaluation index, or MOVIE index. MOVIE integrates

explicit motion information into the VQA process by tracking perceptually

relevant distortions along motion trajectories, thus augmenting the measure-

ment of spatial artifacts in videos. As I show in the sequel, the performance

of this approach is highly competitive with the VQA state-of-the-art.

To supply some understanding of the challenging context of VQA, I

describe commonly occurring distortions in digital video sequences in Section

4.1. The development of functioning of the MOVIE index is detailed in Section

4.2. I explain the relationship between the MOVIE model and motion percep-

tion in biological vision systems in Section 4.3. I also describe the relationship

between MOVIE and existing still-image quality indices SSIM and VIF in

that section. The performance of MOVIE relative to the state-of-the-art is

presented in Section 4.4, using the publicly-available Video Quality Expert

Group (VQEG) FR TV Phase 1 database.

4.1 Distortions in Digital Video

In this section, I discuss the kinds of artifacts that are commonly ob-

served in video sequences [75]. I broadly classify these as spatial and temporal

distortions. Of course, temporal distortions create spatial artifacts that may

be visible in a frozen video frame; and spatial artifacts may change over time.

The distinction that I make between spatial and temporal distortions are that
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temporal distortions arise from the motion of image intensities. This motion

may arise from the movement of objects with a scene, or from the motion of

the camera, or some combination thereof.

4.1.1 Spatial Artifacts

Examples of commonly occurring spatial artifacts in video include block-

ing, ringing, mosaic patterns, false contouring, blur and noise. Blocking effects

result from block based compression techniques used in several DCT based

compressions systems such as MPEG-1, MPEG-2, MPEG-4, H.263 and H.264

and appear as periodic discontinuities in each frame of the compressed video

at block boundaries. Ringing distortions are visible around edges or contours

in frames and appear as a rippling effect moving outward from the edge toward

the background. Ringing artifacts are visible in non-block based compression

systems such as Motion JPEG-2000 as well. Mosaic Patterns are visible in

block based coding systems and manifest as mismatches between the contents

of adjacent blocks as a result of coarse quantization. False contouring occurs in

smoothly textured regions of a frame containing gradual degradation of pixel

values over a given area. Inadequate quantization levels result in step-like

gradations having no physical correlate in the reconstructed frame. Blur is a

loss of high frequency information and detail in video frames. This can occur

due to compression, or as a by-product of image acquisition. Additive Noise

manifests itself as a grainy texture in video frames. Additive noise arises due

to video acquisition and by passage of videos through certain communication
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channels.

4.1.2 Temporal Artifacts

Examples of commonly occurring temporal artifacts in video include

motion compensation mismatch, mosquito noise, stationary area fluctuations,

ghosting, jerkiness and smearing. Motion compensation mismatch occurs due

to the assumption that all constituents of a macro-block undergo identical

motion, which might not be true. This is most evident around the boundaries

of moving objects and appears as the presence of objects and spatial charac-

teristics that are uncorrelated with the depicted scene. Mosquito effect is a

temporal artifact seen primarily as fluctuations in light levels in smooth regions

of the video surrounding high contrast edges or moving objects. Stationary

area fluctuations closely resemble the mosquito effect in appearance, but are

usually visible in textured stationary areas of a scene. Ghosting appears as a

blurred remnant trailing behind fast moving objects in video sequences. This is

a result of deliberate temporal filtering of video sequences in the pre-processing

stages to remove additive noise that may be present in the source. Jerkiness

results from delays during the transmission of video over a network where the

receiver does not possess enough buffering ability to cope with the delays.

Smearing is an artifact associated with the non-instantaneous exposure time

of the acquisition device, where light from multiple points of the moving object

are integrated into the recording at different instants of time. This appears as

a loss of spatial detail in moving objects in a scene.
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It is important to observe that temporal artifacts such as motion com-

pensation mismatch, jitter and ghosting alter the movement trajectories of

pixels in the video sequence. Artifacts such as mosquito noise and stationary

area fluctuations introduce a false perception of movement arising from tempo-

ral frequencies created in the test video that were not present in the reference.

The perceptual annoyance of these distortions is closely tied to the process of

motion perception and motion segmentation that occurs in the human brain

while viewing the distorted video.

4.2 Spatio-temporal framework for video quality assess-

ment

In my framework for VQA, separate components for spatial and tempo-

ral quality are defined. First, the reference and test videos are decomposed into

spatio-temporal bandpass channels using a Gabor filter family. Spatial quality

measurement is accomplished by a method loosely inspired by the SSIM index

and the information theoretic methods for IQA [15, 24, 37]. Temporal quality

is measured using motion information from the reference video sequence. Fi-

nally, the spatial and temporal quality scores are pooled to produce an overall

video integrity score. These steps are detailed in the following.

4.2.1 Linear Decomposition

Frequency domain approaches are well suited to the study of human

perception of video signals and form the backbone of most IQA and VQA
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systems. Neurons in the visual cortex and the extra-striate cortex are spatial

frequency and orientation selective and simple cells in the visual cortex are

known to act more or less as linear filters [76–78]. In addition, a large number

of neurons in the striate cortex, as well as Area MT which is devoted to

movement perception, are known to be directionally selective; i.e., neurons

respond best to a stimulus moving in a particular direction. Thus, both spatial

characteristics and movement information in a video sequence are captured by

a linear spatio-temporal decomposition.

In my framework for VQA, a video sequence is filtered spatio-temporally

using a family of band-pass Gabor filters and video integrity is evaluated on

the resulting bandpass channels in the spatio-temporal frequency domain. Evi-

dence indicates that the receptive field profiles of simple cells in the mammalian

visual cortex are well modeled by Gabor filters [77]. The Gabor filters that I

use in the algorithm I develop later are separable in the spatial and temporal

coordinates and several studies have shown that neuronal responses in Area V1

are approximately separable [79–81]. The Gabor filters attain the theoretical

lower bound on uncertainty in the frequency and spatial variables and thus,

visual neurons approximately optimize this uncertainty [77]. In my context,

the use of Gabor basis functions guarantees that video features extracted for

VQA purposes will be optimally localized.

Further, the responses of several spatio-temporally separable responses

can be combined to encode the local speed and direction of motion of the video

sequence [82, 83]. Spatio-temporal Gabor filters have been used in several
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models of the response of motion selective neurons in the visual cortex [82, 84,

85]. In my implementation of the ideas described here, I utilize the algorithm

described in [86] that uses the outputs of a Gabor filter family to estimate

motion. Thus, the same set of Gabor filtered outputs is used for motion

estimation and for quality computation.

A Gabor filter h(i) is the product of a Gaussian window and a complex

exponential:

h(i) =
1

(2π)
N
2 |Σ| 12

exp

(

− iT Σ−1i

2

)

exp
(

jUo
T i

)

(4.1)

where i = (x, y, t) is a vector denoting a spatio-temporal location in the video

sequence. U0 = (U0, V0,W0) is the center frequency of the Gabor filter and

N denotes the dimensionality of these vectors (N = 3). Σ is the covariance

matrix of the Gaussian component of the Gabor filter. The Fourier transform

of the Gabor filter is a Gaussian with covariance matrix Σ−1:

H(u) = exp

(

−(u − U0)
T Σ(u − U0)

2

)

(4.2)

Here, u = (u, v, w) denotes the spatio-temporal frequency coordinates.

My implementation uses separable Gabor filters that have equal stan-

dard deviations along both spatial frequency coordinates and the temporal

coordinate. Σ is a diagonal matrix with equal valued entries along the diag-

onal that I denote as σ2. My filter design is very similar to the filters used
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in [86]. However, my filters have narrower bandwidth and are multi-scale as

described below.

All the filters in my Gabor filter bank have constant octave bandwidths.

I use P = 3 scales of filters, with N = 35 filters at each scale. Figure 4.1 shows

iso-surface contours of the sine phase component of the filters tuned to the

finest scale in the resulting filter bank in the frequency domain. The filters at

coarser scales would appear as concentric spheres inside the sphere depicted in

Fig. 4.1. I used filters with rotational symmetry and the spatial spread of the

Gabor filters is the same along all axes. The filters have an octave bandwidth

of 0.5 octaves, measured at one standard deviation of the Gabor frequency

response. The center frequencies of the finest scale of filters lie on the surface

of a sphere in the frequency domain, whose radius is 0.7π radians per sample.

Each of these filters has a standard deviation of 2.65 pixels along both spatial

coordinates and 2.65 frames along the temporal axis. In my implementation,

the Gabor filters were sampled out to a width of three standard deviations;

so the support of the kernels at the finest scale are 15 pixels/frames along the

spatial/temporal axes. The filters at the coarsest scale lie on the surface of

a sphere of radius 0.35π, have a standard deviation of 5.30 pixels (or frames)

and a support of 33 pixels (or frames).

Nine filters are tuned to a temporal frequency of 0 radians per sample

corresponding to no motion. The spatial orientations of these filters are chosen

such that adjacent filters intersect at one standard deviation; hence the spatial

orientations of these filters are chosen to be multiples of 20◦ in the range
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[0◦, 180◦). Seventeen filters are tuned to horizontal or vertical speeds of s =

1/
√

3 pixels per frame and the temporal center frequency of each of these

filters is given by ρ ∗ s√
s2+1

radians per sample, where ρ is the radius of the

sphere that the filters lie on [86]. Again, the spatial orientations are chosen

such that adjacent filters intersect at one standard deviation and the spatial

orientations of these filters are multiples of 22◦ in the range [0◦, 360◦). The

last nine filters are tuned to horizontal or vertical velocities of
√

3 pixels per

frame. The spatial orientations of these filters are multiples of 40◦ in the range

[0◦, 360◦).

Figure 4.2 shows a slice of the sine phase component of the Gabor filters

along the plane of zero temporal frequency (w = 0) and shows the three scales

of filters with constant octave bandwidths. Figure 4.3 shows a slice of the sine

phase component of the Gabor filters along the plane of zero vertical spatial

frequency. Filters along the three radial lines are tuned to the three different

speeds of (0, 1√
3
,
√

3) pixels per frame.

Finally, a Gaussian filter is included at the center of the Gabor structure

to capture the low frequencies in the signal. The standard deviation of the

Gaussian filter is chosen such that it intersects the coarsest scale of bandpass

filters at one standard deviation.

4.2.2 Spatial MOVIE Index

My approach to capturing spatial distortions in the video of the kind

described in Section 4.1.1 is inspired both by the SSIM index and the informa-
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Figure 4.1: Geometry of the Gabor filterbank in the frequency domain. The
figure shows iso-surface contours of all Gabor filters at the finest scale. The
two horizontal axes denote the spatial frequency coordinates and the vertical
axis denotes temporal frequency.

Figure 4.2: A slice of the Gabor filter bank along the plane of zero temporal
frequency. The x-axis denotes horizontal spatial frequency and the y-axis
denotes vertical spatial frequency.
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Figure 4.3: A slice of the Gabor filter bank along the plane of zero vertical
spatial frequency. The x-axis denotes horizontal spatial frequency and the
y-axis denotes temporal frequency.

tion theoretic indices that have been developed for IQA [15, 31, 37]. However,

I will be using the outputs of the spatio-temporal Gabor filters to accomplish

this. Hence, the model described here primarily captures spatial distortions in

the video and at the same time, responds to temporal distortions in a limited

fashion. I will term this part of my model the “Spatial MOVIE Index”, taking

this to mean that the model primarily captures spatial distortions. I explain

how the Spatial MOVIE index relates to and improves upon prior approaches

in Section 4.3.

Let r(i) and d(i) denote the reference and distorted videos respectively.

The reference and distorted videos are passed through the Gabor filterbank to

obtain band-pass filtered videos. Denote the Gabor filtered reference videos by

f̃(i, k) and the Gabor filtered distorted videos by g̃(i, k), where, k = 1, 2, . . . , K

indexes the filters in the Gabor filterbank. Specifically, let k = 1, 2, . . . K
P
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correspond to the finest scale, k = K
P

+ 1, . . . , 2K
P

the second finest scale and

so on.

All quality computations begin locally, using local windows B of coef-

ficients extracted from each of the Gabor sub-bands, each spaning N pix-

els. Consider a pixel location i0. Let f(k) be a vector of dimension N ,

where f(k) is composed of the complex magnitude of N elements of f̃(i, k)

spanned by the window B centered on i0. The Gabor coefficients f̃(i, k) are

complex, but the vectors f(k) are real and denote the Gabor channel ampli-

tude response [78]. Notice that I have just dropped the dependence on the

spatio-temporal location i for notational convenience by considering a specific

location i0. If the window B is specified by a set of relative indices, then

f(k) = {f̃(i0 + m, k),m ∈ B}. Similar definition applies for g(k). To index

each element of f(k), I use the notation f(k) = [f1(k), f2(k), . . . , fN(k)]T .

The following spatial quality can then be defined from each subband

response:

QS(i0, k) =
1

2

1

N

N
∑

n=1

[

fn(k) − gn(k)

M(k) + C1

]2

(4.3)

where C1 is a small positive constant added to prevent numerical instability

and M(k) is defined as

M(k) = max





√

√

√

√

1

N

N
∑

n=1

|fn(k)|2,

√

√

√

√

1

N

N
∑

n=1

|gn(k)|2


 (4.4)

Notice that the spatial quality is computed as the MSE between f(k)

and g(k) normalized by a masking function M(k). Contrast masking refers to
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the reduction in visibility of a signal component (target) due to the presence

of another signal component of similar frequency and orientation (masker) in a

local spatial neighborhood. In the context of VQA, the presence of large signal

energy in the image content (masker) masks the visibility of noise or distortions

(target) in these regions. The masking function in my model attempts to

capture this feature of human visual perception and the masking function is

a local energy measure computed from the reference and distorted sub-bands.

The outputs of the Gabor filter-bank represent a decomposition of the reference

and test video into band-pass channels. Individual Gabor filters respond to a

specific range of spatio-temporal frequencies and orientations in the video, and

any differences in the spectral content of the reference and distorted videos are

captured by the Gabor outputs. Thus, (4.3) will be able to detect primarily

spatial distortions in the video such as blur, ringing, false contouring, blocking,

noise and so on.

The quality index QS(i0, k) is bounded and lies between 0 and 1. This

follows since

QS(i0, k) =
1

2

1

N

N
∑

n=1

[

fn(k) − gn(k)

M(k) + C1

]2

(4.5)

=
1

2

{

1
N

∑N

n=1 fn(k)2

[M(k) + C1]2
+

1
N

∑N

n=1 gn(k)2

[M(k) + C1]2
− 2

1
N

∑N

n=1 fn(k)gn(k)

[M(k) + C1]2

}

(4.6)

≤ 1

2

{

1
N

∑N

n=1 fn(k)2

[M(k) + C1]2
+

1
N

∑N

n=1 gn(k)2

[M(k) + C1]2

}

(4.7)

≤
[

M(k)

M(k) + C1

]2

(4.8)
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(4.7) uses the fact that fn(k) and gn(k) are non-negative. (4.8) follows from

the definition of M(k). Therefore, QS(i0, k) lies between 0 and 1. Observe

that the spatial quality in (4.3) is exactly 0 when the reference and distorted

images are identical.

The Gaussian filter responds to the mean intensity or the DC com-

ponent of the two images. A spatial quality index can be defined using the

output of the Gaussian filter operating at DC. Let f(DC) and g(DC) denote

a vector of dimension N extracted at i0 from the output of the Gaussian filter

operating on the reference and test videos respectively using the same window

B. f(DC) and g(DC) are low pass filtered versions of the two videos. I first

remove the effect of the mean intensity from each video before quality compu-

tation, since this acts as a bias to the low frequencies present in the reference

and distorted images that are captured by the Gaussian filter. I estimate the

mean as the average of the Gaussian filtered output:

µf =
1

N

N
∑

n=1

fn(DC) (4.9)

µg =
1

N

N
∑

n=1

gn(DC) (4.10)

The quality of the DC sub-band is then computed in a similar fashion

as the Gabor sub-bands:

QDC(i0) =
1

2

1

N

N
∑

n=1

[ |fn(DC) − µf | − |gn(DC) − µg|
MDC + C2

]2

(4.11)

where C2 is a constant added to prevent numerical instability and MDC is
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defined as

MDC = max





√

√

√

√

1

N

N
∑

n=1

|fn(DC) − µf |2,

√

√

√

√

1

N

N
∑

n=1

|gn(DC) − µg|2


 (4.12)

It is straightforward to verify that QDC(i0) also lies between 0 and 1.

The spatial quality indices computed from all of the Gabor sub-bands and the

Gaussian sub-band can then be pooled to obtain a quality index for location

i0 using

QS(i0) =

∑K

k=1 QS(i0, k) + QDC(i0)

K + 1
(4.13)

4.2.3 Motion Estimation

To compute temporal quality, motion information is computed from

the reference video sequence in the form of optical flow fields. The same set of

Gabor filters used to compute the spatial quality component described above

is used to calculate optical flow from the reference video. My implementation

uses the successful Fleet and Jepson [86] algorithm that uses the phase of the

complex Gabor outputs for motion estimation. Notice that I only used the

complex magnitude in the spatial quality computation and, as it turns out,

I only use the complex magnitudes to evaluate the temporal quality. I have

realized a multi-scale version of the Fleet and Jepson algorithm, which I briefly

describe in the Appendix.
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4.2.4 Temporal MOVIE Index

The spatio-temporal Gabor decompositions of the reference and test

video sequences, and the optical flow field computed from the reference video

using the outputs of the Gabor filters can be used to estimate the temporal

video quality. By measuring video quality along motion trajectories, I ex-

pect to be able to account for the perceptual effect of distortions of the type

described in Section 4.1.2. Once again, the model described here primarily

captures temporal distortions in the video, while responding to spatial distor-

tions in a limited fashion. I hence call this stage of my model the “Temporal

Movie Index”.

First, I discuss how translational motion manifests itself in the fre-

quency domain. Let a(x, y) denote an image patch and let A(u, v) denote

its Fourier transform. Assuming that this patch undergoes translation with a

velocity [λ, φ] where λ and φ denote velocities along the x and y directions re-

spectively, the resulting video sequence is given by b(x, y, t) = a(x−λt, y−φt).

Then, B(u, v, w), the Fourier transform of b(x, y, t), lies entirely within a plane

in the frequency domain [87]. This plane is defined by:

λu + φv + w = 0 (4.14)

Moreover, the magnitudes of the spatial frequencies do not change but

are simply sheared:

B(u, v, w) =

{

A(u, v) if λu + φv + w = 0
0 otherwise

(4.15)
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Spatial frequencies in the video signal provide information about the

spatial characteristics of objects in the video sequence such as orientation,

texture, sharpness and so on. Translational motion shears these spatial fre-

quencies to create orientation along the temporal frequency dimension without

affecting the magnitudes of the spatial frequencies. Translational motion has

an easily accessible representation in the frequency domain and these ideas

have been used to build motion estimation algorithms for video [82, 83, 87].

Assume that short segments of video without any scene changes consist

of local image patches undergoing translation. This is quite reasonable and is

commonly used in video encoders that use motion compensation. This model

can be used locally to describe video sequences, since translation is a linear

approximation to more complex types of motion. Under this assumption, the

reference and test videos r(i) and d(i) consist of local image patches (such

as a(x, y) in the example above) translating to create spatio-temporal video

patches (such as b(x, y, t)). Observe that (4.14) and (4.15) assume infinite

translation of the image patches [87], which is not practical. In actual video

sequences, local spectra will not be planes, but will in fact be the convolution

of (4.15) with the Fourier transform of a truncation window (a sinc function).

However, the rest of my development will assume infinite translation and it

will be clear as I proceed that this will not significantly affect the development.

The optical flow computation on the reference sequence provides an

estimate of the local orientation of this spectral plane at every pixel of the

video. Assume that the motion of each pixel in the distorted video sequence
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exactly matches the motion of the corresponding pixel in the reference. Then,

the filters that lie along the motion plane orientation identified from the ref-

erence will be activated by the distorted video and the outputs of all Gabor

filters that lie away from this spectral plane will be negligible. However, when

temporal artifacts are present, the motion in the reference and distorted video

sequences do not match. This situation happens, for example, in motion com-

pensation mismatches, where background pixels that are static in the reference

move with the objects in the distorted video due to block motion estimation.

Another example is ghosting, where static pixels surrounding moving objects

move in the distorted video due to temporal low-pass filtering. Other examples

are mosquito noise and stationary area fluctuations, where the visual appear-

ance of motion is created from temporal frequencies in the distorted video

that were not present in the reference. All of these artifacts shift the spectrum

of the distorted video to lie along a different orientation than the reference.

Thus, the subset of the Gabor filters that are activated by the distorted video

may not be the same as the reference.

Motion vectors from the reference can be used to construct responses

from the reference and distorted Gabor outputs that are tuned to the speed

and direction of movement of the reference. This is accomplished by comput-

ing a weighted sum of the Gabor outputs, where the weight assigned to each

individual filter is determined by its distance from the spectral plane of the

reference video. Filters that lie very close to the spectral plane are assigned

positive excitatory weights. Filters that lie away from the plane are assigned
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negative inhibitory weights. This achieves two objectives. First, the resulting

response is tuned to the movement in the reference video. In other words, a

strong response is obtained when the input video has a motion that is equal

to the reference video signal. Additionally, any deviation from the reference

motion is penalized due to the inhibitory weight assignment. An error com-

puted between these motion tuned responses then serves to evaluate temporal

video integrity. The weighting procedure is detailed in the following.

Let λ be a vector of dimension N , where λ is composed of N elements of

the horizontal component of the flow field of the reference sequence spanned by

the window B centered on i0. Similarly, φ represents the vertical component

of flow. Then, using (4.14), the spectrum of the reference video lies along:

λnu + φnv + w = 0, n = 1, 2, . . . N (4.16)

Define a sequence of distance vectors δ(k), k = 1, 2, . . . , K of dimen-

sion N . Each element of this vector denotes the distance of the center fre-

quency of the kth filter from the plane containing the spectrum of the ref-

erence video in a window centered on i0 extracted using B. Let U0(k) =

[u0(k), v0(k), w0(k)], k = 1, 2, . . . , K represent the center frequencies of all the

Gabor filters. Then, δ(k) represents the perpendicular distance of a point from

a plane defined by (4.16) in a 3-dimensional space and is given by:

δn(k) =
λnu0(k) + φnv0(k) + w0(k)

√

λ2
n + φ2

n + 1
, n = 1, 2, . . . , N (4.17)

I now design a set of weights based on these distances. My objective

is to assign the filters that intersect the spectral plane to have the maximum
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weight of all filters. The distance of the center frequencies of these filters

from the spectral plane is the minimum of all filters. First, define α′(k), k =

1, 2, . . . , K using:

α′
nk =

ρ(k) − δn(k)

ρ(k)
(4.18)

where ρ(k) denotes the radius of the sphere along which the center frequency

of the kth filter lies in the frequency domain.

Figure 4.4 illustrates the geometrical computation specified in (4.18).

Each of the circles represents the slice of a Gabor filter in 2 dimensions and

the red line shows the projection of the spectral plane in 2 dimensions. The

radius ρ(k) and distance δ(k) are illustrated for one of the Gabor filters.

From the geometry of the Gabor filterbank, it is clear that 0 ≤ α′
n(k) ≤

1∀n, k since the spectral plane specified by (4.16) always passes through the

origin. If the spectral plane passes through the center frequency of a Gabor

filter k at a location n, then it passes through the corresponding Gabor filter

at all scales. α′
n(k) = 1 for this filter and the corresponding filters at other

scales. If the center frequency of a Gabor filter k at a location n lies along a

plane that passes through the origin and is perpendicular to the spectral plane

of the reference video, then α′
n(k) = 0.

Since I want the weights to be excitatory and inhibitory, I shift all the

weights at each scale to be zero-mean [83]. Finally, to make the weights in-

sensitive to the filter geometry that was chosen, I normalize them so that the

maximum weight is 1. This ensures that the maximum weight remains 1 irre-
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spective of whether the spectral plane exactly intersects the center frequencies

of the Gabor filters. Although the weights are invariant to the filter geome-

try, observe that due to the Gaussian falloff in the frequency response of the

Gabor filters, the Gabor responses themselves are not insensitive to the filter

geometry. I hence have a weight vector α(k), k = 1, 2, . . . , K with elements:

αn(k) =
α′

n(k) − µα

maxk=1,2,..., K
P

[α′
n(k) − µα]

, k = 1, 2, . . .
K

P
(4.19)

where

µα =

∑

K
P

k=1 α′
n(k)

K
P

(4.20)

Similar definitions apply for other scales.

Motion tuned responses from the reference and distorted video se-

quences may be constructed using these weights. Define N -vectors νr and

νd using:

νr
n =

|fn(DC) − µf |2 +
∑K

k=1 αn(k)fn(k)2

|fn(DC) − µf |2 +
∑K

k=1 fn(k)2 + C3

(4.21)

νd
n =

|gn(DC) − µg|2 +
∑K

k=1 αn(k)gn(k)2

|gn(DC) − µg|2 +
∑K

k=1 gn(k)2 + C3

(4.22)

The constant C3 is added to prevent numerical instability.

The vector νr represents the response of the reference video to a mech-

anism that is tuned to its own motion. If the process of motion estimation was

perfect and there was infinite translation resulting in a perfect plane, every

element of νr would be close to 1. The vector νd represents the response of the
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distorted video to a mechanism that is tuned to the motion of the reference

video. Thus, any deviation between the reference and distorted video motions

are captured by (4.21) and (4.22).

The denominator terms in (4.21) and (4.22) ensure that temporal qual-

ity measurement is relatively insensitive to spatial distortions, thus avoiding

redundancy in the spatial and temporal quality measurements. For exam-

ple, in the case of blur, the same Gabor filters are activated by the reference

and distorted videos. However, the response of the finest scale filters are at-

tenuated in the distorted video compared to the reference. Since each video

is normalized by its own activity across all filters, the resulting response is

not very sensitive to spatial distortions. Instead, the temporal mechanism

responds strongly to distortions where there is a misalignment between the

spectral planes of the reference and distorted videos.

Finally, the temporal video quality is evaluated by

QT (i0) =
1

N

N
∑

n=1

(νr
n − νd

n)2 (4.23)

The temporal quality in (4.23) is also exactly 0 when the reference and test

images are identical.

4.2.5 Pooling Strategy

The output of the spatial and temporal quality computation stages is

two videos - a spatial quality video QS(i) that represents the spatial quality at

every pixel of the video sequence and a similar video for temporal quality. The
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Figure 4.4: A slice of the Gabor filters and the spectral plane shown in 2
dimensions. The horizontal axis denotes horizontal spatial frequencies and
the vertical axis denotes temporal frequencies. Each circle represents a Gabor
filter and the centers of each filter are also marked. The radius ρ of the single
scale of Gabor filters and the the distance δ of the center frequency of one
Gabor filter from the spectral plane are marked.

final video quality index, which I call the MOVIE index, combines these into

a single VQA index. Consider a set of specific time instants t = {t0, t1, . . . , tτ}

which corresponds to frames in the spatial and temporal quality videos. I refer

to these frames of the quality videos, QS(x, y, t0) and QT (x, y, t0) for instance,

as “quality maps”.

To obtain a single score for the entire video using the local quality scores

obtained at each pixel, several approaches such as probability summation using

psychometric functions [7, 10], mean of the quality map [15], weighted sum-

mation [30], percentiles [36] and so on have been proposed. In general, the

distribution of the quality scores depends on the nature of the scene content

and the distortions. For example, distortions tend to occur more in “high
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activity” areas of the video sequences such as edges, textures and boundaries

of moving objects. Similarly, certain distortions such as additive noise affect

the entire video, while other distortions such as compression or packet loss in

network transmission affect specific regions of the video. Selecting a pooling

strategy is not an easy task since the strategy that humans use to determine

a quality score based on their perception of an entire video sequence is not

known.

I found that the mean of the MOVIE quality maps did not do an

adequate job in correlating with visual perception. The quality score assigned

to videos that contain a lot of textures, edges, moving objects and so on using

the mean of the quality map as the visual quality predictor is consistently

worse than quality scores computed for videos that are predominantly smooth.

This is because many distortions such as compression alter the appearance of

textures and other busy regions of the video much more significantly than

the smooth regions of the video. However, people tend to assign poor quality

scores even if only parts of the video appear to be distorted.

It would seem apparent that the variance or the spread of the quality

scores, in addition to the mean, would prove perceptually significant. Larger

variance in the quality scores is indicative of regions of very poor quality in

the video, which intuition suggests would result in lower perceptual quality.

This is intuitively similar to pooling strategies based on percentiles, wherein

the poorest percentile of the quality scores have been used to determine the

overall quality [36]. A ratio of the standard deviation to the mean is often
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used in statistics and is known as the coefficient of variation. The coefficient

of variation is a normalized measure of the dispersion of a distribution. De-

fine frame level quality indices for both spatial and temporal components of

MOVIE at a frame tj using:

FQS(tj) =
σQS(x,y,tj)

1 − µQS(x,y,tj)

(4.24)

FQT (tj) =
σQT (x,y,tj)

1 − µQT (x,y,tj)

(4.25)

The frame level quality indices in (4.24) and (4.25) increases whenever

the mean or the standard deviation of the MOVIE scores increases, which is

desirable. The use of the standard deviation reduces the content dependent

behavior of the mean described earlier. I have found that this moment ratio

is a good predictor of the subjective quality of a video.

The spatial MOVIE index is then defined as the average of these frame

level descriptors.

Spatial MOVIE =
1

τ

τ
∑

j=1

FQS(tj) (4.26)

The range of values of the Temporal MOVIE scores is smaller than

that of the spatial scores, due to the large divisive normalization in (4.21) and

(4.22). To offset this effect, I use the square root of the temporal scores.

Temporal MOVIE =

√

√

√

√

1

τ

τ
∑

j=1

FQT (tj) (4.27)

The MOVIE index is defined as:

MOVIE = Spatial MOVIE × Temporal MOVIE (4.28)
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4.2.6 Implementation Details and Examples

I now discuss some implementation details of MOVIE. To reduce com-

putation, instead of filtering the entire video sequence with the set of Gabor

filters, I centered the Gabor filters on every 16th frame of the video sequence

and computed quality maps for only these frames. I selected multiples of 16

since my coarsest scale filters span 33 frames and using multiples of 16 en-

sures reasonable overlap in the computation along the temporal dimension.

The window B was chosen to be a 7 × 7 window. To avoid blocking artifacts

caused by a square window, I used a Gaussian window of standard deviation

1 sampled to a size of 7 × 7 [15]. If I denote the Gaussian window using

γ = {γ1, γ2, . . . , γN} with
∑N

n=1 γn = 1, (4.3 and (4.4) are modified as:

Qs(i0, k) =
1

2

N
∑

n=1

γn

[

fn(k) − gn(k)

M(k) + C1

]2

(4.29)

M(k) = max





√

√

√

√

N
∑

n=1

γn|fn(k)|2,

√

√

√

√

N
∑

n=1

γn|gn(k)|2


 (4.30)

Similar modifications apply for (4.9), (4.11) and (4.12). (4.23) is mod-

ified as:

Qt(i0) =
N

∑

n=1

γn(νr
n − νd

n)2 (4.31)

There are three parameters in MOVIE: C1,C2 and C3. The role of these

constants have been described in detail in [88, 89]. The divisive nature of the

masking model in (4.3) and (4.21) makes them extremely sensitive to regions
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of low signal energy in the video sequences. The constant serves to stabilize

the computation in these regions. I selected the constants to be: C1 = 0.1,

C2 = 1 and C3 = 100. C1, C2 are chosen differently since the Gaussian filter

is lowpass and produces larger responses than bandpass Gabor filters. This

is intuitively reasonable from the power spectral properties of natural images

[90]. C3 is larger because it is intended to stabilize (4.21) and (4.22), where the

denominator terms correspond to sums of the squares of all Gabor coefficients.

I found that MOVIE is not very sensitive to the choice of constant as long as

the constant used is not too small. Using small values for the constants leads

to incorrect predictions of poor qualities in smooth regions of the videos due to

the instability of the divisive models, which does not match visual perception.

Figures 4.5 and 4.6 illustrate quality maps generated by MOVIE on

some representative video sequences. The temporal quality map has been

logarithmically compressed for visibility. First of all, it is evident that the

kind of distortions captured by the spatial and temporal maps is different.

The test video sequences in both examples suffer from significant blurring and

the spatial quality map clearly reflects the loss of quality due to blur. The

temporal quality map, however, shows poor quality along the edges of objects

and in the water where motion compensation mismatches are evident. Of

course, the spatial and temporal quality values are not completely independent.

This is because the spatial computation uses the outputs of spatio-temporal

Gabor filters and the constant C3 in (4.21) and (4.22) permits the temporal

computation to respond to blur.
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Figure 4.5: Illustration of the performance of the MOVIE index. Top left shows
a frame from the reference video. Top right shows the corresponding frame
from the distorted video. Bottom left shows a logarithmically compressed tem-
poral quality map. Bottom right shows the spatial quality map. Notice that
the spatial quality map responds to the blur in the test video. The temporal
quality map responds to motion compensation mismatches surrounding the
harp and the heads of the two people and distortions in the strings.
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Figure 4.6: Illustration of the performance of the MOVIE index. Top left shows
a frame from the reference video. Top right shows the corresponding frame
from the distorted video. Bottom left shows a logarithmically compressed tem-
poral quality map. Bottom right shows the spatial quality map. Notice that
the spatial quality map responds to the blur in the test video. The temporal
quality map responds to motion compensation mismatches surrounding the
man, the oar and the ripples in the water.
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4.3 Relation to Existing Models

The MOVIE index has some interesting relationships to spatial IQA

indices and to visual perception.

4.3.1 Spatial Quality Computation

The spatial quality in (4.3) is closely related to the structure term of

the SSIM index [88, 89]. I established the relation between the structure term

of the SSIM index and information theoretic methods for IQA in Chapter 3.

In particular, I showed that the Gaussian Scale Mixture (GSM) image model

assumption used by the information theoretic indices made them equivalent to

applying the structure term of the SSIM index in a sub-band domain. Spatial

MOVIE falls out naturally from the analysis in Chapter 3 and represents an

improved version of these metrics.

I also discussed the relation of both SSIM and IFC to contrast masking

models in human vision based IQA systems in Chapter 3. The structure term

of the SSIM index applied between sub-band coefficients without the stabilizing

constant, assuming zero mean sub-band coefficients, is given by [88, 89]:

1

2

1

N

N
∑

n=1





fn(k)
√

1
N

∑N

n=1 |fn(k)|2
− gn(k)

√

1
N

∑N

n=1 |gn(k)|2





2

(4.32)

A chief distinction between SSIM, IFC and the spatial MOVIE index

is the fact that I have chosen to utilize both the reference and distorted coeffi-

cients to compute the masking term. This is described as ”‘mutual masking”’
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in the literature [10]. Masking the reference and test image patches using a

measure of their own signal energy in (4.32) (“self masking”) is not an effec-

tive measure of blur in images and videos. Blur manifests itself as attenuation

of certain sub-bands of the reference image and it is easily seen that the self

masking model in (4.32) does not adequately capture blur.

However, my model is very different from traditional mutual masking

models [10], where the minimum of the masking thresholds computed from

the reference and distorted images is used. Using a minimum of the masking

thresholds is well suited in determining whether the observer can distinguish

between the reference and test images, as is done in [10]. However, MOVIE is

intended to predict the annoyance of supra-threshold, easily visible distortions.

Using the maximum of the two masking thresholds in (4.3) causes the spatial

quality index to saturate in the presence of severe distortions (loss of textures,

severe blur, severe ringing and so on). This prevents over-prediction of errors

in these regions. An additional advantage of using the maximum is that it

guarantees bounded quality scores.

4.3.2 Temporal Quality Computation

Motion computation in the HVS is a complex procedure involving low-

level and high-level processing. Although motion processing begins in the stri-

ate cortex (Area V1), Area MT/V5 in the extra-striate cortex is known to play

a significant role in movement processing. The properties of neurons in Area

V1 that project to Area MT have been well studied [91]. This study reveals

100



that cells in V1 that project to MT may be regarded as local motion energy

filters that are spatio-temporally separable and tuned to a specific frequency

and orientation (such as the Gabor filters used here). Area MT receives direc-

tional information from V1 and performs more complex computations using

the preliminary motion information computed by V1 neurons [91]. A subset

of neurons in Area MT have been shown to be speed tuned, where the speed

tuning of the neuron is independent of the spatial frequency of the stimulus

[85, 92]. Models for such speed tuned neurons have been constructed by com-

bining the outputs of a set of V1 cells whose orientation is consistent with

the desired velocity [83]. My temporal quality computation bears several sim-

ilarities with the neuronal model of MT in [83, 93]. Similarities include the

weighting procedure based on the distance between the linear filters and the

motion plane and the normalization of weighted responses. The models in

[83, 93] are rather elaborate, physiologically plausible mechanisms designed to

match the properties of visual neurons. My model is designed from an en-

gineering standpoint of capturing distortions in videos. Differences between

the two models include the choice of linear decomposition and my derivation

of analytic expressions for the weights based on filter geometry. Interestingly,

the models of Area MT construct neurons tuned to different speeds and use

these responses to determine the speed of the stimulus. My model computes

the speed of motion using the Fleet and Jepson algorithm and then constructs

speed tuned responses based on the computed motion.

To the best of my knowledge, none of the human vision based models

101



for VQA attempt to model properties of neurons in Area MT despite the

availability of such models in the vision research community. The discussion

here shows that my proposed VQA framework can match visual perception of

video better, since it integrates concepts from motion perception.

4.4 Performance

I tested my algorithm on the VQEG FRTV Phase-1 database [2]. Since

most of the VQEG videos are interlaced, my algorithm runs on just one field

of the interlaced video. I ran my algorithm on the temporally earlier field for

all sequences. I ignore the color component of the video sequences, although

color might represent a direction for future improvements of MOVIE. The

VQEG database contains 20 reference sequences and 16 distorted versions

of each reference, for a total of 320 videos. Two distortions types in the

VQEG database (HRC 8 and 9) contain 2 different subjective scores assigned

by subjects corresponding to whether these sequences were viewed along with

“high” or “low” quality videos [2]. I used the scores assigned in the “low”

quality regime as the subjective scores for these videos.

The performance of my algorithm is reported for two metrics - the

Spearman Rank Order Correlation Coefficient (SROCC) which is an indicator

of the prediction monotonicity of the quality index and the Linear Correlation

Coefficient (LCC) after non-linear regression. I used the same logistic function

specified in [2] to fit the model predictions to the subjective data. The results

are reported in Table 4.1.
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Prediction Model SROCC LCC
Peak Signal to Noise Ratio 0.786 0.779
Proponent P8 (Swisscom) 0.803 0.827

Frame SSIM (no weighting) 0.788 0.820
Frame SSIM (weighted) 0.812 0.849

Spatial MOVIE 0.793 0.796
Temporal MOVIE 0.816 0.801

MOVIE 0.833 0.821

Table 4.1: Comparison of the performance of VQA algorithms.

PSNR provides a baseline for comparison of VQA models. Proponent

P8 (Swisscom) is the best performing model of the 10 models tested by the

VQEG in terms of both SROCC and LCC after nonlinear regression [2]. Frame

SSIM (no weighting) refers to a frame-by-frame application of the SSIM index

that was proposed for video in [15]. Frame SSIM (weighted) incorporates

rudimentary motion information as weights for different regions of the video

sequence [15].

Although my model does not explicitly assume any statistical model

for the images or videos, my spatial quality model is closely related to the

IFC which assumes that the reference images are the output of a natural

scene statistical model [88]. The VQEG database contains 4 sequences that

are animated (sources 4,6,16 and 17). Animated videos are quite distinct

from natural videos and often contain perfectly smooth and constant regions,

perfect step edges, text and so on that seldom occur in natural images. Natural

images have several characteristic statistical properties such as self-similarity

across scales, heavy tailed wavelet marginal distributions and so on [90, 94],
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Prediction Model SROCC LCC
Spatial MOVIE 0.825 0.830

Temporal MOVIE 0.835 0.825
MOVIE 0.860 0.843

Table 4.2: Performance of MOVIE on the VQEG database after omitting the
animation sequences.

that do not occur in synthetic videos of these types. Several aspects of my

VQA model such as the choice of Gabor filters, scale invariant processing of the

Gabor sub-bands, divisive normalization in the spatial and temporal quality

computation are implicitly geared toward natural videos. The presence of text

in three of these animations is further cause for concern, since the subjective

perception of these videos might have been influenced by the readability of

the text in the distorted video. Therefore, I also present performance indices

of MOVIE only on the 16 natural videos and their distorted versions (a total

of 256 videos) in the VQEG database in Table 4.2. I present these results in

a separate table since these numbers are not directly comparable against the

reported performance of other quality models on all the videos in the database.

Scatter plots of the model prediction and DMOS values, along with the

best fitting logistic function, for the MOVIE index are shown in Fig. 4.7.

It is clear that the MOVIE index is competitive with and even out-

performs several other systems on the VQEG database. The performance of

spatial MOVIE is poorer than that of the temporal MOVIE index, which pow-

erfully illustrates the importance of capturing and assessing temporal video

distortions. Using both in conjunction improves over using either separately.
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Figure 4.7: Scatter plot of the subjective DMOS scores against MOVIE scores.
The best fitting logistic function used for non-linear regression is also shown.
(a) On all sequences in the VQEG database (b) After omitting the animated
videos.

The performance of MOVIE is particularly impressive because it does not use

any color information and only one field of the interlaced video sequence. All

the other models in Table 4.1 use color information.

4.5 Conclusion

The quality of motion representation in videos plays an important role

in the perception of video quality, yet existing VQA algorithms make little di-

rect use of motion information, thus limiting their effectiveness. To ameliorate

this, I developed a general, spatio-spectrally localized multiscale framework

for evaluating dynamic video fidelity that integrates both spatial and tempo-

ral (and spatio-temporal) aspects of distortion assessment. Video quality is

evaluated not only in space and time, but also in space-time, by evaluating
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motion quality along computed motion trajectories. Using this framework,

I developed a full-reference VQA algorithm known as the MOVIE index. I

demonstrated that the MOVIE index delivers VQA scores that correlate quite

closely with human subjective judgment, using the VQEG FRTV Phase 1

database as a test bed. Indeed, the MOVIE index was found to be quite

competitive with, and even outperform, state-of-the-art VQA algorithms.
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Chapter 5

Study of subjective and objective quality

assessment of video

The only reliable method to assess the video quality perceived by a

human observer is to ask human subjects for their opinion, which is termed

subjective quality assessment (QA). Subjective QA is impractical for most

applications due to the human involvement in the process. However, subjective

QA studies provide valuable data to assess the performance of objective or

automatic methods of QA. In addition to providing the means to evaluate the

performance of state-of-the-art video QA technologies, subjective studies also

contribute toward improving the performance of QA methods to reach the

ultimate goal of matching human perception.

In this chapter, I first present a study that I conducted to assess the

subjective quality of videos. This study included 10 raw naturalistic refer-

ence videos and 150 distorted videos obtained from these references using four

different real world distortion types. Each video was assessed by 38 human

subjects in a single stimulus study, where the subjects scored the quality on

a continuous quality scale. This study and the resulting video database pre-

sented here, which I call the Laboratory for Image and Video Engineering
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(LIVE) Video Quality Database, supplements the popular and widely used

LIVE Image Quality Database for still images [95]. I will then present an eval-

uation of the performance of leading, publicly available objective video QA

algorithms on this database.

Currently, to the best of my knowledge, the only publicly available

subjective data that is widely used in the video QA community comes from

the study conducted by the Video Quality Experts Group (VQEG) as part of

it FR-TV Phase I project in 2000 [2]. There have been significant advances

in video processing technology since 2000, most notably the development of

the H.264/MPEG-4 AVC compression standard that has been adopted widely.

The test videos in the VQEG study are not representative of present generation

encoders and communication systems. The LIVE video quality database in-

cludes videos distorted by H.264 compression, as well as videos resulting from

the transmission of H.264 packetized streams through error prone communica-

tion channels. Videos obtained from lossy transmission through communica-

tion networks exhibit artifacts that are spatially and temporally transient and

appear as glitches in the video. The LIVE database is unique in this respect,

since the VQEG Phase I database does not include such spatio-temporally lo-

calized distortion types. Most of the videos in the VQEG study are interlaced,

leading to visual artifacts in the reference as well as distorted videos. Objec-

tive QA algorithms typically involve multiple processing steps which require

adjustment to handle interlaced signals. De-interlacing causes visual artifacts

associated with the particular algorithm being used, which is unacceptable
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in a QA framework. Additionally, interlaced videos are not representative

of current trends in the video industry such as multimedia applications, video

viewing on computer monitors, progressive High Definition Television (HDTV)

standards and so on. The videos in the LIVE Video QA Database are all cap-

tured in progressive scan formats, allowing researchers to focus on developing

algorithms for QA. Also, the VQEG database was designed to address the

needs of secondary distribution of television and hence, the database spans a

narrow range of quality scores - more than half of the sequences are of very

high quality (MPEG-2 encoded at > 3Mbps). The LIVE database spans a

much wider range of quality - the low quality videos in this database were de-

signed to be of similar quality as videos typical of streaming video applications

on the Internet (for example, Youtube).

Although the VQEG has several other completed and ongoing projects,

the video sequences from none of the subsequent studies have been made public

[96]. The videos in my study represent a wide variety of video content and

distortion types that are representative of present generation video processing

and communication systems. The videos in the LIVE database have been

designed specifically with the intent of challenging objective video QA models.

I also intend to make the results of the study and the video database publicly

available to facilitate comparative evaluation of newer objective models and

to advance the state-of-the-art in perceptual quality evaluation systems.
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5.1 Details of Subjective Study

5.1.1 Source Sequences

I used ten raw, naturalistic source videos obtained from the Technical

University of Munich [97] and the videos are available for download from [98].

All the videos in this database were captured in raw, uncompressed format,

which guarantees that the reference videos are distortion free. I only used the

progressively scanned videos in this database, to avoid problems associated

with video de-interlacing. The videos in the database were captured in High

Definition (HD) format. However, due to resource limitations in displaying

these videos, I downsampled all videos to a resolution of 768X432 pixels. I

chose this resolution to ensure that the aspect ratio of the HD videos are main-

tained, thus minimizing visual distortions. Additionally, the chosen resolution

ensures that the number of rows and columns are multiples of 16, which is

often required by compression systems such as MPEG-2. I downsampled each

video frame by frame using the “imresize” function in Matlab using bicubic

interpolation to minimize distortions due to aliasing.

This database hence contains 10 progressively scanned reference video

sequences, all of which have a spatial resolution of 768X432 pixels. Figures

5.1 and 5.2 show one frame of each reference video. All videos, except blue

sky, were 10 seconds long. The original blue sky sequence contained only 217

frames and is hence of duration 8.68 seconds. The first seven sequences have

a frame rate of 25 frames per second, while the remaining three (Park run,

Shields and Mobile & Calendar) have a frame rate of 50 frames per second. A
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short description of these videos is provided below.

• Blue Sky - Circular camera motion showing a blue sky and some trees

• River Bed - Still camera, shows a river bed containing some pebbles and

water

• Pedestrian area - Still camera, shows some people walking about in a

street intersection

• Tractor - Camera pan, shows a tractor moving across some fields

• Sunflower - Still camera, shows a bee moving over a sunflower in close-up

• Rush hour - Still camera, shows rush hour traffic on a street

• Station - Still camera, shows a railway track, a train and some people

walking across the track

• Park run - Camera pan, a person running across a park

• Shields - Camera pans at first, goes still and then zooms in; shows a

person walking across a display pointing at it

• Mobile & Calendar - Camera pan, the famous toy train moving across

with a calendar moving vertically in the background
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: One frame from each of the reference video sequences used in the
study.
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(a) (b)

(c) (d)

Figure 5.2: One frame from each of the reference video sequences used in the
study.

5.1.2 Test Sequences

I created 15 test sequences from each of the reference sequences using

four different distortion processes. The goal of this study was to develop a

database of videos that will challenge automatic VQA algorithms. I included

diverse distortion types to test the ability of objective models to predict visual

quality consistently across distortions. Compression systems such as MPEG-

2 and H.264 produce fairly uniform distortions/quality in the video, both

spatially and temporally. Network losses, however, cause transient distortions

in the video, both spatially and temporally. Figures 5.3,5.4 and 5.5 show

one frame of the riverbed sequence from each of the four distortion types in

the LIVE database. It is clear that the visual appearance of distortion is
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very different in each of these videos. MPEG-2 and H.264 compressed videos

exhibit typical compression artifacts such as blocking, blur, ringing and motion

compensation mismatches around object edges. Videos obtained from lossy

transmission through wireless networks exhibit errors that are restricted to

small regions of a frame. Videos obtained from lossy transmission through

IP networks exhibit errors in larger regions of the frame. Errors in wireless

and IP networks are also temporally transient and appear as glitches in the

video. The LIVE database is unique in this respect, since the VQEG Phase I

database does not include such spatio-temporally localized distortion types.

The distortion strengths were adjusted manually, as described in the

following, so that the videos obtained from each source and each distortion

category spanned the same range of visual quality. This tests the ability of

objective VQA models to predict visual quality across content and distortion

types consistently. Adjusting distortion strengths perceptually, as I have done

here, is far more effective in challenging objective VQA models than fixing the

compression rates across sequences as is done in most studies including the

VQEG FR-TV Phase I study [2].

5.1.2.1 MPEG-2 compression

The MPEG-2 standard is used in a wide variety of video applications,

most notably DVD’s and digital television broadcast. I included this distor-

tion type due to its widespread use today. There are four MPEG-2 compressed

videos corresponding to each reference in this database. I used the MPEG-2
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(a)

(b)

Figure 5.3: (a) Frame of the reference “riverbed” sequence in the LIVE
database (b) Frame from one of the MPEG-2 compressed test video
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(a)

(b)

Figure 5.4: (a) Frame from one of the H.264 compressed test video (b) Frame
from test video distorted in a simulated IP network
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Figure 5.5: Frame from test video distorted in a simulated wireless network

reference software available from the International Organization for Standard-

ization (ISO) to compress the videos [99].

The bit rate required to compress videos for a specified visual quality

varies dramatically depending on the content. Compression rates were selected

for each reference video such that the test sequences spanned a desired range

of perceptual quality. This selection process poses a challenge to objective

video QA systems and tests their ability to predict visual quality consistently

across different types of content.

I viewed compressed videos generated using a wide variety of bit rates

to select a suitable subset of four MPEG-2 compressed videos. The “best”

video was chosen to be quite close to the reference in visual quality. The

“worst” video was chosen to be of poor quality. However, I took care to avoid
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very low bit rates resulting in videos that are obliterated by MPEG blocking

artifacts. The compression rates varied from 700 Kbps to 4 Mbps depending

on the reference sequence and further details are provided with the database

[100].

5.1.2.2 H.264 compression

H.264 is rapidly gaining popularity due to its superior compression

efficiency as compared to MPEG-2. There are four H.264 compressed videos

corresponding to each reference in this database. I used the JM reference

software (Version 12.3) made available by the Joint Video Team (JVT) [101].

The procedure for selecting the videos was the same as that used to

select MPEG-2 compressed videos. Additionally, I ensured that the “best”

MPEG-2 and H.264 videos were of similar visual quality and similar consider-

ations applied for the other three pairs. Notice that this test the ability of QA

models to consistently predict visual quality across distortion types also. The

compression rates varied from 200 Kbps to 5 Mbps. I observed the superior

performance of H.264 over MPEG-2 and the bit rates used for the “best” and

“worst” H.264 videos were lower than their corresponding MPEG-2 counter-

parts.

5.1.2.3 Transmission over IP Networks

Videos are often transmitted over IP networks in applications such as

video telephony and conferencing, IP based streaming and Video on Demand.
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There are three “IP” videos corresponding to each reference in my database,

that were created by simulating IP losses on an H.264 compressed video stream

created using [101].

An in-depth study of the transport of H.264 video over IP networks

can be found in [102] and many of my design considerations in the video

communication system was based on this study. IP networks offer best effort

service and packet losses occur primarily due to buffer overflow at intermediate

nodes in a network and congestion. The video sequences subjected to errors

in the IP environment contained between one and four slices per frame; I only

used these two options since they result in packet sizes that are typical in IP

networks. Using one slice per frame has the advantage of reducing overhead

due to IP headers at the expense of robustness [102]. Using four slices per

frame increases robustness to errors at the expense of reducing compression

efficiency.

Four IP error pattern supplied by the Video Coding Experts Group

(VCEG), with loss rates of 3%, 5%, 10% and 20%, were used [103]. The error

patterns were obtained by real-world experiments and are recommended by

the VCEG to simulate the Internet backbone performance for video coding

experiments. I created test videos by dropping packets specified in the error

pattern from an H.264 compressed packetized video stream. To enable decod-

ing, I did not drop the first packet (containing the Instantaneous Data Refresh

(IDR)) and the last packet (since the loss of this packet cannot be detected

by the decoder). This is equivalent to assuming that these packets were trans-
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mitted reliably out of band. The resulting H.264 bitstream was then decoded

using [101] and the losses were concealed using the built-in error concealment

mechanism (mode 2 - motion copy) [104].

The procedure for selecting the videos was the same as MPEG-2 com-

pression. However, in this situation, I also paid attention to the type of ob-

served artifact. This is because the observed distortions are different depending

on 2 factors

• Whether an Intra-coded frame (I frame) or Predicted frame (P frame) is

lost - I frame losses result in much more severe and sustained distortions

in the video.

• Whether each frame is transmitted in 1 slice or 4 slices - Loss of an entire

frame when transmitted as a single slice results in much more significant

distortions, than when the frame is transmitted using 4 slices.

I attempted to pick videos that suffer from different types of observed

artifacts, in addition to the consideration that the videos span a desired range

of quality as before. Notice that this choice tests the ability of objective

QA models to predict the visual annoyance levels across different distortion

types, since artifacts arising from compression systems are very different in

appearance from artifacts due to network losses.
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5.1.2.4 Transmission over wireless networks

Video transmission for mobile terminals is envisioned to be a major

application in 3G systems and the superior compression efficiency and error

resilience of H.264 makes it ideal for use in harsh wireless transmission envi-

ronments [105]. There are 4 “wireless” videos corresponding to each reference

in the database, that were created by simulating losses sustained by an H.264

compressed video stream (created using [101]) in a wireless environment.

An in-depth study of the transport of H.264 video over wireless net-

works can be found in [105] and many of my design considerations for the

wireless simulations was based on this study. A packet transmitted over a

wireless channel is susceptible to bit errors due to attenuation, shadowing,

fading and multi-user interference in wireless channels. I assume that a packet

is lost even if it contains a single bit error, an assumption that is often made

in practice [105]. Due to this assumption, a longer packet is more likely to be

lost and I used multiple slices to encode every frame resulting in short packet

sizes. I encoded the video stream such that each packet contains roughly the

same number of bytes (approximately 200 bytes per packet), making their

susceptibility to bit errors almost identical. I simulated errors in wireless envi-

ronments using bit error patterns and software available from the VCEG [106].

The decoding and error concealment techniques are the same for both wireless

and IP simulations.

Observed artifacts in the wireless environment depended on the follow-

ing factors:
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• Whether an I or P frame packet is lost

• Flexible Macroblock Ordering (FMO) - I used both regular and dispersed

modes of FMO in my simulations [105]. In dispersed mode, I used four

packet groups formed by sub-sampling the frame by 2 along both rows

and columns.

Again, I selected videos that suffer from different types of observed arti-

facts and spanned the desired range of quality. Due to the smaller packet sizes

in wireless simulations, the observed artifacts were localized spatio-temporally

and appeared different from the artifacts observed in the IP simulations. I

used these two different simulation environments to test the ability of objec-

tive models to quantify the perceived annoyance of diverse network artifacts.

5.1.3 Subjective Testing Design

I adopted a single stimulus continuous procedure to obtain subjective

quality ratings for the different video sequences. The choice of a single stimulus

paradigm is more suited for a large number of emerging multimedia applica-

tions such as quality monitoring for Video on Demand, internet streaming etc.

Additionally, it significantly reduces the amount of time needed to conduct the

study for the same number of viewers per sequence, as compared to a double

stimulus study. The subjects indicated the quality of the video on a continuous

scale. The continuous scale allows the subject to indicate fine gradations in

visual quality. I believe this is superior to the ITU-R Absolute Category Scale
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(ACR) that uses a 5-category quality judgment which is used in recent VQEG

studies [96]. The subject also viewed each of the reference videos to facilitate

computation of Difference Mean Opinion Scores (DMOS), a procedure known

as hidden reference removal [107, 108].

All the videos in the study were viewed by each subject, which required

one hour of the subject’s time. To minimize the effects of viewer fatigue, I

conducted the study in two sessions of a half hour each, where each subject

viewed half the videos.

I prepared playlists for each subject by arranging the 150 test videos

in a random order using a random number generator. I did not want the

subjects to view successive presentations of test videos that were obtained

from the same reference sequence, to avoid contextual and memory effects in

their judgment of quality. Once a playlist was constructed, a program would

go over the entire playlist to determine if adjacent sequences corresponded

to the same content. If any such pairs were detected, one of the videos was

swapped with another randomly chosen video in the playlist which did not

suffer from the same problem. This list was then split into two halves for the

two sessions.

I wanted the subject to view each of the reference videos once in each

session for the hidden reference removal process. I inserted each of the ten

reference videos to the playlists for each session randomly, again ensuring that

successive playback of the same content did not occur.
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5.1.4 Subjective Testing Display

I developed the user interface for the study on a Windows PC using

MATLAB, in conjunction with the XGL toolbox for MATLAB developed at

UT, Austin [109]. The XGL toolbox allows precise presentation of psychophys-

ical stimuli to human observers. It is extremely important to avoid any errors

in displaying the video such as latencies or frame drops. This can significantly

affect the results of the study since the subject’s quality perception is affected

not by the video itself, but by the display issues. To ensure perfect playback,

all distorted sequences were processed and stored as raw YUV 4:2:0 files. An

entire video was loaded into memory before its presentation began to avoid

any latencies due to slow hard disk access of large video files. The videos were

then played out at the appropriate frame rate for the subject to view. The

XGL toolbox interfaces with the ATI Radeon X600 graphics card in the PC

and utilizes its ability to play out the YUV videos. The videos were viewed

by the subjects on a Cathode Ray Tube (CRT) monitor to avoid the effects

of motion blur and low refresh rates on Liquid Crystal Display (LCD) moni-

tors. The entire study was conducted using the same monitor and I calibrated

the CRT monitor using the Monaco Optix XR Pro device. The XGL toolbox

avoids visual artifacts by synchronizing the display so that the switching be-

tween adjacent frames of the video occur during the retrace of the CRT scan.

The monitor refresh rate was set at 100 Hz to avoid artifacts due to monitor

flicker. Each frame of the 50 Hz videos was displayed for 2 monitor refresh

cycles and each frame of the 25 Hz videos was displayed for 4 monitor refresh
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cycles.

The screen was set at a resolution of 1024×768 pixels and the videos

were displayed at their native resolution to prevent any distortions due to

scaling operations performed by software or hardware. The remaining areas

of the display were black. At the end of the presentation of the video, a

continuous scale for video quality was displayed on the screen, with a cursor

set at the center of the quality scale to avoid biasing the subject’s quality

percept. The quality scale had five labels marked on it to help the subject.

The left end of the scale was marked “Bad” and the right end was marked

“Excellent”. Three equally spaced labels between these were marked “Poor”,

“Fair” and “Good”, similar to the ITU-R ACR scale.

The subject could move the cursor along the scale by moving a mouse.

The subject was asked to press a key to enter their quality score after moving

the cursor to a point on the scale that corresponded to their quality percept.

The subject was allowed to take as much time as they needed to enter their

score. However, they could not change the score once they had entered it

or view the video again. Once the score was entered, the next video was

displayed.

5.1.5 Subjects and Training

All subjects taking part in the study were undergraduate students in

electrical engineering at the University of Texas at Austin. The subject pool

consisted of mostly male students. The subjects were not tested for vision
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problems. Each video was ranked by 38 subjects.

Each subject was individually briefed about the goal of the experiment.

Each subject participated in a short training session at the start of the exper-

iment. The subjects viewed 6 videos in their first session of participation and

3 videos in their second session and were asked to provide quality scores for

these videos also to familiarize themselves with the testing procedure. The

training videos were not part of the database and contained different content.

The training videos were of 10 seconds duration and were also impaired by the

same distortions as the test videos. I selected the training videos to span the

same range of quality as the test videos.

5.2 Processing of Subjective Scores

Let sijk denote the score assigned by subject i to video j in session

k = {1, 2}. First, difference scores dijk are computed by subtracting the

quality assigned by the subject to a video from the quality assigned by the

same subject to the corresponding reference video in the same session.

dijk = sijk − sijrefk (5.1)

The difference scores for the reference videos are 0 in both sessions

and are removed from the matrix. The difference scores per session are then
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converted to Z-scores [110]:

µik =
1

Nik

Nik
∑

j=1

dijk (5.2)

σik =

√

√

√

√

1

Nik − 1

Nik
∑

j=1

(dijk − µik)2 (5.3)

zijk =
dijk − µik

σik

(5.4)

where Nik is the number of test videos seen by subject i in session k.

Every subject sees each test video in the database exactly once, either

in the first session or in the second session. The Z-scores from both sessions

are then combined to create a matrix {zij} of Z-scores, corresponding to the

Z-score assigned by subject i to video j. Therefore, j = {1, 2, . . . , N} indexes

over N = 150 test videos in the LIVE database.

A subject rejection routine is then run on the Z-scores. The procedure

specified for subject rejection in the ITU-R BT 500.11 recommendation for

the double stimulus impairment scale method is used to discard scores from

unreliable subjects [111]. In my study, 9 out of the 38 subjects were rejected

at this stage.

Finally, the subjective quality or the Difference Mean Opinion Score

(DMOS) for each video is computed as the mean of the Z-scores from the M

remaining subjects after subject rejection.

DMOSj =
1

M

M
∑

i=1

zij (5.5)
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5.3 Objective QA Models

The performance of several publicly available objective VQA models

was evaluated on the LIVE database. One of the problems I faced was the

lack of free availability of many VQA algorithms, since many popular VQA

algorithms and tools are licensed and sold for profit. These include the Picture

Quality Analyzer from Tektronix [112]; the Perceptual Evaluation of Video

Quality (PEVQ) from Opticom [113]; the V-Factor from Symmetricom [114];

VQA solutions from SwissQual [115] and Kwill Corporation [116] and several

others [117]. My testing was limited to freely available VQA algorithms due

to resource limitations.

I tested the following VQA algorithms on the LIVE database.

• Peak Signal to Noise Ratio (PSNR) is a simple function of the Mean

Squared Error (MSE) between the reference and test videos and provides

a baseline for objective VQA model performance.

• Structural SIMilarity (SSIM) is a popular method for quality assessment

of still images [15, 17]. I used a frame-by-frame implementation of the

SSIM index for video. Matlab and Labview implementations of SSIM

are available from [118].

• Multi-scale SSIM is an extension of the SSIM paradigm, also proposed

for still images [18], that has been shown to outperform the SSIM index.

I used a frame-by-frame extension of multi-scale SSIM for video. Matlab
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code for the multi-scale SSIM index for still images was obtained from

the authors.

• Speed SSIM is the name I give to the VQA model proposed in [32] that

uses the SSIM index in conjunction with statistical models of visual

speed perception described in [119]. The framework in [32] is shown to

improve the performance of both both PSNR and SSIM. I evaluated the

performance of this model with the SSIM index since that was shown to

be the better performing model in [32]. A software implementation of

this index was obtained from the authors.

• Visual Signal to Noise Ratio (VSNR) is a quality assessment algorithm

proposed for still images [14]. I used a frame-by-frame implementation

of VSNR, available from [120].

• Video Quality Metric (VQM) is a VQA algorithm developed at the

National Telecommunications and Information Administration (NTIA)

[36]. Due to its performance in the VQEG Phase II validation tests, the

VQM algorithm was adopted by the American National Standards Insti-

tute (ANSI) as a national standard, and as international International

Telecommunications Union Recommendations (ITU-T J.144 and ITU-R

BT.1683, both adopted in 2004). VQM is freely available for download

from [121].

• MOtion-based Video Integrity Evaluation (MOVIE) index was described

in Chapter 4. For computational reasons, the MOVIE index was not
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computed at every frame of the video sequence. Instead, the Gabor

filters were centered on every 8th frame of the video and the MOVIE

index was computed only at these frames. Three different versions of

the MOVIE index - the Spatial MOVIE index, the Temporal MOVIE

index and the MOVIE index - were tested in my study.

5.4 Performance of Objective Models

I tested the performance of all objective models using two metrics -

the Spearman Rank Order Correlation Coefficient (SROCC) which measures

the monotonicity of the objective model prediction with respect to human

scores and the Pearson Linear Correlation Coefficient (LCC) after non-linear

regression, which measures the prediction accuracy. I used the logistic function

and the procedure outlined in [2] to fit the objective model scores to the DMOS

scores.

Table 5.1 shows the performance of all models in terms of the SROCC

separately for each distortion type and for the entire LIVE VQA database.

Table 5.2 shows the performance of all models in terms of the LCC separately

for each distortion type and for the entire LIVE VQA database after nonlinear

regression.

Scatter plots of objective scores vs. DMOS for all the algorithms on

the entire LIVE database along with the best fitting logistic functions are

shown in Figures 5.6 and 5.7. My results clearly demonstrate that a carefully

constructed study can expose the obvious limitations of using PSNR as a VQA
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Prediction Model Wireless IP H.264 MPEG-2 All Data
PSNR 0.433 0.321 0.430 0.359 0.368
SSIM 0.522 0.470 0.656 0.561 0.525

Multi-scale SSIM 0.729 0.653 0.705 0.662 0.736
Speed SSIM 0.563 0.473 0.709 0.619 0.585

VSNR 0.702 0.689 0.646 0.591 0.676
VQM 0.721 0.638 0.652 0.781 0.703

Spatial MOVIE 0.793 0.683 0.702 0.697 0.726
Temporal MOVIE 0.647 0.600 0.726 0.804 0.703

MOVIE 0.793 0.671 0.716 0.744 0.740

Table 5.1: Comparison of the performance of VQA algorithms - SROCC

Prediction Model Wireless IP H.264 MPEG-2 All Data
PSNR 0.460 0.411 0.478 0.384 0.401
SSIM 0.546 0.540 0.664 0.576 0.542

Multi-scale SSIM 0.713 0.722 0.688 0.687 0.738
Speed SSIM 0.582 0.578 0.723 0.643 0.596

VSNR 0.699 0.736 0.653 0.675 0.690
VQM 0.735 0.649 0.629 0.797 0.715

Spatial MOVIE 0.795 0.745 0.718 0.714 0.743
Temporal MOVIE 0.659 0.686 0.765 0.817 0.710

MOVIE 0.812 0.730 0.750 0.749 0.761

Table 5.2: Comparison of the performance of VQA algorithms - LCC
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Figure 5.6: Scatter plots of objective VQA scores vs. DMOS for all videos in
the LIVE database. Also shown is the best fitting logistic function. (a) PSNR
(b) SSIM (c) Multi-scale SSIM (d) Speed SSIM
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Figure 5.7: Scatter plots of objective VQA scores vs. DMOS for all videos in
the LIVE database. Also shown is the best fitting logistic function. (a) VSNR
(b) Spatial MOVIE (c) Temporal MOVIE (d) MOVIE
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model. All the VQA models tested in this study improve upon PSNR. Speed

SSIM improves upon using just the SSIM index. The best performing VQA

algorithm amongst the ones tested in the study are the MOVIE index and the

multi-scale SSIM index. VQM emerges as a competitive VQA index, although

it did not perform as well as the MOVIE and the multi-scale SSIM indices.

VSNR proved to be quite competitive with VQM.

5.5 Conclusions

A subjective study to evaluate the effects of present generation video

compression and communication technologies on the perceptual quality of dig-

ital video was presented. This study included 150 videos derived from ten

reference videos using four distortion types and were evaluated by 38 subjects.

The database was unique in terms of content and distortion. I presented

an evaluation of the performance of several publicly available objective VQA

models on this database.
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Chapter 6

Conclusions and Future Work

Successful image quality assessment (IQA) and video quality assess-

ment (VQA) algorithms have the potential to greatly improve digital services

for consumers. Monitoring and controlling the quality of broadcast digital

video streams is an essential goal for improving the Quality of Service in ser-

vices such as High Definition TeleVision (HDTV), video on demand, video

surveillance, digital cinema, video tele-presence, video phones and other mo-

bile devices.

This dissertation studied objective and subjective methods of percep-

tual quality evaluation of digital images and video. In Chapter 3, I presented

an analysis of the structural and information theoretic methods of IQA and ex-

plored their relation to each other, and contrast masking/gain control models

in human vision based IQA models. This analysis underscores the similarities

between diverse approaches to the IQA problem and provides direction for

future research.

In Chapter 4, I proposed a framework for VQA based on motion models.

I developed a spatio-temporal, multi-scale framework that can capture spatial,

temporal and spatio-temporal distortions in digital video and constructed a
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VQA index using this framework known as the MOtion-based Video Integrity

Evaluation (MOVIE) index. I also demonstrated the ability of the MOVIE

index to predict human opinion scores on a large database of videos.

I studied subjective methods of VQA in Chapter 5. I plan to make

the results of my subjective experiments publicly available to the research

community to facilitate future research in the development of objective models.

The performance of several leading objective VQA algorithms was evaluated

using the results of the study. The MOVIE index developed as part of this

dissertation was shown to perform very well in this study and shown to be

competitive with other state-of-the-art methods.

I will now discuss some directions for future research.

6.1 Pooling Strategies

Two of the distortion types in the database described in Chapter 5

resulting from video transmission through lossy wireless and IP networks cause

distortions that are transient, both spatially and temporally. VQA algorithms

need to be able to account for such transient distortions. As part of this study,

I also recorded quality scores in continuous time provided by the subject as

they are viewing the video. This provides a description of the quality of the

video as a function of time. This data can be used to design pooling strategies

for objective VQA algorithms that can correlate with human data scores.
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6.2 Scalable Quality Assessment

The spatial and temporal scale of a video stream is often altered by,

e.g., display or transcoding requirements. It is therefore of interest to perform

IQA/VQA on videos that have been resolution scaled relative to the refer-

ence. Example applications include scalable streaming video over the Internet,

video over wireless netowrks, video display on small mobile devices, in-flight

entertainment screens, High Definition (HD) videos displayed on Standard

Definition (SD) monitors and so on.

When reference and test signals are of different scales, a question that

needs to be addressed is whether the test image is to be compared with the

original reference (I call this “Scale Adaptive IQA/VQA”) or with a modified

reference with scale matched to the test image (I call this “Scale Matched

IQA/VQA”). In the latter case, the algorithm will assess the annoyance of

distortions unrelated to the scaling, while in the former, the rating will also

assess quality as a function of resolution loss. Scale Matched IQA/VQA is

relevant when the endpoint display device is the limiting factor (cell phones,

standard definition televisions etc.). Scale Adaptive IQA/VQA will find broad

application owing to the prevalence of scalable video formats that adjust to

match the QoS needs of the provider.

Subjective studies of scalable IQA/VQA would be of great interest and

value and represent a future direction of research. Further, several full refer-

ence IQA techniques discussed in this dissertation - the multi-scale structural

similarity index, visual information fidelity index, human vision based models -
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perform a decomposition of the reference and test images, often in a multi-scale

fashion. The MOVIE framework decomposes the reference and test videos in

a multi-scale fashion spatio-temporally. Such decompositions facilitate simple

solutions for objective scalable IQA/VQA that warrant further investigation.

6.3 Reduced Reference Quality Assessment

Reduce reference IQA/VQA techniques are desirable since availability

of a reference video imposes large memory and bandwidth requirements. The

MOVIE index can be extended to operate in reduced reference mode, where

reference information reduced to different bit rates is used to evaluate the test

video quality. One strategy could be to use the motion information computed

by MOVIE to select fast moving regions of the video as the reduced reference.

This would account for visual tracking of moving objects by the human eye

and the increased visibility of distortions in these regions.

6.4 Natural Scene Statistics

Studying probabilistic distributions of images and videos encountered

in the natural world on the space of all possible images is an active research

area and a large number of applications in image processing and machine vision

can benefit from statistical models of the input signals they receive. Natural

scene statistical models were used in the information theoretic metrics for still

images and I integrated natural image statistics and optical flow to propose a

new model for the statistics of video signals in the wavelet domain [122]. The
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study of the statistical structure of natural scenes can be pursued further and

used in applications such as video segmentation and surveillance.

6.5 Blind Quality Assessment

No-reference or blind IQA/VQA algorithms attempt to predict the vi-

sual quality of a given image/video without using any other information. This

is an extremely challenging problem since it marks a paradigm shift from

measuring fidelity to measuring quality. Humans have certain expectations of

quality derived from past experience of viewing millions of time-varying im-

agery using our vision systems. Sophisticated models of natural image and

video statistics can be used to develop no reference IQA/VQA algorithms by

equating loss of quality with deviation from expected statistics.
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Appendix 1

Optical Flow Computation Via a New

Multi-scale Approach

The Fleet and Jepson algorithm attempts to find constant phase con-

tours of the outputs of a Gabor filterbank to estimate the optical flow vectors

[86]. Constant phase contours are computed by estimating the derivative of

the phase of the Gabor filter outputs, which in turn can be expressed as a

function of the derivative of the Gabor filter outputs [86]. The algorithm in

[86] uses a 5-point central difference to perform the derivative computation.

However, I chose to perform the derivative computation by convolving the

video sequence with filters that are derivatives of the Gabor kernels, denoted

by h′
x(i), h

′
y(i), h

′
t(i):

h′
x(i) = h(i)

(−x

σ2
+ jU0

)

. (1.1)

Similar definitions apply for the derivatives along y and t directions.

This filter computes the derivative of the Gabor outputs more accurately and

produced better optical flow estimates in my experiments.

The original Fleet and Jepson algorithm uses just a single scale of filters.

I found that using a single scale of filters was not sufficient, since optical flow
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was not computed in fast moving regions of the several video sequences due to

temporal aliasing [82, 86]. I hence used 3 scales of filters to compute motion

by extending the Fleet and Jepson algorithm to multiple scales.

Due to the aperture problem, each Gabor filter is only able to signal

the component of motion that is normal to its own spatial orientation. The

Fleet and Jepson algorithm computes normal velocity estimates at each pixel

for each Gabor filter. Given the normal velocities from the different Gabor

outputs, a linear velocity model is fit to each local region using a least squares

criterion to obtain a 2D velocity estimate at each pixel of the video sequence.

A residual error in the least squares solution is also obtained at this stage. See

[86, 123] for further details.

I compute a 2D velocity estimate at each scale using the outputs of

the Gabor filters at that scale only. It is important not to combine estimates

across scales due to temporal aliasing [82, 86]. I also obtain an estimate of

the residual error in the least squares solution for each scale of the Gabor

filterbank. The final flow vector at each pixel of the reference video is set to

be the 2D velocity computed at the scale with the minimum residual error.

Note that more complex solutions such as coarse to fine warping methods have

been proposed in the literature to combine flow estimates across scales [124–

126]. I chose this approach for simplicity and found that reasonable results

were obtained.

The Fleet and Jepson algorithm does not produce flow estimates with

100% density, i.e. flow estimates are not computed at each and every pixel
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of the video sequence. Instead, optical flow is only computed at pixels where

there is sufficient information to do so. I set the optical flow to zero at all

pixels where the flow was not computed.
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