TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2022 International Solid Freeform Fabrication Symposium
    • View Item
    • Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2022 International Solid Freeform Fabrication Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of Build Orientation on Residual Stress and Microstructure in Inconel 625 Fabricated via Laser Powder Bed Fusion

    Thumbnail
    View/Open
    Effect of Build Orientation on Residual Stress and.pdf (1.502Mb)
    Date
    2022
    Author
    Andurkar, M.
    Prorok, B.C.
    Thompson, S.M.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The reliability of parts produced by Laser Powder Bed Fusion (L-PBF) is still not at a great acceptance level. One of the major defects inherited in parts fabricated from L-PBF is a high level of residual stress. In this study, two build orientations i.e., vertical and diagonal, were used to fabricate Inconel 625 specimens to observe its effects on the residual stress magnitude and grain growth. A novel, Cos-α X-ray diffraction method was used to measure residual stress values along the top surface of the samples. Electron Backscattered Diffraction (EBSD) and kernel average misorientation (KAM) maps were employed to explain residual stress trends and differences between samples. Results indicate that the as-printed vertical sample possessed a higher tensile residual stress (77 ± 15 MPa) compared to the diagonally-printed sample (52 ± 12 MPa). The KAM map of the as-printed vertically oriented sample showed more pronounced local misorientations caused by dislocations compared to the diagonally-printed sample.
    Department
    Mechanical Engineering
    Subject
    Selective Laser Melting
    Nickel Superalloy
    EBSD
    Misorientation
    Microstrain
    URI
    https://hdl.handle.net/2152/117774
    http://dx.doi.org/10.26153/tsw/44653
    Collections
    • 2022 International Solid Freeform Fabrication Symposium

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin