Browsing by Subject "planets and satellites:"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Astrometry, Radial Velocity, And Photometry: The Hd 128311 System Remixed With Data From Hst, Het, And Apt(2014-11) McArthur, Barbara E.; Benedict, G. Fritz; Henry, Gregory W.; Hatzes, Artie; Cochran, William D.; Harrison, Thomas E.; Johns-Krull, Chris; Nelan, Ed; McArthur, Barbara E.; Benedict, G. Fritz; Cochran, William D.We have used high-cadence radial velocity measurements from the Hobby-Eberly Telescope with published velocities from the Lick 3 m Shane Telescope, combined with astrometric data from the Hubble Space Telescope (HST) Fine Guidance Sensors to refine the orbital parameters of the HD 128311 system, and determine an inclination of 55.degrees 95 +/- 14.degrees 55 and true mass of 3.789(+0.924)(-0.432) M-JUP for HD 128311 c. The combined radial velocity data also reveal a short period signal which could indicate a third planet in the system with an M sin i of 0.133 +/- 0.005 M-JUP or stellar phenomena. Photometry from the T12 0.8 m automatic photometric telescope at the Fairborn Observatory and HST are used to determine a photometric period close to, but not within the errors of the radial velocity signal. We performed a cross-correlation bisector analysis of the radial velocity data to look for correlations with the photometric period and found none. Dynamical integrations of the proposed system show long-term stability with the new orbital parameters of over 10 million years. Our new orbital elements do not support the claims of HD 128311 b and c being in mean motion resonance.Item Effects of Nitrogen Photoabsorption Cross Section Resolution on Minor Species Vertical Profiles in Titan's Upper Atmosphere(2015-03) Luspay-Kuti, A.; Mandt, K. E.; Plessis, S.; Greathouse, T. K.; Plessis, S.The significant variations in both measured and modeled densities of minor species in Titan's atmosphere call for the evaluation of possible influencing factors in photochemical modeling. The effect of nitrogen photoabsorption cross section selection on the modeled vertical profiles of minor species is analyzed here, with particular focus on C2H6 and HCN. Our results show a clear impact of cross sections used on all neutral and ion species studied. Affected species include neutrals and ions that are not primary photochemical products, including species that do not even contain nitrogen. The results indicate that photochemical models that employ low-resolution cross sections may significantly miscalculate the vertical profiles of minor species. Such differences are expected to have important implications for Titan's overall atmospheric structure and chemistry.Item Non-Detection Of L-Band Line Emission From The Exoplanet HD189733B(2011-02) Mandell, Avi M.; Deming, L. Drake; Blake, Geoffrey A.; Knutson, Heather A.; Mumma, Michael J.; Villanueva, Geronimo L.; Salyk, Colette; Salyk, ColetteWe attempt to confirm bright non-local thermodynamic equilibrium (non-LTE) emission from the exoplanet HD 189733b at 3.25 mu m, as recently reported by Swain et al. based on observations at low spectral resolving power (lambda/delta lambda approximate to 30). Non-LTE emission lines from gas in an exoplanet atmosphere will not be significantly broadened by collisions, so the measured emission intensity per resolution element must be substantially brighter when observed at high spectral resolving power. We observed the planet before, during, and after a secondary eclipse event at a resolving power lambda/delta lambda = 27, 000 using the NIRSPEC spectrometer on the Keck II telescope. Our spectra cover a spectral window near the peak found by Swain et al., and we compare emission cases that could account for the magnitude and wavelength dependence of the Swain et al. result with our final spectral residuals. To model the expected line emission, we use a general non-equilibrium formulation to synthesize emission features from all plausible molecules that emit in this spectral region. In every case, we detect no line emission to a high degree of confidence. After considering possible explanations for the Swain et al. results and the disparity with our own data, we conclude that an astrophysical source for the putative non-LTE emission is unlikely. We note that the wavelength dependence of the signal seen by Swain et al. closely matches the 2 nu(2) band of water vapor at 300 K, and we suggest that an imperfect correction for telluric water is the source of the feature claimed by Swain et al.Item SDSS-III: Massive Spectroscopic Surveys Of The Distant Universe, The Milky Way, And Extra-Solar Planetary Systems(2011-09) Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Aihara, Hiroaki; Allende Prieto, Carlos; Anderson, Scott F.; Arns, James A.; Aubourg, Éric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; Beers, Timothy C.; Berlind, Andreas A.; Bickerton, Steven J.; Bizyaev, Dmitry; Blanton, Michael R.; Bochanski, John J.; Bolton, Adam S.; Bosman, Casey T.; Bovy, Jo; Brandt, W. N.; Breslauer, Ben; Brewington, Howard J.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burger, Dan; Busca, Nicolas G.; Campbell, Heather; Cargile, Phillip A.; Carithers, William C.; Carlberg, Joleen K.; Carr, Michael A.; Chang, Liang; Chen, Yanmei; Chiappini, Cristina; Comparat, Johan; Connolly, Natalia; Cortes, Marina; Croft. Rupert A. C.; Cunha, Katia; da Costa, Luiz N.; Davenport, James R. A.; Dawson, Kyle; De Lee, Nathan; Porto de Mello, Gustavo F.; de Simoni, Fernando; Dean, Janice; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eiting, Jacob M.; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Femenía Castellá, Bruno; Dutra Ferreira, Leticia; Fitzgerald, Greg; Fleming, Scott W.; Font-Ribera, Andreu; Ford, Eric B.; Frinchaboy, Peter M.; García Pérez, Ana Elia; Gaudi, B. Scott; Ge, Jian; Ghezzi, Luan; Gillespie, Bruce A.; Gilmore, G.; Girardi, Léo; Gott, J. Richard; Gould, Andrew; Grebel, Eva K.; Gunn, James E.; Hamilton, Jean-Christophe; Harding, Paul; Harris, David W.; Hawley, Suzanne L.; Hearty, Frederick R.; Hennawi, Joseph F.; González Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holtzman, Jon A.; Honscheid, Klaus; Inada, Naohisa; Ivans, Inese I.; Jiang, Linhua; Jiang, Peng; Johnson, Jennifer A.; Jordan, Cathy; Jordan, Wendell P.; Kauffmann, Guinevere; Kazin, Eyal; Kirkby, David; Klaene, Mark A.; Knapp, G. R.; Kneib, Jean-Paul; Kochanek, C. S.; Koesterke, Lars; Kollmeier, Juna A.; Kron, Richard G.; Lampeitl, Hubert; Lang, Dustin; Lawler, James E.; Le Goff, Jean-Marc; Lee, Brian L.; Lee, Young Sun; Leisenring, Jarron M.; Lin, Yen-Ting; Liu, Jian; Long, Daniel C.; Loomis, Craig P.; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Ma, Bo; Ma, Zhibo; MacDonald, Nicholas; Mack, Claude; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Maraston, Claudia; Margala, Daniel; Maseman, Paul; Masters, Karen L.; McBride, Cameron K.; McDonald, Patrick; McGreer, Ian D.; McMahon, Richard G.; Mena Requejo, Olga; Ménard, Brice; Miralda-Escudé, Jordi; Morrison, Heather L.; Mullally, Fergal; Muna, Demitri; Murayama, Hitoshi; Myers, Adam D.; Naugle, Tracy; Neto, Angelo Fausti; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; O'Connell, Robert W.; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Daniel J.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pandey, Parul; Parejko, John K.; Pâris, Isabelle; Pellegrini, Paulo; Pepper, Joshua; Percival, Will J.; Petitjean, Patrick; Pfaffenberger, Robert; Pforr, Janine; Phleps, Stefanie; Pichon, Christophe; Pieri, Matthew M.; Prada, Francisco; Price-Whelan, Adrian M.; Raddick, M. Jordan; Ramos, Beatriz H.F.; Reid, I. Neill; Reyle, Celine; Rich, James; Richards, Gordon T.; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Robin, Annie C.; Rocha-Pinto, Helio J.; Rockosi, Constance M.; Roe, Natalie A.; Rollinde, Emmanuel; Ross, Ashley J.; Ross, Nicholas P.; Rossetto, Bruno; Sánchez, Ariel G.; Santiago, Basilio; Sayres, Conor; Schiavon, Ricardo; Schlegel, David J.; Schlesinger, Katharine J.; Schmidt, Sarah J.; Schneider, Donald P.; Sellgren, Kris; Shelden, Alaina; Sheldon, Erin; Shetrone, Matthew; Shu, Yiping; Silverman, John D.; Simmerer, Jennifer; Simmons, Audrey E.; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smee, Stephen; Smith, Verne V.; Snedden, Stephanie A.; Stassun, Keivan G.; Steele, Oliver; Steinmetz, Matthias; Stockett, Mark H.; Stollberg, Todd; Strauss, Michael A.; Szalay, Alexander S.; Tanaka, Masayuki; Thakar, Aniruddha R.; Thomas, Daniel; Tinker, Jeremy L.; Tofflemire, Benjamin M.; Tojeiro, Rita; Tremonti, Christy A.; Vargas Magaña, Mariana; Verde, Licia; Vogt, Nicole P.; Wake, David A.; Wan, Xiaoke; Wang, Ji; Weaver, Benjamin A.; White, Martin; White, Simon D. M.; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. Michael; Yanny, Brian; Yasuda, Naoki; Yèche, Christophe; York, Donald G.; Young, Erick; Zasowski, Gail; Zehavi, Idit; Zhao, Bo; Koesterke, Lars; Shetrone, Matthew D.Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Ly alpha forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z approximate to 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = lambda/lambda Delta approximate to 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R approximate to 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 mu m < lambda < 1.70 mu m) spectra of 105 evolved, late-type stars, measuring separate abundances for similar to 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 ms(-1), similar to 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.Item Seasonal Variability In The Ionosphere Of Uranus(2011-03) Melin, H.; Stallard, T.; Miller, S.; Trafton, L. M.; Encrenaz, T.; Geballe, T. R.; Trafton, L. M.Infrared ground-based observations using IRTF, UKIRT, and Keck II of Uranus have been analyzed as to identify the long-term behavior of the H-3(+) ionosphere. Between 1992 and 2008 there are 11 individual observing runs, each recording emission from the H-3(+) Q branch emission around 4 mu m through the telluric L' atmospheric window. The column-averaged rotational H-3(+) temperature ranges between 715 K in 1992 and 534 K in 2008, with the linear fit to all the run-averaged temperatures decreasing by 8 K year(-1). The temperature follows the fractional illumination curve of the planet, declining from solstice (1985) to equinox (2007). Variations in H-3(+) column density do not appear to be correlated to either solar cycle phase or season. The radiative cooling by H-3(+) is similar to 10 times larger than the ultraviolet solar energy being injected to the atmosphere. Despite the fact that the solar flux alone is incapable of heating the atmosphere to the observed temperatures, the geometry with respect to the Sun remains an important driver in determining the thermospheric temperature. Therefore, the energy source that heats the thermosphere must be linked to solar mechanisms. We suggest that this may be in the form of conductivity created by solar ionization of atmospheric neutrals and/or seasonally dependent magnetospherically driven current systems.Item Transit Timing Observations From Kepler. IV. Confirmation Of Four Multiple-Planet Systems By Simple Physical Models(2012-05) Fabrycky, Daniel C.; Ford, Eric B.; Steffen, Jason H.; Rowe, Jason F.; Carter, Joshua A.; Moorhead, Althea V.; Batalha, Natalie M.; Borucki, William J.; Bryson, Steve; Buchhave, Lars A.; Christiansen, Jessie L.; Ciardi, David R.; Cochran, William D.; Endl, Michael; Fanelli, Michael N.; Fischer, Debra; Fressin, Francois; Geary, John; Haas, Michael R.; Hall, Jennifer R.; Holman, Matthew J.; Jenkins, Jon M.; Koch, David G.; Latham, David W.; Li, Jie; Lissauer, Jack J.; Lucas, Philip; Marcy, Geoffrey W.; Mazeh, Tsevi; McCauliff, Sean; Quinn, Samuel; Ragozzine, Darin; Sasselov, Dimitar; Shporer, Avi; Cochran, William D.; Endl, MichaelEighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems have not been observed. Here we present four sets of light curves from the Kepler spacecraft, each which of shows multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates that the planets are perturbing each other: the observed timing variations match the forcing frequency of the other planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit times, yielding possible values for the planets' masses and eccentricities. As the timespan of timing data increases, dynamical fits may allow detailed constraints on the systems' architectures, even in cases for which high-precision Doppler follow-up is impractical.