Browsing by Subject "Converter topology"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Experimental Investigation of the Performance of Two New Types of Soft-Switching Power Converters for Electric Ships(2015-06) Engelkemeir, F. D.; Gattozzi, A. L; Herbst, J. D; Hebner, R. E; Hallock, G. A.Power electronic converters are significant contributors to system mass, system loss, and system cost in the all-electric ship, and are, therefore, a significant area of interest. This paper investigates the reduction of switching losses in high power (MW level) converters. These losses remain a major obstacle to the development of converters capable of operating at higher frequencies and higher power densities using silicon power electronics. The Auxiliary Resonant Commutated Pole (ARCP) soft-switching converter topology offers the potential for minimization of switching losses, but has some inherent limitations. This paper examines two new converter designs based on the ARCP soft-switching topology that allow for more compact converter units by reducing the semiconductor switching losses generated within them. These concepts have been proven with simulation and laboratory testing of a sub-scale 20 kW test converter configurable in four distinct modes of operation. Efficiency has been measured for the two new ARCP topologies, as well as the original ARCP and standard hardswitching (conventional) technology using an induction motor as a load. New control algorithms to drive the ARCPs switches have also been developed, which improve the performance and reduce the amount of sensors that are required. The new proposed topologies are described and experimental waveforms and efficiency measurements are given.Item High Power Density and High Efficiency Converter Topologies for Electric Ships(IEEE, 2013-04) Herbst, J.D.; Engelkemeir, F.D.; Gattozzi, A.L.Power electronic converters are expected to be significant contributors to system mass, system loss, and system cost in the all-electric ship, and are therefore a significant area of interest. This paper investigates the reduction of switching losses in high power (MW level) converters. These losses remain a major obstacle to the development of converters capable of operating at higher frequencies and higher power densities. The Auxiliary Resonant Commutated Pole (ARCP) soft-switching converter topology offers the potential for minimization of switching losses but has some inherent limitations. This paper examines two new converter designs based on the ARCP soft-switching topology that allow for more compact units by reducing the semiconductor switching losses generated within them. These concepts have been proven in principle by preliminary laboratory testing of a scaled 20 kW converter prototype. The new proposed topologies are described and simulation results and experimental waveforms obtained on the prototype unit are also reported.