Development of tandem mass spectrometric methods for proteome analysis utilizing photodissociation and ion/ion reactions

dc.contributor.advisorBrodbelt, Jennifer S.
dc.creatorShaw, Jared Bryanen
dc.date.accessioned2013-09-13T17:53:09Zen
dc.date.issued2013-08en
dc.date.submittedAugust 2013en
dc.date.updated2013-09-13T17:53:09Zen
dc.descriptiontexten
dc.description.abstractThe utility of 193 nm ultraviolet photodissociation (UVPD) and negative electron transfer dissociation (NETD) for the characterization of peptide anions was systematically evaluated. UVPD outperformed NETD in nearly all metrics; however, both methods provided complementary information to traditional collision induced dissociation (CID) of peptide cations in high throughput analyses. In order to enhance the performance of NETD, activated ion negative electron transfer dissociation (AI-NETD) methods were developed and characterized. The use of low-level infrared photoactivation or collisional activation during the NETD reaction period significantly improved peptide anion sequencing capabilities compared to NETD alone. Tyrosine deprotonation was shown to yield preferential electron detachment upon NETD or UVPD, resulting in N - C[alpha] bond cleavage N-terminal to the tyrosine residue. LC-MS/MS analysis of a tryptic digest of BSA demonstrated that these cleavages were regularly observed under high pH conditions. Transmission mode desorption electrospray ionization (TM-DESI) was coupled with 193 nm UVPD and CID for the rapid analysis and identification of protein digests. Comparative results are presented for TM-DESI-MS/CID and TM-DESI-MS/UVPD analyses of five proteolyzed model proteins. In some cases TM-DESI/UVPD outperformed TM-DESI-MS/CID due to the production of an extensive array of sequence ions and the ability to detect low m/z product ions. 193 nm UVPD was implemented in an Orbitrap mass spectrometer for characterization of intact proteins. Near-complete fragmentation of proteins up to 29 kDa was achieved. The high-energy activation afforded by UVPD exhibited far less precursor ion charge state dependence than conventional methods, and the viability of 193 nm UVPD for high throughput top-down proteomics analyses was demonstrated for the less 30 kDa protein from a fractionated yeast cell lysate. The use of helium instead of nitrogen as the C-trap and HCD cell bath gas and trapping ions in the HCD cell prior to high resolution mass analysis significantly reduced the signal decay rate for large protein ions. As a result, monoclonal IgG1 antibody was isotopically resolved and mass accurately determined. A new high mass record for which accurate mass and isotopic resolution has been achieved (148,706.3391 Da ± 3.1 ppm) was established.en
dc.description.departmentChemistryen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/21197en
dc.language.isoen_USen
dc.subjectMass spectrometryen
dc.subjectUltraviolet photodissociationen
dc.subjectIon/ion reactionsen
dc.subjectBottom-up proteomicsen
dc.subjectTop-down proteomicsen
dc.subjectOrbitrapen
dc.titleDevelopment of tandem mass spectrometric methods for proteome analysis utilizing photodissociation and ion/ion reactionsen
thesis.degree.departmentChemistryen
thesis.degree.disciplineChemistryen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SHAW-DISSERTATION-2013.pdf
Size:
3.76 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: