The height in terms of the normalizer of a stabilizer

Date
2008-05
Authors
Garza, John Matthew, 1975-
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

This dissertation is about the Weil height of algebraic numbers and the Mahler measure of polynomials in one variable. We investigate connections between the normalizer of a stabilizer and lower bounds for the Weil height of algebraic numbers. In the Archimedean case we extend a result of Schinzel [Sch73] and in the non-archimedean case we establish a result related to work of Amoroso and Dvornicich [Am00a]. We establish that amongst all polynomials in Z[x] whose splitting fields are contained in dihedral Galois extensions of the rationals, x³-x-1, attains the lowest Mahler measure different from 1.

Department
Description
text
Keywords
Citation