Nanoscale graphene for RF circuits and systems

Date

2013-08

Authors

Parrish, Kristen Nguyen

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Increased challenges in CMOS scaling have motivated the development of alternatives to silicon circuit technologies, including graphene transistor development. In this work, we present a circuit simulator model for graphene FETs, developed to both fit measured data and predict new behaviors, motivating future research. The model is implemented in Agilent ADS, a circuit level simulator that is commonly used for non-standard transistor technologies, for use with parameter variation analyses, as well as easy integration with CMOS design kits. We present conclusions drawn from the model, including analyses on the effects of contact resistance and oxide scaling. We have also derived a quantum-capacitance limited model, used to intuit intrinsic behaviors of graphene transistors, as well as outline upper bounds on performance. Additionally, the ideal frequency doubler has been examined and compared with graphene, and performance limits for graphene frequency multipliers are elucidated. Performance as a demodulator is also discussed. We leverage this advancement in modeling research to advance circuit- and system-level research using graphene transistor technology. We first explore the development of a GHz planar carbon antenna for use on an RF frontend. This research is further developed in work towards the first standalone carbon radio on flexible plastics. A front end receiver, comprised of an integrated carbon antenna, transmission lines, and a graphene transistor for demodulation, are all fabricated onto one plastic substrate, to be interfaced with speakers for a full radio demo. This complete system will motivate further research on graphene-on-plastic systems.

Description

text

LCSH Subject Headings

Citation