Estimation of CO₂ emissions from petroleum refineries based on the total operable capacity for carbon capture applications

Access full-text files

Date

2021

Authors

Madugula, Adhish Chandra Saketh
Sachde, Darshan
Hovorka, Susan D.
Meckel, Tim A.
Benson, Tracy J.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Carbon capture and storage processes are sought to play a major role in reducing carbon emissions from large point sources. Petroleum refineries, in particular, produce several streams that are CO2-rich, including fluidized catalytic cracking, steam methane reforming, and natural gas combustion processes that generate heat for re- finery operations. Of these, stationary combustion processes account for nearly two-thirds of all CO2 generated within a refinery. In this work, a regression analysis was performed to correlate the size and power requirements for the combined capture, compression, and dehydration process dependent upon a refinery’s operating capacity. Refinery capacity and CO2 generation data from 128 U.S. refineries were normalized, and a linear regression model was developed. A capture, compression, and dehydration process model was developed using Aspen HYSYS for delivery of CO2 (10–15 wt. % in steam) to pipeline specifications (500 ppm H2O, 15.2 MPa). Predicted CO2 emissions were 0.1 to 7.7 % of actual emissions, depending on whether a refinery had a low, medium, or high carbon emission/capacity ratio.

Description

LCSH Subject Headings

Citation

Madugula, A. C. S., Sachde, D., Hovorka, S. D., Meckel, T. A., and Benson, T. J., 2021, Estimation of CO2 emissions from petroleum refineries based on the total operable capacity for carbon capture applications: Chemical Engineering Journal Advances, v. 8, no. 100162, 9 p., http://doi.org/10.1016/j.ceja.2021.100162