Adaptive Voxelization for Rapid Projection Generation in Computed Axial Lithography

Access full-text files

Date

2021

Authors

Coulson, Kevin
Toombs, Joseph
Gu, Magnus
Taylor, Hayden

Journal Title

Journal ISSN

Volume Title

Publisher

University of Texas at Austin

Abstract

Computed axial lithography (CAL) is a tomographic additive manufacturing technology that offers exceptionally fast printing in a wide range of materials. CAL involves pre-computing a sequence of light patterns to be projected into a photopolymer. For a uniform spatial discretization of the target geometry, computational time scales inversely with the cube of the discretization pitch, which makes it challenging to exploit the full space-bandwidth product of available spatial light modulators. This work introduces an adaptive voxelization approach to reduce computational expense. Using one of several proposed mesh-based complexity analyses, a CAD model is recursively subdivided into stacked sub-meshes of varying voxel resolution. These complexity methods can be tailored to emphasize complexity in particular regions. Each sub-mesh is then independently voxelized before projections are generated and optimized in parallel. On a four-core CPU, this method results in a 2 − 6 × speedup with applications in high-precision CAL and other voxel-based additive manufacturing computations.

Description

LCSH Subject Headings

Citation