Accelerated Corrosion Behavior of Additive Manufactured WE43 Magnesium Alloy

Date

2021

Authors

Karunakaran, Rakeshkumar
Ortgies, Sam
Green, Ryan
Barelman, William
Kobler, Ian
Sealy, Michael

Journal Title

Journal ISSN

Volume Title

Publisher

University of Texas at Austin

Abstract

Magnesium alloys are capable of withstanding the high temperatures and pressures needed in oil and gas fracking operations followed by rapid and complete dissolution in days. Dissolvable magnesium plugs are used in fracking to enable longer lateral wellbores by eliminating mill-outs and the associated debris clogging. To increase extraction efficiency, the key technical challenge is determining how to increase the strength of a high corrosion rate magnesium device that enables higher pressures while maintaining high corrosion rates. Topologically modified dissolvable plugs fabricated by additive manufacturing is proposed as a solution to fabricate high strength and high corrosion rate fracture plugs. Corrosion of magnesium is dependent on surface area exposed to corrosive media and is easily manipulated by additive manufacturing. This study highlights the development of optimal powder bed fusion process parameters for WE43 magnesium alloy and investigates the corrosion behavior of printed WE43 in a salt solution concentrated with sodium bicarbonate to initiate highly accelerated corrosion. Printed WE43 corroded three times faster than an as-rolled sample and was driven by the mechanical and materials properties formed by printing.

Description

LCSH Subject Headings

Citation