Coupled geomechanics and multiphase flow modeling in naturally and hydraulically fractured reservoirs

Date

2022-05-05

Authors

Pei, Yanli

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Fluid injection and production in highly fractured unconventional reservoirs could induce complex stress reorientation and redistribution. The strong stress sensitivity of fractured formations may also lead to non-negligible fracture opening or closure under the reservoir loading or unloading process. Hence, a coupled flow and geomechanics model is in high demand to assist with stress prediction and production forecast in unconventional reservoirs. In this dissertation, an enhanced geomechanics model is developed for fractured reservoirs and integrated with the in-house compositional reservoir simulator – UTCOMP for coupled flow and geomechanics modeling. The multiphase flow model is solved using the finite volume method (FVM) with an embedded discrete fracture model (EDFM) to represent flow through complex fractures. Based on static fracture assumption, the finite element method (FEM) is applied to solve the geomechanics model by incorporating fracture effects on rock deformation through pore pressure changes. An iterative coupling procedure is implemented between fluid flow and geomechanics, and the 3D coupled model is applied to predict spatiotemporal stress evolution in single-layer and multilayer unconventional reservoirs. To consider dynamic fracture properties, the geomechanics model is further enhanced by the extended finite element method (XFEM) with a modified linear elastic proppant model. The fracture surface is under the coeffects of pore pressure and proppant particles, and various enrichment functions are introduced to reproduce the discontinuous fields over fracture paths. The enhanced geomechanics model is validated against classical Sneddon and Elliot’s problem and presents a first-order spatial convergence rate. Numerical studies indicate that modeling fracture closure is necessary for poorly propped, highly stressed, or fast depleted reservoirs, and fracture opening can be significant under high permeability and low stiffness conditions. The coupled flow and geomechanics model is finally combined with a displacement discontinuity method (DDM) hydraulic fracture model to establish an integrated reservoir-geomechanics-fracture model for the end-to-end optimization of secondary stimulations. It is applied to Permian Basin and Sichuan Basin tight formations to optimize parent-child well spacing at different infill times. The integrated model provides hands-on guidelines for refracturing and infill drilling in multilayer unconventional reservoirs and can be easily adapted to other basins under their unique data

Description

LCSH Subject Headings

Citation