Performance of fiber-reinforced plastic (FRP) wrapped reinforced concrete elements in a corrosive environment

dc.contributor.advisorFowler, David W.
dc.contributor.advisorJirsa, J. O. (James Otis)
dc.creatorKarpate, Harshda Shriramen
dc.date.accessioned2015-07-20T19:57:44Zen
dc.date.available2015-07-20T19:57:44Zen
dc.date.issued2006-05en
dc.descriptiontexten
dc.description.abstractCorrosion presents one of the greatest threats to the durability of reinforced concrete structures, yet it is also one of the least understood components of the design process for most engineers. The nation's infrastructure is rapidly deteriorating due to years of abuse and fatigue. Therefore, several economic and reliable solutions have been developed to repair the existing damage and extend the design life of structures at risk of corrosion. One popular method for protecting concrete structures from corrosion is the use of fiber-reinforced plastic (FRP) composite wraps. The premise is a simple one: placing an impermeable barrier around the surface of the concrete should prevent harmful substances such as chlorides from entering and corroding the imbedded reinforcing steel. However, little is known about the long-term effectiveness in preventing corrosion in reinforced concrete structures. The FRP wrap may in fact prevent the chlorides from passing through the concrete, however, the same principle might cause chlorides to be trapped beneath the surface and accelerate corrosion. In this study, the long-term behavior of laboratory specimens exposed to an aggressive chloride-rich environment were examined. This project was designed to develop a greater understanding of the long-term effects of FRP wrapping in preventing corrosion in reinforced concrete structures. Although TxDOT project 0_1774 involves both rectangular and cylindrical specimens, the focus of this thesis is on the specific impact of FRP wraps on partially wrapped versus unwrapped columns. The specimens included in this study are comprised of a wide range of construction parameters. However, despite the multitude of varying mix designs a noticeable trend has emerged as a result of this research.en
dc.description.departmentCivil, Architectural, and Environmental Engineeringen
dc.format.mediumelectronicen
dc.identifier.urihttp://hdl.handle.net/2152/30247en
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.rights.restrictionRestricteden
dc.subjectCorrosionen
dc.subjectConcrete structuresen
dc.subjectFiber-reinforced plasticen
dc.subjectFRPen
dc.titlePerformance of fiber-reinforced plastic (FRP) wrapped reinforced concrete elements in a corrosive environmenten
dc.typeThesisen
thesis.degree.departmentCivil, Architectural, and Environmental Engineeringen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Scienceen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
txu-oclc-70832982.pdf
Size:
2.83 MB
Format:
Adobe Portable Document Format
Description:
Access restricted to UT Austin EID holders

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.66 KB
Format:
Item-specific license agreed upon to submission
Description: