pH-induced flocculation/deflocculation process for harvesting microalgae from water

dc.contributor.advisorKinney, Kerry A.en
dc.contributor.advisorKatz, Lynn Ellenen
dc.contributor.advisorKinney, Kerry A.
dc.contributor.advisorKatz, Lynn E.
dc.creatorChoi, Jin-Yong, Ph. D.en
dc.date.accessioned2014-09-17T20:40:56Zen
dc.date.issued2014-08en
dc.date.submittedAugust 2014en
dc.date.updated2014-09-17T20:40:57Zen
dc.descriptiontexten
dc.description.abstractHistorically, the presence of microalgae (algae hereafter) in natural waters has been viewed as a nuisance due to its adverse impact on water quality. More recently, however, algae are being investigated as potential sources of biofuel and a range of natural products. These applications require the development of large-scale cultivation systems for mass production that include growth, harvesting, concentration, and product recovery components. While challenges still remain with respect to many of the processes involved in mass production, one of the most technically and economically challenging steps is harvesting the algae from dilute growth cultures, especially in systems where chemical additives are of concern either within the algae concentrate or the effluent water. For this reason, a pH-induced flocculation/deflocculation method using the hydroxides of alkali or alkaline earth metals (e.g., lime, caustic soda) is of particular interest for algae harvesting as Na, Ca and Mg are typically present in natural waters. The goal of this research was to determine the underlying mechanisms responsible for algae coagulation by magnesium and calcium and to evaluate the potential of these mechanisms for harvesting algae for a range of synthetic and field source water chemistries. In the first two phases of this research, the mechanisms for coagulation with magnesium and calcium were studied independently. A series of bench-scale experiments were designed to isolate the potential mechanisms of algae destabilization associated with each of these cations as a function of water chemistry, and microscopic analyses were performed to characterize the flocculated algae/precipitate mixtures. In the third phase of this research, removal of algae in field source waters was evaluated with respect to the underlying science elucidated in the previous phases. The results indicate that the dominant algae destabilization mechanism associated with magnesium shifts from Mg adsorption/charge neutralization to Mg(OH)₂[subscript (S)] precipitation-enhanced coagulation with increasing pH. Moreover, dissolved Mg²⁺ adsorption to the algae surface led to effective algae coagulation, while minimizing the mass of precipitated Mg(OH)₂[subscript (S)] . For Ca, this research identified the importance of the nucleation process (heterogeneous vs. homogeneous nucleation) on algae removal efficiency. Heterogeneous nucleation is a key factor for optimizing algae removal; thus, the degree of oversaturation with respect to CaCO₃[subscript (S)] is a crucial operating parameter. This research demonstrated that the algae harvesting process using pH-induced flocculation/deflocculation method can be optimized for a wide range of source waters if the water chemistry (e.g. pH, ion concentration, alkalinity, ionic strength) is properly incorporated into the system design.en
dc.description.departmentCivil, Architectural, and Environmental Engineeringen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/25946en
dc.language.isoenen
dc.subjectMicroalgaeen
dc.subjectHarvestingen
dc.subjectCoagulationen
dc.subjectAdsorptionen
dc.subjectPrecipitationen
dc.subjectCalciumen
dc.subjectMagnesiumen
dc.subjectFlocculationen
dc.titlepH-induced flocculation/deflocculation process for harvesting microalgae from wateren
dc.typeThesisen
thesis.degree.departmentCivil, Architectural, and Environmental Engineeringen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CHOI-DISSERTATION-2014.pdf
Size:
3.14 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: