Regulation of the dopamine transporter: a role for ethanol and protein interactions

dc.contributor.advisorHarris, R. Adronen
dc.creatorMaiya, Rajani Padmanabhen
dc.date.accessioned2008-08-28T21:57:41Zen
dc.date.available2008-08-28T21:57:41Zen
dc.date.issued2004en
dc.description.abstractThe dopamine (DA) transporter (DAT) serves to clear released DA from the synaptic cleft and is an important part of the mesolimbic DA system, which mediates the rewarding and reinforcing effects of various drugs of abuse. Several studies suggest that the function of DAT is regulated by protein-protein interactions and signaling systems that alter cellular trafficking of DAT. Ethanol potentiates DAT function in Xenopus oocytes expressing DAT in a manner consistent with altered cellular trafficking. In contrast to ethanol’s effects on DAT, the function of the related norepinephrine transporter (NET) is inhibited by ethanol. To delineate mechanisms of ethanol action on DAT, chimeras were generated between DAT and NET. The results of these as well as site directed mutagenesis experiments revealed ethanol sensitive sites in the first intracellular loop of DAT. The absence of consensus phosphorylation sites in this loop led to the hypothesis that ethanol modulates the interaction between DAT and a putative regulatory protein important for ethanol-induced trafficking of DAT and that this interaction occurs at the first intracellular loop. To identify proteins and signaling pathways that might regulate DAT function, an interaction proteomics based approach was used to isolate and identify proteins associated with DAT. These studies revealed that DAT is part of a large multiprotein complex consisting of 21 proteins that can be classified as ion channels, trafficking proteins, extracellular matrix associated and cytoskeletal proteins. Finally, the effects of ethanol on DAT trafficking were ascertained by examining ethanol-induced changes in DAT function in several cell types. Studies on MDCK cells stably expressing GFP-DAT suggest that ethanol potentiates DAT function in this cell type. SH-SY5Y cells stably expressing DAT were also examined for ethanol effects on DAT function. Ethanol produced a 25% enhancement in DAT function in these cells, which was not statistically significant. The effects of ethanol on DAT trafficking in neuronal cells were observed by using a sindbis viral construct encoding GFP-DAT. The experiments outlined above have led to the identification of a novel role for DAT in ethanol-induced neuroadaptation and in the identification of several novel proteins that could modulate DAT function.
dc.description.departmentInstitute for Cellular and Molecular Biologyen
dc.format.mediumelectronicen
dc.identifierb59327832en
dc.identifier.oclc57894621en
dc.identifier.proqst3150690en
dc.identifier.urihttp://hdl.handle.net/2152/1366en
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshDopamineen
dc.subject.lcshBiological transport, Activeen
dc.titleRegulation of the dopamine transporter: a role for ethanol and protein interactionsen
dc.type.genreThesisen
thesis.degree.departmentCellular and Molecular Biology, Institute foren
thesis.degree.disciplineMolecular Biologyen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
maiyar34683.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.65 KB
Format:
Plain Text
Description: