TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Groundwater inflow into rock tunnels

    Thumbnail
    View/Open
    CHEN-DISSERTATION.pdf (7.889Mb)
    Date
    2010-08
    Author
    Chen, Ran
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Prediction of groundwater inflow into rock tunnels is one of the essential tasks of tunnel engineering. Currently, most of the methods used in the industry are typically based on continuum models, whether analytical, semi-empirical, or numerical. As a consequence, a regular flow along the tunnel is commonly predicted. There are also some discrete fracture network methods based on a discontinous model, which typically yield regular flow or random flow along the tunnel. However, it was observed that, in hard rock tunnels, flow usually concentrates in some areas, and much of the tunnel is dry. The reason is that, in hard rock, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern. A new method is developed in this work, which can model the fracture clustering and reproduce the flow concentration. After elaborate literature review, a new algorithm is developed to simulate fractures with clustering properties by using geostatistics. Then, a discrete fracture network is built and simplified. In order to solve the flow problem in the discrete fracture network, an existing analytical-numercial method is improved. Two case studies illustrate the procedure of fracture simulation. Several ideal tunnel cases and one real tunnel project are used to validate the flow analysis. It is found that fracture clustering can be modeled and flow concentration can be reproduced by using the proposed technique.
    Department
    Civil, Architectural, and Environmental Engineering
    Description
    text
    Subject
    Groundwater
    Tunnels
    Discrete fracture network
    Geostatistics
    Fracture simulation
    Underground excavations
    Tunnel engineering
    URI
    http://hdl.handle.net/2152/ETD-UT-2010-08-1677
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin