Thermal Modeling of Metal Powder-Based Selective Laser Sintering

Access full-text files

Date

2005-08-03

Authors

Chen, Tiebing
Zhang, Yuwen

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In order to get a better understanding of Selective Laser Sintering (SLS) process of the metal powders, three-dimensional modeling of laser sintering of a metal powder mixture that contains two kinds of metal powder with significantly different melting points under a moving Gaussian laser beam is investigated numerically. Laser induced melting and resolidification accompanied by shrinkage are modeled using a temperature transforming model. The liquid flow of the melted low melting point metal driven by capillary and gravity forces is also included in the physical model. Both complete and partial shrinkages are considered in the model. Simulations are performed for both single line laser scanning and multiple-line laser scanning. The numerical results are compared with experimental results and a detailed parametric study is performed. The effects of the moving heat source intensity, the scanning velocity, the thickness of the powder layer and the number of existing sintered layers underneath on the sintering depth, the shape of the heat affected zone (HAZ) and the temperature distribution are discussed. The optimized dimensionless moving heat source intensity increases with increasing scanning velocity in order to achieve the desired sintering depth and bond the newly sintered layer to the previously sintered layers.

Description

LCSH Subject Headings

Citation