TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The role of bacteria in the deposition and early diagenesis of the Posidonienschiefer, a Jurassic oil shale in southern Germany

    Thumbnail
    View/Open
    txu-oclc-19531066[1].pdf (63.72Mb)
    Date
    1988-05
    Author
    Hiebert, Franz Kunkel
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The Jurassic (Toarcian) Posidonienschiefer of southern Germany is famous for its well preserved vertebrate fossils and its high organic content. The majority of the Posidonienschiefer (10 meters thick in the study area) consists of the Bituminous Shale, a fossiliferous laminated illite claystone. Two thin (30-40 mm) clayey pyritic biomicrosparites, the Upper and Lower Schlacken, interrupt the Bituminous Shale. Geologists who have studied the Posidonienschiefer disagree about the exact nature of its depositional environment. The argument centers on the interpretation of an impoverished benthic fauna and whether or not the water column directly above the sediment-water interface was anoxic or normally oxygenated. Kauffman (1981) proposed that an algal/fungal mat located at or near the sediment/water interface marked the boundary between aerobic and anaerobic conditions during deposition. The purpose of my research was to investigate the geologic conditions during deposition and early diagenesis of the Bituminous Shale and the Schlacken and to search for evidence of microbial activity. A detailed petrologic investigation of these two lithologies found no evidence of an algal/fungal mat, but did reveal the important contribution of microbial activity in the formation of pyrite and calcite cement. The Bituminous Shale was deposited in a low-energy tropical seaway. The upper water-column supported a diverse marine fauna. The aerobic/anaerobic boundary in the water column may have been located several millimeters above the sediment/water interface. Pore waters of the ocean-floor mud were dysaerobic to anaerobic. Occasional oxygenation events allowed opportunistic benthic organisms to colonize the sea-floor. Compaction of the Bituminous Shale occured prior to cementation of original porosity. Framboidal pyrite was formed during sulfidic diagenesis under anaerobic, but open, sediment/pore water conditions. Euhedral pyrite formed later as communication between pores became restricted during sediment compaction. The skeletal grains of the Schlacken formed as a winnowed lag deposit of Bituminous Shale sediment. During the early stages of sulfidic diagenesis the winnowed beds were rapidly cemented in a concretion-like sheet. Early cementation preserved delicate algal spores and clay fabric. Fossil bacteria were discovered in the calcite cement of the Schlacken by modified petrographic techniques, and confirmed with the scanning electron microscope. Experiments in which live bacteria were gradually entrapped in halite produced a crystal fabric identical to that of the fossiliferous calcite cement of the Schlacken. The microbial production of bicarbonate and ammonia during sulfidic diagenesis played a significant role in altering local geochemical conditions in the Schlacken sediment and initiated the precipitation of calcite cements. Fossil bacteria in the cements of the Schlacken are direct evidence of the presence and entrapment of bacteria during cementation, but do not conclusively prove their active role in the formation of calcite.
    Department
    Geological Sciences
    Description
    text
    Subject
    Micropaleontology
    Sedimentation and deposition
    Diagenesis
    Oil-shales
    Southern Germany
    Posidonienschiefer
    Jurassic
    Stratigraphic geology
    URI
    http://hdl.handle.net/2152/6770
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin