• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting ion adsorption onto the iron hydroxide goethite in single and multi-solute systems

    Icon
    View/Open
    MANGOLD-DISSERTATION-2013.pdf (1.917Mb)
    Date
    2013-12
    Author
    Mangold, Jeremiah Edward
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Surface complexation models (SCMs) have proven to be a useful tool in predicting ion adsorption at the mineral – water interface. In particular, previous research has shown that the Diffuse Layer Model (DLM), Constant Capacitance Model (CCM), and Triple Layer Model (TLM), are all capable of predicting ion adsorption in relatively simple single solute systems. To better simulate the environmental conditions experienced by groundwater sources present in the Earth’s subsurface, experimental adsorption studies have been conducted for more complex multi-solute systems. Under these conditions, SCMs have not proven to be reliable in consistently predicting ion adsorption behavior for the adsorbates of interest. This inability of these SCMs to predict ion adsorption for more complex, multi-solute systems is thought to stem from the variable site density (NS) values utilized in these models. In this research, a methodology was developed for characterizing mineral surface heterogeneity that allows for the different site density values predicted from crystallography, microscopic imaging, tritium exchange, surface saturation data, and surface charging data to all be explained using a single unified theory. This methodology was applied to a goethite mineral sample used in performing batch adsorption studies in single and bi-solute systems with Cd(II), Pb(II), and Se(IV). The adsorption behavior of these adsorbates onto the goethite sample was successfully predicted using the Charge Distribution Multi-Site Complexation (CD-MUSIC) Model and surface complexes consistent with spectroscopic data and computational molecular modeling simulations. A second, separate modeling study was performed using CD-MUSIC to predict Hg(II) adsorption onto different goethite samples of varying size and crystal morphology in single and multi-solute systems. In this study, site density values were predicted for the mineral samples studied utilizing a linear relationship observed for goethite between specific surface area and proton reactive site density. The CD-MUSIC model proved successful in predicting Hg(II) adsorption over all conditions studied while employing only surface complexes consistent with molecular scale analyses. In addition, a novel method for quantifying carbonate’s presence in experimental systems was developed.
    Department
    Civil, Architectural, and Environmental Engineering
    Description
    text
    Subject
    Surface complexation modeling
    CD-MUSIC
    Goethite
    Cadmium
    Lead
    Selenite
    Adsorption modeling
    URI
    http://hdl.handle.net/2152/23380
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin