The molecular phylogeny of Pectis L. (Tageteae, Asteraceae), with implications for taxonomy, biogeography, and the evolution of C4 photosynthesis

Date

2012-05

Authors

Hansen, Debra Rae

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This study examines the evolutionary history of Pectis L., a neotropical genus of ~90 species of xeric-adapted, herbaceous, annuals and perennials. Pectis is rare among the Asteraceae, as it uses C₄ photosynthesis, a complex suite of traits that concentrates carbon around Rubisco. Plants with C₄ photosynthesis do well in environments of high light and high heat, and the C₄ syndrome is thought to have evolved as a response to such environments. Pectis is most diverse in Mexico, the Caribbean Islands, and South America, and its distribution mirrors the disjunctions of patches of desert, thornscrub, coastal plains, savanna, and openings in seasonally-dry tropical forests and oak-pine woodlands. Vicariance and long-distance dispersal theories can explain the patchy distribution of xeric-adapted plants, as well as the origin of Caribbean species. To answer evolutionary questions about a group, one must understand how its members are related. The most comprehensive taxonomic treatment of Pectis is over 100 years old, and includes only North American species. Recent revisions still leave half the species unassigned to section. Molecular studies have found Pectis sister to, or encompassing, the genus Porophyllum. To infer evolutionary relationships between and within Pectis and Porophyllum, DNA from the nuclear and chloroplast genomes of 78 Pectis and 22 Porophyllum species were sampled, sequenced, and analyzed. The molecular phylogeny was used to suggest updated sections based on monophyletic groups. To infer the photosynthetic pathway of Pectis and Porophyllum species, carbon isotope ratios were obtained from 62 Pectis and 18 Porophyllum species. The timing and location of the evolution of Pectis and Porophyllum has implications for the evolution of C₄ photosynthesis. The carbon isotope data were combined with the phylogeny to determine the extent and direction of the evolution of C₄ photosynthesis, and the timing of its evolution was inferred from a fossil-calibrated analysis using chloroplast data from species across the Asteraceae. Distribution data was combined with the Pectis phylogeny to answer questions regarding the biogeographical history of Pectis, including questions regarding its disjuncted distribution, the timing of the evolution of desert species, and the timing and pattern of dispersal to and from the Caribbean Islands.

Department

Description

text

LCSH Subject Headings

Citation