Synthesis and characterization of germanium-based nanocrystals

Date

2021-04-06

Authors

Kim, Hyun Gyung

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Approaches to colloidal synthesis have rapidly developed to control the size, shape, and composition of various semiconductors, offering cost reductions, controllability, and scalability. Of semiconductor materials, germanium nanomaterials are known to be the most difficult to synthesize in solution-based methods because of their high crystallization temperature. Zero-dimensional germanium nanocrystals were synthesized by the heat-up method, without any strong reducing agent. Subsequently, finely controlled size-selective precipitation narrowed size distributions, and size-selected nanocrystals successfully created a monolayer germanium nanocrystals superlattice. One-dimensional germanium nanorods were synthesized by the solution–liquid–solid method using tin nanoparticles as seeds. By forming a liquid alloy with the tin seed at the eutectic temperature, which is much lower than the crystallization temperature, germanium nanorods were grown from the tin seed. A monophenylsilane enhanced the yield of germanium nanorods by promoting the phenyl redistribution of diphenylgermane, a germanium precursor. Using a mixture of HCl and HF, tin seeds were completely removed from the tips of the germanium nanorods, leaving germanium crystalline nanorods. Nonvolatile memories, a key component in various electronics and portable systems, include phase-change memory, a leading technology that has seen exponential growth in demand over the last decade. One important class of phase change materials are compounds on the GeTe–Sb2Te3 tie line. Despite interesting properties of the nanomaterials, colloidal synthesis of phase change material nanocrystals has only been rarely reported. In the present study, three representative phase change material nanocrystals, GeTe, Sb2Te3, and Ge2Sb2Te5, were successfully synthesized using the hot-injection method. A poly(vinylpyrrolidinone)–hexadecane (PVP–HDE) polymer was essential for the nanocrystal dispersion and making ternary Ge2Sb2Te5 nanocrystals. Two solvents, oleylamine and trioctylphosphine, were studied for synthesizing all three nanocrystals and reveal the conversion chemistry of phase change material precursors.

Description

LCSH Subject Headings

Citation