Browsing by Subject "sky survey"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item The Apache Point Observatory Galactic Evolution Experiment: First Detection of High-Velocity Milky Way Bar Stars(2012-08) Nidever, David L.; Zasowski, Gail; Majewski, Steven R.; Bird, Jonathan; Robin, Annie C.; Martinez-Valpuesta, Inma; Beaton, Rachael L.; Schoenrich, Ralph; Schultheis, Mathias; Wilson, John C.; Skrutskie, Michael F.; O'Connell, Robert W.; Shetrone, Matthew; Schiavon, Ricardo P.; Johnson, Jennifer A.; Weiner, Benjamin; Gerhard, Ortwin; Schneider, Donald P.; Prieto, Carlos Allende; Sellgren, Kris; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, Jon; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Perez, Ana Elia Garcia; Holtzman, Jon; Hearty, Fred R.; Malanushenko, Elena; Malanushenko, Viktor; Muna, Demitri; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie; Weaver, Benjamin A.; Shetrone, MatthewCommissioning observations with the Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have produced radial velocities (RVs) for similar to 4700 K/M-giant stars in the Milky Way (MW) bulge. These high-resolution (R similar to 22,500), high-S/N (>100 per resolution element), near-infrared (NIR; 1.51-1.70 mu m) spectra provide accurate RVs (epsilon(V) similar to 0.2 km s(-1)) for the sample of stars in 18 Galactic bulge fields spanning -1 degrees < l < 20 degrees, vertical bar b vertical bar < 20 degrees, and delta > -32 degrees. This represents the largest NIR high-resolution spectroscopic sample of giant stars ever assembled in this region of the Galaxy. A cold (sigma(V) similar to 30 km s(-1)), high-velocity peak (V-GSR approximate to + 200 km s(-1)) is found to comprise a significant fraction (similar to 10%) of stars in many of these fields. These high RVs have not been detected in previous MW surveys and are not expected for a simple, circularly rotating disk. Preliminary distance estimates rule out an origin from the background Sagittarius tidal stream or a new stream in the MW disk. Comparison to various Galactic models suggests that these high RVs are best explained by stars in orbits of the Galactic bar potential, although some observational features remain unexplained.Item Continuum Observations At 350 Microns Of High-Redshift Molecular Emission Line Galaxies(2009-12) Wu, Jingwen Wu; Vanden Bout, Paul A.; Evans, Neal J.; Dunham, Michael M.; Wu, Jingwen Wu; Evans, Neal J.; Dunham, Michael M.We report observations of 15 high-redshift (z = 1-5) galaxies at 350 mu m using the Caltech Submillimeter Observatory and Submillimeter High Angular Resolution Camera II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates (SFRs), total dust masses, and minimum source size estimates are derived. These galaxies have SFRs and star formation efficiencies comparable to other high-redshift molecular emission line galaxies. The results are used to test the idea that star formation in these galaxies occurs in a large number of basic units, the units being similar to star-forming clumps in the Milky Way. The luminosity of these extreme galaxies can be reproduced in a simple model with (0.9-30) x10(6) dense clumps, each with a luminosity of 5 x 10(5) L(circle dot), the mean value for such clumps in the Milky Way. Radiative transfer models of such clumps can provide reasonable matches to the overall spectral energy distributions (SEDs) of the galaxies. They indicate that the individual clumps are quite opaque in the far-infrared. Luminosity-to-mass ratios vary over two orders of magnitude, correlating strongly with the dust temperature derived from simple fits to the SED. The gas masses derived from the dust modeling are in remarkable agreement with those from CO luminosities, suggesting that the assumptions going into both calculations are reasonable.Item Discovery of A GeV Blazar Shining Through the Galactic Plane(2010-08) Vandenbroucke, J.; Buehler, R.; Ajello, M.; Bechtol, K.; Bellini, A.; Bolte, M.; Cheung, C. C.; Civano, F.; Donato, D.; Fuhrmann, L.; Funk, S.; Healey, S. E.; Hill, A. B.; Knigge, C.; Madejski, G. M.; Romani, R. W.; Santander-Garcia, M.; Shaw, M. S.; Steeghs, D.; Torres, M. A. P.; Van Etten, A.; Williams, Kurtis A.; Williams, Kurtis A.The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = -1 degrees.2) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. We report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck Low-Resolution Imaging Spectrometer observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray absorption, and multi-band variability indicate that this new GeV source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width > 5 angstrom, this blazar belongs in the flat-spectrum radio quasar category.Item Dusty Disks Around Central Stars Of Planetary Nebulae(2014-06) Clayton, Geoffrey C.; De Marco, Orsola; Nordhaus, Jason; Green, Joel; Rauch, Thomas; Werner, Klaus; Chu, You-Hua; Green, Joel D.Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 mu m were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 mu m excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 mu m excess and confirmed or possible binarity of the central star.Item Extracting Angular Diameter Distance And Expansion Rate Of The Universe From Two-Dimensional Galaxy Power Spectrum At High Redshifts: Baryon Acoustic Oscillation Fitting Versus Full Modeling(2009-03) Shoji, Masatoshi; Jeong, Donghui; Komatsu, Eiichiro; Shoji, Masatoshi; Jeong, Donghui; Komatsu, EiichiroWe present a method for extracting the angular diameter distances, D(A), and the expansion rates, H, of the universe from the two-dimensional baryon acoustic oscillations (BAO) in the galaxy power spectrum. Our method builds upon the existing algorithm called the "fit-and-extract" (FITEX) method, which allows one to extract only D(A)(2)/H from a spherically averaged one-dimensional power spectrum. We develop the FITEX-2d method, an extension of the FITEX method, to include the two-dimensional information, which allows us to extract D(A) and H simultaneously. We test the FITEX-2d method using the Millennium Simulation as well as simplified Monte Carlo simulations with a bigger volume. The BAOs, however, contain only a limited amount of information. We show that the full modeling, including the overall shape of the power spectrum, yields much better determinations of D(A) and H, hence the dark energy equation of Stateparameters such as w(0) and w(a), than the BAO-only analysis by more than a factor of 2, provided that nonlinear effects are under control.Item Implementation And Testing Of The First Prompt Search For Gravitational Wave Transients With Electromagnetic Counterparts(2012-03) Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Ceron, E. A.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, T. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P. F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J. P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhillon, V.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. D. P.; Di Virgilio, A.; Diaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J. C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endroczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fridriksson, J. K.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gaspar, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; Gonzalez, G.; Gorodetsky, M. L.; Gossler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J. F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Homan, J.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Laas-Bourez, M.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Luck, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McDaniel, P.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Muller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pold, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Racz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Rapoport, S.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosinska, D.; Rover, C.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; de la Jordana, L. S.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaria, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thuring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Vicere, A.; Villar, A. E.; Vinet, J. Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zendri, J. P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Akerlof, C.; Boer, M.; Fender, R.; Gehrels, N.; Klotz, A.; Ofek, E. O.; Smith, M.; Sokolowski, M.; Stappers, B. W.; Steele, I.; Swinbank, J.; Wijers, Ramj; Zheng, W.; Frei, M.; Matzner, R. A.Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec. 17, 2009 to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with similar to 50% or better probability with a few pointings of wide-field telescopes.Item The Open Cluster Chemical Analysis and Mapping Survey: Local Galactic Metallicity Gradient with APOGEE Using SDSS DR10(2013-11) Frinchaboy, Peter M.; Thompson, Benjamin; Jackson, Kelly M.; O'Connell, Julia; Meyer, Brianne; Zasowski, Gail; Majewski, Steven R.; Chojnowksi, S. Drew; Johnson, Jennifer A.; Allende Prieto, Carlos; Beers, Timothy C.; Bizyaev, Dmitry; Brewington, Howard; Cunha, Katia; Ebelke, Garrett; Perez, Ana; Elia Garcia; Hearty, Frederick R.; Holtzman, Jon; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Marchante, Moses; Meszaros, Szabolcs; Muna, Demitri; Nidever, David L.; Oravetz, Daniel; Pan, Kaike; Schiavon, Ricardo P.; Schneider, Donald P.; Shetrone, Matthew; Simmons, Audrey; Snedden, Stephanie; Smith, Verne V.; Wilson, John C.; Shetrone, MatthewThe Open Cluster Chemical Analysis and Mapping (OCCAM) survey aims to produce a comprehensive, uniform, infrared-based data set for hundreds of open clusters, and constrain key Galactic dynamical and chemical parameters from this sample. This first contribution from the OCCAM survey presents analysis of 141 members stars in 28 open clusters with high-resolution metallicities derived from a large uniform sample collected as part of the Sloan Digital Sky Survey III/Apache Point Observatory Galactic Evolution Experiment. This sample includes the first high-resolution metallicity measurements for 22 open clusters. With this largest ever uniformly observed sample of open cluster stars we investigate the Galactic disk gradients of both [M/H] and [alpha/M]. We find basically no gradient in [alpha/M] across 7.9 kpc <= R-GC <= 14.5 kpc, but [M/H] does show a gradient for R-GC < 10 kpc and a significant flattening beyond R-GC = 10 kpc. In particular, whereas fitting a single linear trend yields an [M/H] gradient of -0.09 +/- 0.03 dex kpc(-1)-similar to previously measure gradients inside 13 kpc-by independently fitting inside and outside 10 kpc separately we find a significantly steeper gradient near the Sun (7.9 <= R-GC <= 10) than previously found (-0.20 +/- 0.08 dex kpc(-1)) and a nearly flat trend beyond 10 kpc (-0.02 +/- 0.09 dex kpc(-1)).Item the SDSS-III APOGEE Spectral Line List for H-Band Spectroscopy(2015-12) Shetrone, Matthew; Bizyaev, D.; Lawler, James E.; Prieto, Carlos Allende; Johnson, J. A.; Smith, V. V.; Cunha, K.; Holtzman, J.; Perez, A. E. G.; Meszaros, S.; Sobeck, J.; Zamora, O.; Garcia-Hernandez, D. A.; Souto, D.; Chojnowski, D.; Koesterke, L.; Majewski, S.; Zasowski, G.; Shetrone, MatthewWe present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.Item The Stellar Content Of The Hamburg/ESO Survey - IV. Selection Of Candidate Metal-Poor Stars(2008-06) Christlieb, N.; Schorck, T.; Frebel, A.; Beers, T. C.; Wisotzki, L.; Reimers, D.; Frebel, A.We present the quantitative methods used for selecting candidate metal-poor stars in the Hamburg/ESO objective-prism survey (HES). The selection is based on the strength of the Ca II K line, B - V colors (both measured directly from the digital HES spectra), as well as J - K colors from the 2 Micron All Sky Survey. The KP index for Ca II K can be measured from the HES spectra with an accuracy of 1.0 angstrom, and a calibration of the HES B - V colors, using CCD photometry, yields a 1-sigma uncertainty of 0.07 mag for stars in the color range 0.3 < B - V < 1.4. These accuracies make it possible to reliably reject stars with [Fe/H] > -2.0 without sacrificing completeness at the lowest metallicities. A test of the selection using 1121 stars of the HK survey of Beers, Preston, and Shectman present on HES plates suggests that the completeness at [Fe/H] < -3.5 is close to 100% and that, at the same time, the contamination of the candidate sample with false positives is low: 50% of all stars with [Fe/H] > -2.5 and 97% of all stars with [Fe/H] > -2.0 are rejected. The selection was applied to 379 HES fields, covering a nominal area of 8853 deg(2) of the southern high Galactic latitude sky. The candidate sample consists of 20 271 stars in the magnitude range 10 less than or similar to B less than or similar to 18. A comparison of the magnitude distribution with that of the HK survey shows that the magnitude limit of the HES sample is about 2mag fainter. Taking the overlap of the sky areas covered by both surveys into account, it follows that the survey volume for metal-poor stars has been increased by the HES by about a factor of 10 with respect to the HK survey. We have already identified several very rare objects with the HES, including, e. g., the three most heavy-element deficient stars currently known.Item Two Pseudobulges In The "Boxy Bulge" Galaxy NGC 5746(2012-08) Barentine, John C.; Kormendy, John; Barentine, John C.; Kormendy, JohnGalaxy formation and growth under the Lambda CDM paradigm is expected to proceed in a hierarchical, bottom-up fashion by which small galaxies grow into large galaxies; this mechanism leaves behind large "classical bulges" kinematically distinct from "pseudobulges" grown by internal, secular processes. We use archival data (Spitzer Space Telescope 3.6 mu m wavelength, Hubble Space Telescope H-band, Two Micron All Sky Survey K-s-band, and Sloan Digital Sky Survey gri-band) to measure composite minor-and major-axis surface brightness profiles of the almost-edge-on spiral galaxy NGC 5746. These light profiles span a large range of radii and surface brightnesses to reveal an inner, high surface brightness stellar component that is distinct from the well-known boxy bulge. It is well fitted by Sersic functions with indices n = 0.99 +/- 0.08 and 1.17 +/- 0.24 along the minor and major axes, respectively. Since n < 2, we conclude that this innermost component is a secularly evolved pseudobulge that is distinct from the boxy pseudobulge. This inner pseudobulge makes up 0.136 +/- 0.019 of the total light of the galaxy. It is therefore considerably less luminous than the boxy structure, which is now understood to be a bar seen nearly end-on. The infrared imagery shows further evidence for secular evolution in the form of a bright inner ring of inner radius 9.1 kpc and width 1.6 kpc. NGC 5746 is therefore a giant, pure-disk SB(r) bc galaxy with no sign of a merger-built bulge. We do not understand how such galaxies form in a Lambda DM universe.