Browsing by Subject "late-type stars"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item The Infrared Colors Of The Sun(2012-12) Casagrande, L.; Ramirez, Ivan; Melendez, Jorge; Asplund, Martin; Ramirez, IvanSolar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK(s) and WISE W1-4 systems are provided: (V - J)(circle dot) = 1.198, (V - H)(circle dot) = 1.484, (V - K-s)(circle dot) = 1.560, (J - H)(circle dot) = 0.286, (J - K-s)(circle dot) = 0.362, (H - K-s)(circle dot) = 0.076, (V - W1)(circle dot) = 1.608, (V - W2)(circle dot) = 1.563, (V - W3)(circle dot) = 1.552, and (V - W4)(circle dot) = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near-and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T-eff, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3%+/- 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.Item New Precision Orbits Of Bright Double-Lined Spectroscopic Binaries. IV. 66 Andromedae, HR 6979, And HR 9059(2010-04) Fekel, Francis C.; Tomkin, Jocelyn; Williamson, Michael H.; Tomkin, JocelynWe have determined improved spectroscopic orbits for three double-lined binaries, 66 And (F4 V), HR 6979 (Am), and HR 9059 (F5 IV) using radial velocities from the 2.1 m telescope at McDonald Observatory, the coude feed telescope at Kitt Peak National Observatory, and 2 m telescope at Fairborn Observatory. The orbital periods range from 11.0 to 14.3 days, and all three systems have eccentric orbits. The new orbital dimensions (a(1) sin i and a(2) sin i) and minimum masses (m(1) sin(3) i and m(2) sin(3) i) have accuracies of 0.2% or better. All six components of the three binary systems are rotating more slowly than their predicted pseudosynchronous rotational velocities. Hipparcos photometry of HR 9059 shows that this system has partial eclipses. Its components are nearly identical in mass and are at the very end of their main-sequence lifetimes or perhaps have just begun to traverse the Hertsprung gap.Item The Solar Twin Planet Search I. Fundamental Parameters Of The Stellar Sample(2014-12) Ramirez, I.; Melendez, J.; Bean, J.; Asplund, M.; Bedell, M.; Monroe, T.; Casagrande, L.; Schirbel, L.; Dreizler, S.; Teske, J.; Maia, M. T.; Alves-Brito, A.; Baumann, P.; Ramírez, I.Context. We are carrying out a search for planets around a sample of solar twin stars using the HARPS spectrograph. The goal of this project is to exploit the advantage offered by solar twins to obtain chemical abundances of unmatched precision. This survey will enable new studies of the stellar composition - planet connection. Aims. We determine the fundamental parameters of the 88 solar twin stars that have been chosen as targets for our experiment. Methods. We used the MIKE spectrograph on the Magellan Clay Telescope to acquire high resolution, high signal-to-noise ratio spectra of our sample stars. We measured the equivalent widths of iron lines and used strict differential excitation/ionization balance analysis to determine atmospheric parameters of unprecedented internal precision: sigma(T-eff) = 7K, sigma(log g) = 0.019, sigma([Fe/H]) = 0.006 dex, sigma(v(t)) = 0.016 km s(-1). Reliable relative ages and highly precise masses were then estimated using theoretical isochrones. Results. The spectroscopic parameters we derived are in good agreement with those measured using other independent techniques. There is even better agreement if the sample is restricted to those stars with the most internally precise determinations of stellar parameters in every technique involved. The root-mean-square scatter of the differences seen is fully compatible with the observational errors, demonstrating, as assumed thus far, that systematic uncertainties in the stellar parameters are negligible in the study of solar twins. We find a tight activity-age relation for our sample stars, which validates the internal precision of our dating method. Furthermore, we find that the solar cycle is perfectly consistent both with this trend and its star-to-star scatter. Conclusions. We present the largest sample of solar twins analyzed homogeneously using high quality spectra. The fundamental parameters derived from this work will be employed in subsequent work that aims to explore the connections between planet formation and stellar chemical composition.Item The Solar Twin Planet Search I. Fundamental Parameters Of The Stellar Sample(2014-12) Ramirez, I.; Melendez, J.; Bean, J.; Asplund, M.; Bedell, M.; Monroe, T.; Casagrande, L.; Schirbel, L.; Dreizler, S.; Teske, J.; Maia, M. T.; Alves-Brito, A.; Baumann, P.; I. RamírezContext. We are carrying out a search for planets around a sample of solar twin stars using the HARPS spectrograph. The goal of this project is to exploit the advantage offered by solar twins to obtain chemical abundances of unmatched precision. This survey will enable new studies of the stellar composition - planet connection. Aims. We determine the fundamental parameters of the 88 solar twin stars that have been chosen as targets for our experiment. Methods. We used the MIKE spectrograph on the Magellan Clay Telescope to acquire high resolution, high signal-to-noise ratio spectra of our sample stars. We measured the equivalent widths of iron lines and used strict differential excitation/ionization balance analysis to determine atmospheric parameters of unprecedented internal precision: sigma(T-eff) = 7K, sigma(log g) = 0.019, sigma([Fe/H]) = 0.006 dex, sigma(v(t)) = 0.016 km s(-1). Reliable relative ages and highly precise masses were then estimated using theoretical isochrones. Results. The spectroscopic parameters we derived are in good agreement with those measured using other independent techniques. There is even better agreement if the sample is restricted to those stars with the most internally precise determinations of stellar parameters in every technique involved. The root-mean-square scatter of the differences seen is fully compatible with the observational errors, demonstrating, as assumed thus far, that systematic uncertainties in the stellar parameters are negligible in the study of solar twins. We find a tight activity-age relation for our sample stars, which validates the internal precision of our dating method. Furthermore, we find that the solar cycle is perfectly consistent both with this trend and its star-to-star scatter. Conclusions. We present the largest sample of solar twins analyzed homogeneously using high quality spectra. The fundamental parameters derived from this work will be employed in subsequent work that aims to explore the connections between planet formation and stellar chemical composition.Item A Vigorous Activity Cycle Mimicking A Planetary System In HD 200466(2014-07) Carolo, E.; Desidera, S.; Gratton, R.; Fiorenzano, A. F. M.; Marzari, F.; Endl, M.; Mesa, D.; Barbieri, M.; Cecconi, M.; Claudi, R. U.; Cosentino, R.; Scuderi, S.; Endl, M.Stellar activity can be a source of radial velocity (RV) noise and can reproduce periodic RV variations similar to those produced by an exoplanet. We present the vigorous activity cycle in the primary of the visual binary HD 200466, a system made of two almost identical solar-type stars with an apparent separation of 4.6 arcsec at a distance of 44 +/- 2 pc. High precision RV over more than a decade, adaptive optics (AO) images, and abundances have been obtained for both components. A linear trend in the RV is found for the secondary. We assumed that it is due to the binary orbit and once coupled with the astrometric data, it strongly constrains the orbital solution of the binary at high eccentricities (e similar to 0.85) and quite small periastron of similar to 21 AU. If this orbital motion is subtracted from the primary radial velocity curve, a highly significant (false alarm probability <0.1%) period of about 1300 d is obtained, suggesting in a first analysis the presence of a giant planet, but it turned out to be due to the stellar activity cycle. Since our spectra do not include the Ca II resonance lines, we measured a chromospheric activity indicator based on the H, line to study the correlation between activity cycles and long-term activity variations. While the bisector analysis of the line profile does not show a clear indication of activity, the correlation between the H, line indicator and the RV measurements identify the presence of a strong activity cycle.