Browsing by Subject "Petroleum"
Now showing 1 - 16 of 16
- Results Per Page
- Sort Options
Item An investigation of aromatic bases from kerosene and transformer-oil extracts(1938) Axe, William Nelson, 1909-; Not availableItem An “inescapable obligation” : the treatment of well decommissioning liability in recent oil and gas bankruptcies(2019-12-04) Cook, Kristin Alexandra; Spence, David B.Oil prices fell by fifty percent during the latter half of 2014, tumbling from a high of $105 per barrel in June to a mere $53 per barrel by year’s end. As a result of sustained depressed commodities prices, more than 350 North American oil and gas operators and service companies filed for bankruptcy between January 2015 and September 2019, representing more than $162 billion of debt. Despite the existence of federal and state statutes ensuring that operators decommission wells at the end of economic life, these environmental laws frequently lose efficacy in bankruptcy proceedings. This unresolved conflict, among other contributing factors, has led to the existence of tens of thousands of “orphaned wells” in the United States. This thesis paper examines the bankruptcies of American oil and gas operators after the precipitous decline in oil prices to determine whether operators successfully discharged decommissioning liability during bankruptcy. A survey of 2015 bankruptcies shows that 33% of oil and gas operating companies abandoned properties with unmet decommissioning liability and created 285 new orphan wells in eight states. This paper also estimates the cost to plug and abandon wells orphaned from bankruptcies between 2015 and 2019 at more than $200 million. The paper concludes with a discussion of the advantages and disadvantages of several possible solutions to the orphan well problem.Item Application of dynamic optimization methods for foam floods in stratified reservoirs(2018-08-17) Tang, Brandon Chok-Yie; Nguyen, Quoc P.Efficient recovery of oil from heavily stratified carbonate reservoirs can be very technically challenging, even when applying waterflood, gasflood, or WAG (water-alternating gas) processes. To date, relatively few field or pilot applications of foam flooding have been conducted due to an incomplete understanding of how foam will behave in the field. The reservoir of interest studied in this work is oil-wet and consists of a stratified upper high-permeability zone overlaying a lower low-permeability zone. This study seeks to assess the performance of the foam flooding process in oil recovery and develop an optimum field injection strategy based upon various objective functions. In the process, the impact of initial waterflooding and varying foam strength on the optimum project termination time, as well as the sensitivity of foam parameters on the optimum field injection strategy is investigated. Two main optimization techniques are tested: static optimization, where the injection parameters are set once at the beginning of the simulation, and dynamic optimization, where injection parameters are optimized in five-year intervals over the life of the well. The dynamic optimization was performed in two ways: a local dynamic optimization and an early-time weighted optimization. In general, the dynamic optimization outperformed the static optimization with respect to all objective functions. Over the course of the study, a variety of objective functions were utilized. The objective functions began with maximizing cumulative oil recovery and evolved to maximizing oil recovery while minimizing gas utilization ratio, and finally maximizing net present value (NPV). From the results, it was ultimately shown that the global dynamic optimization of NPV was the most useful way of obtaining a field injection strategy. The optimal process design parameters indicated that high volumes of surfactant as well as gas in the lower zone needed to be injected early in the life of the project to best maximize NPV. From the optimal termination time study, it was found that the optimal termination time for the project was around ten years. Varying extents of initial waterflooding and alteration of foam strength did not have an impact on the suggested termination time. From the foam strength sensitivity, it was found that among the factors (water saturation, oil saturation, surfactant concentration) considered, the maximum dry-out water saturation had the most profound impact on the NPV. Ultimately, this work develops the framework necessary to create a field injection strategy for foam flooding in the stratified oil-wet reservoir used in this study, but can be extended to other types of reservoirs.Item Application of superparamagnetic nanoparticle-based heating for non-abrasive removal of wax deposits from subsea oil pipelines(2015-08) Mehta, Prachi; Daigle, Hugh; Huh, ChunFlow assurance is a critical problem in the oil and gas industry, as an increasing number of wells are drilled in deep water and ultra-deep water environments. High pressures and temperatures as low as 5°C in these environments hinder flow of hydrocarbon-based fluids by formation of methane hydrate and wax deposits on the inner surface of pipelines. Commonly used methods for removal of deposits from pipelines are chemical injection and foam or gel pigs, which face several limitations. In our work, an application to use superparamagnetic nanoparticle-based heating for flow assurance, in the form of a magnetic nanopaint is presented. Superparamagnetic nanoparticle-based heating has been extensively researched in the biomedical industry for cancer treatment by hyperthermia. Superparamagnetic nanoparticles in dispersions generate heat by application of an oscillating magnetic field as explained by Neel’s relaxation theory. In our application, superparamagnetic Fe₃O₄ nanoparticles are embedded in a thin layer of cured epoxy termed ‘nanopaint’. This nanopaint coating on the internal surface of subsea pipelines could generate heat and thus remove formation of methane hydrates and wax. In our work, the role of key parameters affecting heating performance of superparamagnetic nanoparticles such as particle size, and magnetic field is quantified. Rigorous characterization of physical and magnetic properties of nanoparticles and nanopaint is performed. This is correlated to and used to optimize the heating performance. Heating performance of several samples of Fe₃O₄ nanoparticles varying in size distribution is evaluated in static experiments. Two samples having similar physical and magnetic properties are compared in terms of the correlation between their size distribution and their heating performance. Performance of nanopaint to heat static fluids, flowing fluids and wax deposit is evaluated. Heating performance of superparamagnetic nanoparticles in dispersions and in nanopaint is found to be similar and so it is concluded that Neel’s relaxation theory is applicable to nanopaint. Heating performance of nanopaint in flow experiment is found to be better than in static experiments by a factor greater than 5. A correlation of heating performance of nanopaint at magnetic fields of 100 to 1000 A/m is developed. Finally, implementation issues of nanopaint are addressed. The effect of low ambient temperatures on nanopaint heating performance is evaluated. The theoretical feasibility of generating a magnetic field inside a pipeline is studied. A COMSOL model is used to verify the feasibility of magnetic field propagation inside a steel pipeline and is subsequently used to evaluate nanopaint heating of wax deposits in pipeline. Material and power requirements are analyzed and optimized using the COMSOL model.Item Application of the Buckley-Leverett equations to a gravity-drainage system(1958) Billingsley, David Lewis, 1935-; Not availableA method of predicting the behavior of gravity drainage systems has been reviewed. The general theory was presented and modified for a system having a wedge-shaped cross-sectional area. The description of the modified Hele-Shaw model and all other apparatus used in the investigations was followed by an explanation of the experimental procedure. The theoretical results were calculated and compared with the observed results. These were found to be in close agreement. Viscous fingering was explained and compared with the theory behind the Buckley-Leverett equations. The occurrence of viscous fingering in a reservoir was deemed improbable. Application of the Buckley-Leverett equations to the prediction of actual reservoir behavior was discussed, and this was followed by a presentation and discussion of the sources of error. Variation in the distance across the wedge was found to be the greatest source of error, since slight variation in this value would change the shape of the relative permeability curvesItem Barriers to a biofuels transition in the U.S. liquid fuels sector(2009-12) O'Donnell, Michael Joseph; Webber, Michael E., 1971-; Allen, David T.Demand for liquid fuels (i.e., petroleum products) has burdened the U.S. with major challenges, including national security and economic concerns stemming from rising petroleum imports; impacts of global climate change from rising emissions of CO2; and continued public health concerns from criteria and hazardous (i.e., toxic) air pollutants. Over the last decade or so, biofuels have been touted as a supply-side solution to several of these problems. Biofuels can be produced from domestic biomass feedstocks (e.g., corn, soybeans), they have the potential to reduce GHG emissions when compared to petroleum products on a lifecycle basis, and some biofuels have been shown to reduce criteria air pollutants. Today, there are numerous policy incentives—existing and proposed—aimed at supporting the biofuels industry in the U.S. However, the Renewable Fuel Standard (RFS) Program stands as perhaps the most significant mandate imposed to date to promote the use of biofuels. Overall, the RFS stands as the key driver in a transition to biofuels in the near term. By mandating annual consumption of biofuels, increasing to 36 bgy by 2022, the program has the potential to significantly alter the state of the U.S. liquid fuels sector. Fuel transitions in the transportation sector are the focus of this thesis. More specifically, the increasing consumption of biofuels in the transportation sector, as mandated by the RFS, is examined. With a well-developed, efficient, and expensive, petroleum-based infrastructure in place, many barriers must be overcome for biofuels to play a significant role in the transportation sector. Identifying and understanding the barriers to a biofuels transition is the objective of this thesis. Although fuel transitions may seem daunting and unfamiliar, the U.S. transportation sector has undergone numerous transitions in the past. Chapter 2 reviews major fuel transitions that have occurred in the U.S. liquid fuels sector over the last half century, including the phasing out of lead additives in gasoline, the transition from MTBE to ethanol as the predominant oxygenate additive in gasoline, and the recent introduction of ULSD. These historical transitions represent the uncertainty and diversity of fuel transition pathways, and illustrate the range of impacts that can occur across the fuel supply chain infrastructure. Many pertinent lessons can be derived from these historical transitions and used to identify and assess barriers facing the adoption of alternative fuels (i.e., biofuels) and to understand how such a transition might unfold. Computer models can also help to explore the implications of fuel transitions. In order to better understand the barriers associated with fuel transitions, and to identify options for overcoming these barriers, many recent research efforts have used sophisticated modeling techniques to analyze energy transitions. Chapter 3 reviews a number of these recent modeling efforts with a focus on understanding how these methodologies have been applied, or may be adapted, to analyzing a transition to biofuels. Four general categories of models are reviewed: system dynamics, complex adaptive systems, infrastructure optimization, and economic models. In chapter 4, scenarios created from a high-level model of the liquid fuels sector (the Liquid Fuels Transition model) are presented to explore potential pathways and barriers to a biofuels transition. The scenarios illustrate different pathways to meeting the requirements of the RFS mandate, and differ based on the overall demand of liquid fuels, how the biofuels mandate is met (i.e., the mix of biofuels), and the status of the ethanol blend limit in the motor gasoline sector. The scenarios are used to evaluate the infrastructure implications associated with a biofuels transition, and illustrate the uncertainty that exists in assessing such a transition.Item Hydrocarbon expulsion and scaling(2023-12) Pharr, Luke; Marder, Michael P., 1960-; Alvarado , José; Gilpin, William; Lake, Larry; Morrison, PhilipWe study the processes by which petroleum originates in source rock and generates a transport path enabling some of it to leave. We show that diffusion through the source rock is too slow to account for the migration of petroleum. However when kerogen converts into petroleum within pores, it expands, and this expansion is sufficient to fracture the rock around the pores. Thus the transport of petroleum depends on whether these fractures connect up to form a macroscopic transport path. We develop a simulation tool that lets us study pressurized fluid in disk-shaped domains which expand and fracture the surrounding material. Furthermore, we investigate an empirically observed correlation in horizontal wells between gas production efficiency and horizontal length. We argue for an anthropogenic cause to this correlation and provide a precise mathematical formulation of the mechanism by which this occurs.Item Integrated stratigraphic and petrophysical analysis of the Wolfcamp at Delaware Basin, West Texas, USA(2022-04-12) Ramiro-Ramirez, Sebastian; Flemings, Peter Barry, 1960-; Bhandari, Athma R; Daigle, Hugh C; Kerans, Charles; Tisato, NicolaHydrocarbons stored in low-permeability reservoirs, also known as ‘unconventional reservoirs’, represent important energy resources worldwide. Although current technology allows their production at economic rates, there still are numerous production challenges and unknowns regarding their flow behavior. A better understanding on how fluids stored in these reservoirs are drained by the hydraulic fractures after stimulation may help to optimize completion designs and field development plans. This research is an attempt to describe such drainage behavior in the largest oil producing unconventional formation in the World. I investigated the drainage behavior in Wolfcamp reservoirs at the completion scale by integrating stratigraphic and petrophysical analyses with flow modeling. I interpreted the depositional and diagenetic processes that generated three Wolfcamp cores recovered in the central-eastern Delaware Basin, measured the porosity and permeability of distinct lithofacies, and developed simple models to describe flow in these strata. I found that most fluids (~95% of the pore volume) are stored in low-permeability (e.g., < 60 nD) mudstones that I interpreted as hemipelagics and siliciclastics turbidites. Interbedded with these deposits are the low-porosity (~5% of the pore volume) and low-permeability (e.g., < 50 nD) carbonate lithofacies that I interpreted as gravity flow deposits and diagenetic dolomudstones. The carbonate gravity flow deposits, when dolomitized, are up to 2000 times more permeable than the other deposits and represent preferential flow pathways that drain fluids from the low-permeability strata during production. This drainage behavior increases the reservoir upscaled permeability, and therefore production rates, multiple times higher compared to a reservoir consisting of only low-permeability strata. Hence, the presence of these permeable, dolomitized, gravity flow deposits plays a critical role when producing from Wolfcamp reservoirs as they accelerate drainage. These findings are also applicable to other low-permeability formations exhibiting significant permeability heterogeneityItem Isolation of nitrogen bases from California petroleum distillates(1930) Thompson, Willard Curtis; Bailey, James RobinsonItem Paradox Basin source rock, southeastern Utah : organic geochemical characterization of Gothic and Chimney Rock units, Ismay and Desert Creek zones, within a sequence stratigraphic framework(1995-08) Tischler, Keith Louris; Kirkland, Brenda Lee, 1959-The Chimney Rock and Gothic units of the Pennsylvanian Paradox Formation have long been considered source rocks for the rich hydrocarbon fields of southeastern Utah. Fundamental questions about these units include: source and nature of the organic material, source rock character, and position of the source rocks in the existing sequence stratigraphic framework. The Chimney Rock and Gothic, historically referred to as shales, are composed of calcareous mudstone, dolomudstone, and calcareous sandstone. High total organic carbon (TOC) values are more closely linked to sequence stratigraphic position than lithology. In the Gothic, TOC values decrease upwards. Terrestrial maceral content increases upwards in both the Gothic and the Chimney Rock as determined through point-count and qualitative observation. Pyrolysis indicates that greater than anticipated terrestrial influence is present and is consistent for all wells. No distinct difference in geochemical character exists between the two units. Sequence stratigraphic boundaries appear to be as good as, or better, than traditional lithostratigraphic boundaries for determining high TOC occurrence and source rock location. Within repetitive major sea level transgressions the organic matter that fed the basin evolved from a marine-dominated signature to a terrestrial-dominated signature.Item Quantification of production recovery using probabilistic approach and semi-analytical model for unconventional oil reservoirs(2015-12) Choi, Bong Joon; Srinivasan, Sanjay; Sepehrnoori, Kamy, 1951-Decline curve analysis is widely applied for production forecasting in oil & gas industry. However, many models do not work for super-tight, unconventional wells with dominant fracture flows. Some novel decline models have been introduced for unconventional plays, but the transition time between the transient and pseudo-steady flow period is difficult to model with such pure empirical relations. Consequently, the decline projections are often inaccurate and furthermore, they are difficult to quantify the uncertainty associated with the predictions. To address these issues, a combined probabilistic approach is proposed that uses a dual-porosity semi-analytical decline model within an extended bootstrap framework in order to provide estimates for the P10, P50 and P90 production profiles. The probabilistic method employed in this research is a data-generative approach that employs modified bootstrap method to generate multiple decline model projections. The semi-analytical model is an approximate decline model that optimizes parameters describing flow in matrix-fracture systems using the observed production profile. In the proposed method, probabilistic approach and semi-analytical decline model are combined. The modified approach is compared to the performances developed with Arps’ hyperbolic model. Both models are fitted by optimizing respective parameters and 50 synthetic data sets are used to draw confidence interval projections. The probabilistic approach is extended by proposing alternate blocking techniques – variance of the mean and analysis of the variance (ANOVA), in place of a scheme based on the autocorrelation exhibited by the decline data, originally implemented by other researchers. The cumulative production and forecast period production errors are calculated for these alternative schemes. For all proposed applications, two unconventional, horizontal oil wells are used to test the results. Both these wells exhibit sharp decline in production rate in the first few months that is related to fracture flow regimes. The results show that the proposed application of semi-analytical model with probabilistic approach significantly improved the projections. The implementation of alternate blocking techniques also show improvement in confidence interval projections, The resultant uncertainty distributions are more accurate and precise than those obtained using the autocorrelation based schemes. The combined results show that ANOVA blocking technique outperformed the other two techniques.Item Recent advances in the chemistry of petroleum bases(1938) Mahan, Raymond Isaac, 1910-; Bailey, James RobinsonItem South of the Border, Down Mexico Way: The Past, Present, and Future of Petroleum Development in Mexico-Part II(2015-12-31) Anderson, Owen L.Item The isolation of 2,3-dimethyl-8-ethylquinoline from the kerosene distillate of California petroleum(1937) Key, Carroll L., 1888-; Bailey, James RobinsonItem The isolation of pyridine homologs from the crude kerosene distillate of California petroleum(1937) Meadows, James Lawson, 1907-; Bailey, James RobinsonItem Will Iraq escape the resource curse?(2011-05) Ahmed, Saya Ali; Fisher, W. L. (William Lawrence), 1932-; Steel, Ronald J.; Ruppel, Stephen C.; Malik, Krishan A.Some oil-rich countries suffer from a resource curse, a paradoxical situation in which a country with oil wealth has poor economic growth and social development. A country can escape the resource curse by selecting appropriate policies. Governments are responsible for utilizing the right policies and managing the natural resource revenue effectively to benefit their nation. In this report, various economic, political, and social measurements are used to examine the fall into the resource curse by Nigeria, Iraq, and Brazil for a period of time, and the scape of Norway from the resource curse. The report also evaluates the current circumstances of Iraq to determine which direction the resource curse will take. Several recommendations are presented to direct Iraq out of the resource curse.