Browsing by Subject "Microarrays"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Global Identification of Myc Target Genes Reveals Its Direct Role in Mitochondrial Biogenesis and Its E-Box Usage In Vivo(Public Library of Science, 2008-03-12) Kim, Jonghwan; Lee, Ji-hoon; Iyer, Vishwanath R.The Myc oncoprotein is a transcription factor involved in a variety of human cancers. Overexpression of Myc is associated with malignant transformation. In normal cells, Myc is induced by mitotic signals, and in turn, it regulates the expression of downstream target genes. Although diverse roles of Myc have been predicted from many previous studies, detailed functions of Myc targets are still unclear. By combining chromatin immunoprecipitation (ChIP) and promoter microarrays, we identified a total of 1469 Myc direct target genes, the majority of which are novel, in HeLa cells and human primary fibroblasts. We observed dramatic changes of Myc occupancy at its target promoters in foreskin fibroblasts in response to serum stimulation. Among the targets of Myc, 107 were nuclear encoded genes involved in mitochondrial biogenesis. Genes with important roles in mitochondrial replication and biogenesis, such as POLG, POLG2, and NRF1 were identified as direct targets of Myc, confirming a direct role for Myc in regulating mitochondrial biogenesis. Analysis of target promoter sequences revealed a strong preference for Myc occupancy at promoters containing one of several described consensus sequences, CACGTG, in vivo. This study thus sheds light on the transcriptional regulatory networks mediated by Myc in vivo.Item Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays(Public Library of Science, 2009-10-28) Hart, Traver; Zhao, Alice; Garg, Ankit; Bolusani, Swetha; Marcotte, Edward M.Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFκB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFα, and interferon), and we demonstrate scalability by printing a chip with ~4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.Item An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae(Public Library of Science, 2007-10-03) Lee, Insuk; Li, Zhihua; Marcotte, Edward M.Background: Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings: We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance: YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org.Item Intron 4 Containing Novel GABAB1 Isoforms Impair GABAB Receptor Function(Public Library of Science, 2010-11-18) Lee, Changhoon; Mayfield, R. Dayne; Harris, R. AdronBackground -- Gamma-aminobutyric acid type B (GABAB) receptors decrease neural activity through G protein signaling. There are two subunits, GABAB1 and GABAB2. Alternative splicing provides GABAB1 with structural and functional diversity. cDNA microarrays showed strong signals from human brain RNA using GABAB1 intron 4 region probes. Therefore, we predicted the existence of novel splice variants. Methodology/Principal Findings -- Based on the probe sequence analysis, we proposed two possible splice variants, GABAB1j and GABAB1k. The existence of human GABAB1j was verified by quantitative real-time PCR, and mouse GABAB1j was found from a microarray probe set based on human GABAB1j sequence. GABAB1j open reading frames (ORF) and expression patterns are not conserved across species, and they do not have any important functional domains except sushi domains. Thus, we focused on another possible splice variant, GABAB1k. After obtaining PCR evidence for GABAB1k existence from human, mouse, and rat, it was cloned from human and mouse by PCR along with three additional isoforms, GABAB1l, GABAB1m, and GABAB1n. Their expression levels by quantitative real-time PCR are relatively low in brain although they may be expressed in specific cell types. GABAB1l and GABAB1m inhibit GABAB receptor-induced G protein-activated inwardly rectifying K+ channel (GIRK) currents at Xenopus oocyte two-electrode voltage clamp system. Conclusions/Significance -- This study supports previous suggestions that intron 4 of GABAB1 gene is a frequent splicing spot across species. Like GABAB1e, GABAB1l and GABAB1m do not have transmembrane domains but have a dimerization motif. So, they also could be secreted and bind GABAB2 dominantly instead of GABAB1a. However, only GABAB1l and GABAB1m are N- and C-terminal truncated splicing variants and impair receptor function. This suggests that the intron 4 containing N-terminal truncation is necessary for the inhibitory action of the new splice variants.Item Linking Yeast Gcn5p Catalytic Function and Gene Regulation Using a Quantitative, Graded Dominant Mutant Approach(Public Library of Science, 2012-04-27) Lanza, Amanda M.; Blazeck, John J.; Crook, Nathan C.; Alper, Hal S.Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence.Item Transgenerational Epigenetic Programming of the Brain Transcriptome and Anxiety Behavior(Public Library of Science, 2008-11-18) Skinner, Michael K.; Anway, Matthew D.; Savenkova, Marina I.; Gore, Andrea C.; Crews, DavidEmbryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Further analysis of this transgenerational phenotype on the brain demonstrated reproducible changes in the brain transcriptome three generations (F3) removed from the exposure. The transgenerational alterations in the male and female brain transcriptomes were distinct. In the males, the expression of 92 genes in the hippocampus and 276 genes in the amygdala were transgenerationally altered. In the females, the expression of 1,301 genes in the hippocampus and 172 genes in the amygdala were transgenerationally altered. Analysis of specific gene sets demonstrated that several brain signaling pathways were influenced including those involved in axon guidance and long-term potentiation. An investigation of behavior demonstrated that the vinclozolin F3 generation males had a decrease in anxiety-like behavior, while the females had an increase in anxiety-like behavior. These observations demonstrate that an embryonic exposure to an environmental compound appears to promote a reprogramming of brain development that correlates with transgenerational sex-specific alterations in the brain transcriptomes and behavior. Observations are discussed in regards to environmental and transgenerational influences on the etiology of brain disease.Item Unstable Transcripts in Arabidopsis Allotetraploids Are Associated with Nonadditive Gene Expression in Response to Abiotic and Biotic Stresses(Public Library of Science, 2011-08-29) Kim, Eun-Deok; Chen, Z. JefferyGenome-wide analysis has documented differential gene expression between closely related species in plants and animals and nonadditive gene expression in hybrids and allopolyploids compared to the parents. In Arabidopsis, 15–43% of genes are expressed differently between the related species, Arabidopsis thaliana and Arabidopsis arenosa, the majority of which are nonadditively expressed (differently from mid-parent value) in allotetraploids. Nonadditive gene expression can be caused by transcriptional regulation through chromatin modifications, but the role of posttranscriptional regulation in nonadditive gene expression is largely unknown. Here we reported genome-wide analysis of mRNA decay in resynthesized Arabidopsis allotetraploids. Among ~26,000 annotated genes, over 1% of gene transcripts showed rapid decay with an estimated half-life of less than 60 minutes, and they are called allotetraploid genes with unstable transcripts (AlloGUTs). Remarkably, 30% of alloGUTs matched the nonadditively expressed genes, and their expression levels were negatively correlated with the decay rate. Compared to all genes, these nonadditively expressed alloGUTs were overrepresented 2-6-fold in the Gene Ontology (GOSlim) classifications in response to abiotic and biotic stresses, signal transduction, and transcription. Interestingly, the AlloGUTs include transcription factor genes that are highly inducible under stress conditions and circadian clock regulators that regulate growth in A. thaliana. These data suggest a role of mRNA stability in homoeologous gene expression in Arabidopsis allopolyploids. The enrichment of nonadditively expressed genes in stress-related pathways were commonly observed in Arabidopsis and other allopolyploids such as wheat and cotton, which may suggest a role for stress-mediated growth vigor in hybrids and allopolyploids.