Browsing by Subject "Extended kalman filter"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Analysis and order reduction of an autonomous lunar lander navigation system(2009-08) Newman, Clark Patrick; Bishop, Robert H., 1957-; Akella, Maruthi R.A navigation system for precision lunar descent and landing is presented and analyzed. The navigation algorithm is based upon the extended Kalman Filter and employs measurements from an inertial measurement unit to propagate the vehicle position, velocity, and attitude forward in time. External measurements from an altimeter, star camera, terrain camera, and velocimeter are utilized in state estimate updates. The navigation algorithm also attempts to estimate the values of uncertain parameters associated with the sensors. The navigation algorithm also estimates the map-tie angle of the landing site which is a measure of the misalignment of the actual landing site location on the surface of the Moon versus the estimated position of the landing site. The navigation algorithm is subject to a sensitivity analysis which investigates the contribution of each error source to the total estimation performance of the navigation system. Per the results of the sensitivity analysis, it is found that certain error sources need not be actively estimated to achieve similar estimation performance at a reduced computational burden. A new, reduced-order system is presented and tested through covariance analysis and a monte carlo analysis. The new system is shown to have comparable estimation performance at a fraction of the computer run-time, making it more suitable for a real-time implementation.Item Design of a reduced-order spherical harmonics model of the Moon's gravitational field(2009-12) Felker, Paige Shannon; Bishop, Robert H., 1957-; Akella, MaruthiAn important aspect for precision guidance, navigation, and control for lunar operations is environmental modeling. In particular, consider gravity field modeling. Available gravity field models for the Moon reach degree and order 165 requiring the use and storage of approximately 26,000 spherical harmonic coefficients. Although the high degree and order provide a means by which to accurately predict trajectories within the influence of the Moon's gravitational field, the size of these models makes using them computationally expensive and restricts their use in design environments with limited computer memory and storage. It is desirable to determine reduced complexity realizations of the gravitational models to lower the computational burden while retaining the structure of the original gravitational field for use in rapid design environments. The extended Kalman filter and the unscented Kalman filter are used to create reduced order models and are compared against a simple truncation based reduction method. Both variations of the Kalman filter out perform the truncation based method as a means by which to reduce the complexity of the gravitational field. The extended Kalman filter and unscented Kalman filter were able to achieve good estimates of position while reducing the number of spherical harmonic coefficients used in gravitational acceleration calculations by approximately 5,400, greatly increasing the speed of the calculations while reducing the required computer allocation.