Browsing by Subject "Ebola virus"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Enhanced Protection against Ebola Virus Mediated by an Improved Adenovirus-Based Vaccine(Public Library of Science, 2009-04-23) Richardson, Jason S.; Yao, Michel K.; Tran, Kaylie N.; Croyle, Maria A.; Strong, James E.; Feldmann, Heinz; Kobinger, Gary P.Background -- The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Methodology/Principal Findings -- Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. Conclusions/Significance -- We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the molecular components of adenovirus-based vaccines can produce potent, optimized product, useful for vaccination and post-exposure therapy.Item Human adenovirus serotype 5 vaccines : routes of delivery and formulations for successful immunization(2010-08) Dekker, Joseph Dylan; Tucker, Philip W.; Kobinger, Gary P.; Otto, Glen; Sullivan, Christopher S.; Huibregtse, Jon M.Delivery of medicinal products to specific targets can be aided by utilizing different routes of administration. Particular routes may be advantageous when delivering products designed for therapeutic drug delivery, gene therapy, or vaccination. Vaccine candidates must remain stable, be delivered to their proper compartments, and promote sufficient immune responses to their delivered antigens, properties that can be modulated by formulation, adjuvants, and alternate routes of administration. Recently, the nasal passageway has been recognized as a promising route, as mucosally delivered vaccines have the advantage of inducing protection at both mucosal surfaces, a common site of infection, and systemically. Human adenovirus serotype 5 (Ad5) is a candidate vaccine vector capable of being delivered through several routes and inducing strong immune responses to its delivered transgene. The studies presented include vaccination strategies following different routes of administration with various formulation components to determine the ability of Ad5 to deliver its transgene and induce immune responses. The first study screens formulation candidates’ effects on an Ad5-based vaccine’s transduction in vitro, cellular and humoral immune responses in vivo, and efficacy upon challenge in mice. Screening formulation candidates in vitro can eliminate ineffective formulations, thereby limiting animal testing. An Ad5-based Ebola virus vaccine delivered in a combination of mannitol, sucrose, and the surfactant, pluronic F68, improves survival against lethal Ebola challenge in a mouse model compared to delivery in PBS alone. The second study tests the effect of an intravenously delivered Ad5-based vaccine complexed with anti-Ad5 neutralizing antibodies on cellular and humoral immune responses. Different antibody ratios complexed to the Ad5 vector are able to induce disparate cellular and humoral responses. Ratios initiating a strong humoral response towards the Ad5 vector correlate with a reduction of the humoral response against the transgene and few transgene targeted effector T cells. Accordingly, ratios leading to minor humoral responses to the Ad5 vector resulted in stronger humoral responses to the transgene and a strong effector memory T cell response. Taken together, these studies provide insight on how to achieve necessary immune responses in vaccine protocols by testing routes of administration, formulations, and surface modifications of the Ad5 vector.Item Nasal Delivery of an Adenovirus-Based Vaccine Bypasses Pre-Existing Immunity to the Vaccine Carrier and Improves the Immune Response in Mice(Public Library of Science, 2008-10-29) Croyle, Maria A.; Patel, Ami; Tran, Kaylie N.; Gray, Michael; Zhang, Yi; Strong, James E.; Feldmann, Heinz; Kobinger, Gary P.Pre-existing immunity to human adenovirus serotype 5 (Ad5) is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M.), nasal (I.N.) or oral (P.O.) route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP) fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-γ+ CD8+ T cells was reduced by 80% and by 15% in animals vaccinated by the I.M. and P.O. routes respectively. Neutralizing antibodies could not be detected in serum from either treatment group. Pre-existing immunity did not compromise the frequency of IFN-γ+ CD8+ T cells (3.9±1% naïve vs. 3.6±1% pre-existing immunity, PEI) nor anti-Ebola neutralizing antibody (NAB, 40±10 reciprocal dilution, both groups). The number of INF-γ+ CD8+ cells detected in bronchioalveolar lavage fluid (BAL) after I.N. immunization was not compromised by pre-existing immunity to Ad5 (146±14, naïve vs. 120±16 SFC/million MNCs, PEI). However, pre-existing immunity reduced NAB levels in BAL by ~25% in this group. To improve the immune response after oral vaccination, the Ad5-based vaccine was PEGylated. Mice given the modified vaccine did not survive challenge and had reduced levels of IFN-γ+ CD8+ T cells 10 days after administration (0.3±0.3% PEG vs. 1.7±0.5% unmodified). PEGylation did increase NAB levels 2-fold. These results provide some insight about the degree of T and B cell mediated immunity necessary for protection against Ebola virus and suggest that modification of the virus capsid can influence the type of immune response elicited by an Ad5-based vaccine.