Browsing by Subject "Accretion (Astrophysics)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Global instabilities in rotating magnetized plasmas(2009-05) Pino, Jesse Ethan, 1981-; Mahajan, Swadesh M.; Hazeltine, R. D. (Richard D.)The Magnetorotational Instability (MRI) is believed to be the primary mechanism for angular momentum transfer in astrophysical accretion disks. This instability, which exists in ionized disks in the presence of weak magnetic fields, can either transfer angular momentum directly, or give rise to anomalous viscosity via non-linear turbulence. While many previous analytical treatments are concerned with the local theory of the MRI, when the length scale of rotation shear is comparable to the length scale of the most unstable modes, a global analysis is necessary. In this dissertation we investigate the global theory of the linear MRI. In particular, we show how rotation shear can localize global modes and how the global growth rates can differ signicantly from the local approximation in certain cases. Changes in the equilibrium density are considered. In addition, the effects of Hall Magnetohydrodynamics on the MRI are studied in both the local and global cases.Item Unification of QSOs via black hole and accretion properties(2004-08) Yuan, Michael Juntao; Wills, Beverley J.; Evans, Neal J.Although the orientation-based AGN unification scheme can successfully explain many QSO observational phenomena, orientation does not address all the object-to-object differences in QSOs. Physical differences of the underlying engine, such as luminosity, black hole mass (MBH) and Eddington ratio (L/LEdd), are crucial to our understanding of QSO central engines. Broad Absorption Line (BAL) QSOs are a particularly interesting type of QSO that exhibits both orientation and intrinsic property-related observational features. In this thesis, I studied a large QSO sample, including 16 BAL QSOs at z ∼ 2, with new spectroscopy data for the Hβ region. This sample covers a luminosity range substantially wider than similar studies in the past and hence enables us to differentiate luminosity from other underlying mechanisms driving QSO observational properties. I found that overall, QSOs accrete at close to Eddington rate. Due to the narrow range of L/LEdd, the QSO luminosity is almost directly proportional to the MBH. The slight increase of L/LEdd at high luminosity suggests that the QSO MBH distribution has a high mass cut-off near 109M¯. Compared with radio quiet QSOs, radio loud QSOs tend to have higher MBH for the same luminosity. The [O iii] versus Fe ii anti-correlation discovered from low luminosity QSOs (BGEV1) extends to high luminosity objects with BAL QSOs at the weak [O iii] strong Fe ii end of the trend, and radio loud QSOs at strong [O iii] weak Fe ii end of the trend. Both [O iii] and Fe ii strengths are well correlated with L/LEdd over the entire luminosity range, indicating that L/LEdd is the physical driver behind the BGEV1 correlations. Although BAL QSOs have higher L/LEdd than most QSOs, they do not stand out when compared with high luminosity non-BAL QSOs. One interpretation is that [O iii] and Fe ii are indirectly linked to L/LEdd via the availability of accretion fuel. Even with the expanded luminosity coverage, I could not confirm the existence of an Hβ Baldwin Effect. An [O iii] ”Baldwin Effect” is observed, suggesting a limited amount of [O iii] NLR gas in all QSO systems.