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Abstract

Domain score estimation in adaptive test assembly

for single-subject multiple-domain content

by

Sangdon Lim, Ph.D.

The University of Texas at Austin, 2023

Supervisor: Seung W. Choi

Educational assessments require that scores have a good reliability. Based on item
response theory, computerized adaptive testing allows for constructing tests that pro-
vide scores with a higher reliability compared to their counterparts based on classical
test theory. Test construction in computerized adaptive testing involves assembling
a test from a large collection of items, subject to various test specifications and an
optimality criterion. One example of an optimality criterion is having maximum test
information, which is closely associated with reliability.

Constructs assessed in educational settings often have multiple domains under a
single content subject. This gives rise to two types of scores to be measured and
reported: (1) overall scores and (2) domain scores. For obtaining these, one approach
that is taken in a real-world adaptive testing program is a separate-models approach.
The separate-models approach uses a correlated-factors model as the main test as-
sembly model to obtain domain scores. After a test is completed, a bifactor model
is fitted separately to obtain overall scores. Alternatively, overall and domain scores
may be obtained from a single model. The single-model approach uses a bifactor
model as the main test assembly model. Weighted composites of general and specific
factor scores can be taken as overall and domain scores.
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The choice between the separate-models approach and the single-model approach
is essentially the choice between using a correlated-factors model or a bifactor model
for the main test assembly. The model choice is important because it determines
the structure of the main test assembly: how many dimensions the interim ability
estimates will have, and how many dimensions the item parameters should have. The
choice of the main test assembly model also has implications on the recovery of ability
parameters and score reliability. One advantage of the separate-models approach is
that it allows using between-domain correlations as priors to help ability estimation.
However, in practice, this can also potentially introduce estimation bias for between-
domain correlations. Because the correlation estimates would be obtained from the
calibration stage before an adaptive testing system is employed, estimation errors on
between-domain correlations can propagate into subsequent steps, which may have
detrimental effects on the recovery of true ability in adaptive tests under the separate-
models approach.

In contrast, the single-model approach can be less susceptible to this problem,
because between-factor correlations can be assumed to be zero when a bifactor model
is used as the main model. However, a drawback of the single-model approach is
that it cannot benefit from between-domain correlations that would be obtained from
the calibration stage. This is because a bifactor model would be used for calibration
purposes instead of a correlated-factors model, and between-factor correlations in the
bifactor model would be assumed to be zero in the calibration stage.

Test assembly for educational assessments also requires satisfying a test content
blueprint. This is referred to as a content balancing problem in the test assembly
literature. There are two main frameworks for content balancing: (1) heuristic ap-
proaches and (2) optimal test design approaches. Heuristic approaches are currently
more widely adopted, but have a drawback in that they do not ensure all content
requirements are satisfied. Optimal test design approaches offer an advantage over
heuristic approaches in that they ensure all content requirements are strictly satisfied.

For multidimensional tests, there is one problem that makes it difficult to use
optimal test design approaches compared to heuristic approaches. That is, optimal
test design approaches require (1) a scalar-valued information quantity for each item,
and (2) the quantity to have an additive property between item- and test-level val-
ues. The problem is that Fisher information is not a scalar-valued quantity but is
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matrix-valued in multidimensional cases. One scalar-valued alternative is directional
information, which meets the two requirements for optimal test design approaches.

The current study simulated adaptive tests to compare separate-models and single-
model approaches in terms of domain score recovery, and also to compare content
balancing methods in terms of satisfying content requirements. To allow for a neu-
tral comparison between the two scoring approaches, simulation input was generated
from a higher-order model first, then converted to correlated-factors and bifactor for-
mats to be used in the two scoring approaches. Calibration error was simulated,
and the calibration sample size was varied. For content balancing, an optimal test
design method was implemented using directional information, and compared with
three other heuristic content balancing methods. Among the heuristic methods, a
multidimensional extension of the weighted deviation method was not available in
the literature, and hence an extension was performed in the current study.

From the simulation, the single-model approach had a better domain score recov-
ery compared to the separate-models approach when calibration error was present.
Estimated between-domain correlations had a small negative calibration bias of �0:15

in correlated-factors models for the separate-models approach. These suggest that es-
timation error in between-domain correlations may lead to less accurate domain scores
when the separate-models approach is used. Recovery performances of overall scores
were similar between the two scoring approaches. For content balancing, the opti-
mal test design approach satisfied all content requirements in every assembled test,
with the weighted penalty method following close by having near-perfect rates. The
weighted deviation method had the lowest satisfaction rates on content requirements.

These results provide evidence on how correlation estimation error can have a
detrimental effect on domain score estimation when the separate-models approach is
used. The main finding of the current study was that the single-model approach may
offer an alternative and provide more accurate domain score estimates compared to
the separate-models approach. Another finding of the current study was demonstrat-
ing that the optimal test design approach to content balancing ensures all content
requirements are strictly satisfied in multidimensional contexts. Considering that the
weighted penalty method is one of the methods currently widely adopted for con-
tent balancing, the optimal test design method may offer a viable alternative to the
weighted penalty method.
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Chapter 1

Introduction

Educational assessments can be used to inform test-takers on their current per-

formance in learning a subject, and also on their progress towards attaining a certain

level of pro�ciency. In traditional paper-and-pencil testing, test-takers are provided

with overall scores on the subject area, often computed from the number of correctly

answered items with some integer weights applied (i.e., some items are worth more

points). Domain scores are also commonly computed and reported, as educational

tests for a subject area often span across multiple content domains. For example,

a test on language pro�ciency can include reading, writing, listening, and speaking

as its four domains. For a single test-taker, an overall score in this example may be

reported on the subject area as a whole, and a domain score may be reported for each

domain, leading to four domain scores in total.

The Standards for Educational and Psychological Testing (American Educational

Research Association et al., 2014) comments that �The form-to-form and day-to-day

consistency of total scores on a test may be acceptably high, yet subscores may have

unacceptably low reliability, depending on how they are de�ned and used� (p. 43). To

inform score interpretation, the Standards require that �For each total score, subscore,

or combination of scores that is to be interpreted, estimates of relevant indices of

reliability/precision should be reported� (Standard 2.3; p. 43). In the single-subject

multiple-domain context, this means that not only overall scores for the subject area

but also domain scores for each domain should have acceptably good reliability.

When reporting reliability indices, di�erent approaches would be taken depending

on the underlying test theory. Under classical test theory, the reliability of a test

would be a single value, re�ecting that reliability is assumed to be constant across

di�erent ability levels. Under item response theory, on the other hand, reliability is

allowed to vary across ability levels. For example, based on item response theory,

tests can be more reliable for average-level test-takers while being less reliable for

more advanced test-takers.
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1.1 Adaptive testing

From that item response theory allows score reliability to vary across ability levels,

it follows that administering the same �xed-content test to a group of examinees is

not the most e�ective approach for ensuring good reliability across di�erent ability

levels. For example, a �xed-content test with an average-level di�culty will be the

most reliable for average-level test-takers, but will be less reliable for lower- and

higher-level test-takers. Computerized adaptive testing (CAT) is an application of

item response theory that mitigates this problem. Instead of administering the same

test content to all test-takers, adaptive testing allows to tailor test items to individual

ability levels (Lord, 1980). One main goal of adaptive testing is to ensure that test

scores have adequate reliability across all ability levels.

Adaptive tests are typically designed to measure a unidimensional ability. Studies

on the unidimensional case of adaptive testing include a range of topics (see Wainer

et al., 2000). These include how to select items from a given item pool, how to obtain

and update ability estimates, how to accommodate various test speci�cations, and

how to adjust exposure rates of items in either direction to ensure item bank security

and utilization. Operational testing programs often employ the unidimensional case

of adaptive testing, while multidimensional implementations are less common.

However, constructs measured in educational tests are rarely truly unidimensional.

For example, tests on language pro�ciency can include reading, writing, listening,

and speaking as its domains. Because the domains are related to the same subject

area, these domains are generally correlated to one another to some degree, but

are also distinct from each other because they represent di�erent domains. Using

a unidimensional model and thereby ignoring this multidimensional structure may

have unwanted e�ects on the reliability and validity of test scores. This is because

the distinction between between-domain variance and within-domain variance will

not be accounted for in score analyses (Reckase & McKinley, 1983).

To account for the multidimensional structure, adaptive tests can also be designed

to measure a multidimensional ability (Reckase, 2009, van der Linden & Glas, 2010).

Di�erent approaches can be used for this purpose; one option is to use a series of

unidimensional tests, and another option is to use a multidimensional adaptive test.

Studies on multidimensional extensions of adaptive testing are less common compared

to the unidimensional case, but still cover similar topics.

12



The �rst option, using a series of unidimensional tests, is referred to as a multi-

unidimensional approach in the test assembly literature (Segall, 1996, Luecht, 1996,

Wang & Chen, 2004). In this approach, the assessment is structured as a series of

unidimensional adaptive tests that measure the ability on each domain. In the four-

domain language pro�ciency example, there would be a unidimensional adaptive test

on reading, a separate unidimensional adaptive test on listening, and so on. From

these domain-wise tests, the ability estimate for each domain is estimated using a

unidimensional model, based on items measuring the domain and its associated item

responses (Segall, 1996, Luecht, 1996). Because the domain score estimation in a

multi-unidimensional approach is based only on items within each speci�c domain,

the estimates can be less reliable compared to a truly multidimensional approach that

takes between-domain correlations into account (Ackerman, 1992, de la Torre & Patz,

2005, Wainer et al., 2001).

Alternatively to the multi-unidimensional approach, adaptive testing systems for

a multiple-domain subject area can be designed based on a proper multidimensional

model. A range of multidimensional models can be used for this purpose. The sim-

plest among them is to use a correlated-factors model, where factors that represent

each domain are allowed to be correlated. Another option is to use a bifactor model,

allowing general and speci�c factors to be loaded simultaneously onto each item (Gib-

bons et al., 2007). Bifactor models usually assume that all factors are uncorrelated.

1.2 Scoring approaches

The choice of a model for a multidimensional ability has a profound impact on

how its scores can be obtained and interpreted. In practice, the main interest of a

test on a multiple-domain subject is in two types of scores. The �rst is a score that

represents the performance on the subject area as a whole, and the second is a score

that represents the performance on each speci�c domain area. The two scores are

referred to as an overall score and a domain score respectively.

Separate-models approach. The English Language Pro�ciency Assessment for

the 21st Century (ELPA21; American Institutes for Research, 2017) is one real-world

example that addresses the issue of obtaining overall and domain scores in a practical

way. ELPA21 uses a separate-models approach where di�erent models are used for
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overall and domain scores respectively. To obtain domain scores, ELPA21 uses a

correlated-factors model where all factors are allowed to be correlated with each other.

This approach of using a correlated-factors model allows for directly using factor score

estimates as domain scores. To obtain overall scores, ELPA21 uses a bifactor model

and uses general factor scores directly as overall scores. Throughout the test, ELPA21

uses a correlated-factors model as the main test assembly model. This means that,

denoting the number of domains asp, a p-factor correlated-factors model is used

to obtain p-dimensional interim ability estimates, and the item parameters used in

the adaptive test assembly process have the same number of dimensionsp with the

correlated-factors model. Once a test is completed, ELPA21 uses a bifactor model to

obtain (p + 1) -dimensional �nal ability estimates, and takes the general factor score

as the overall score of the test-taker. One implication of this is that item parameters

must be available in bothp- and (p+ 1) -dimension formats, to allow them to be used

in interim and �nal ability estimations respectively.

While using two di�erent models within the same test may appear odd, there is

a good rationale behind using separate models as in ELPA21. That is, the choice of

using the correlated-factors model as the main model for adaptive test assembly allows

for utilizing between-domain correlations as priors in score estimation. However,

because this will only provide domain score estimates, overall score estimates must

be obtained by some other means. This is done by using a bifactor model in the

separate-models approach.

Single-model approach. While the separate-models approach provides a prac-

tical solution, there can be alternative approaches to obtaining both the overall and

domain scores based on a single model throughout the test. As an alternative to

the separate-models approach, a single-model approach can be conceived where a

bifactor model is used as the main assembly model for an adaptive test. A bifactor

model can be a sensible choice for modeling the multidimensional ability for a single-

subject multiple-domain test. In a bifactor model forp domains, the ability vector
#�
� = ( � g; � 1; � 2; :::; � p) includes a general factor� g and speci�c factors� 1; � 2; :::; � p, lead-

ing to p + 1 dimensions in total. By using a bifactor model as the main assembly

model, interim ability estimates would be obtained inp + 1 dimensions, and item

parameters would be required to be inp + 1 dimensions in the bifactor structure to

match the number of dimensions. The �nal ability estimate would also be obtained
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in p + 1 dimensions. Because both interim and �nal ability estimates are inp + 1

dimensions, item parameters are needed only in the(p+1) -dimension format, making

the required input simpler compared to the separate-models approach.

One problem of the single-model approach to obtaining overall and domain scores

based on a bifactor model is that the elements of
#�
� do not directly correspond to

overall and domain scores. This is because (1)� g pertains to the portion of observed

score variance that is not associated with� 1; � 2; :::; � p, making it conceptually di�erent

from overall scores; and (2)� 1; � 2; :::; � p are residuals that do not represent� g, making

it conceptually di�erent from domain scores. To address this problem, overall and

domain scores were suggested to be estimated as weighted composites of general and

speci�c factors (DeMars, 2013). Strategies for determining the weights for computing

the composite were explored by Liu et al. (2019).

1.3 Calibration error

In essence, the choice between the two scoring approaches for obtaining overall

and domain scores (i.e., separate-models or single-model) boils down to whether to

use a correlated-factors model or a bifactor model as the main test assembly model.

The model choice is important because it determines the structure of the main test

assembly: how many dimensions the interim ability estimates will have, and how

many dimensions the item parameters should have. Using a correlated-factors model

as the main model means interim ability estimates and item parameters will be inp

dimensions, and using a bifactor model as the main model means they will be inp+1

dimensions.

An interesting problem related to this choice is how it may interplay with param-

eter estimates obtained from the calibration stage. In practice, item parameters for

fueling an adaptive test assembly engine are usually obtained from performing cali-

bration on a separate dataset. In the context of multidimensional testing based on

a correlated-factors model, this also includes obtaining between-domain correlation

estimates. The between-domain correlation estimates obtained from the calibration

stage, then can be supplied to the engine as priors to help in performing multidimen-

sional ability estimation.

The fact that using a correlated-factors model allows utilizing between-domain
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correlation estimates as priors, may be an advantage over using a bifactor model

as the main model, because it would allow improved ability estimation by utilizing

information from other domains. However, at the same time, this can also act as a

pathway for calibration error to be introduced to the test assembly engine, in the form

of incorrectly speci�ed priors if the between-domain correlations were to be incorrectly

estimated in the calibration stage. In contrast, if the main test assembly model is a

bifactor model, there would be no calibration error in terms of correlation, because

the correlations between dimensions can be assumed to be zero in a bifactor model.

This would o�er some protection from the detrimental e�ects of estimation error in

between-domain correlations on ability estimation, but at the cost of not being able

to utilize between-domain correlations for ability estimation. Whether the protection

o�sets the cost, would be an empirical question.

1.4 Content balancing

One practical requirement for adaptive testing in educational measurement is

that each assembled test should adhere to content speci�cations stipulated in a test

blueprint. A test blueprint includes formally de�ned requirements on various quan-

titative and non-quantitative attributes that the assembled test should satisfy. For

example, a blueprint may assert that at least10 items should be included for each

domain and no more than15. The same blueprint may assert that the total number

of words in the test should be in the range of[900; 1000] to ensure the time taken

to read the questions remains similar across test-takers. The problem of satisfying

the test blueprint in an adaptive test assembly is referred to as a content balancing

problem in the test assembly literature (see van der Linden, 2010).

There are two main frameworks for content balancing in adaptive testing: 1)

heuristic approaches and 2) optimal test design approaches. Heuristic approaches

to content balancing use relatively simple calculations to evaluate the contribution of

each item towards satisfying content requirements. Because the evaluation is done for

each item and not taking the �nal assembled test in mind, heuristic approaches have a

limitation that some content requirements may be violated in the �nal assembled test.

Heuristic approaches, for this reason, often require a weight to be assigned to each

content requirement to designate which should be prioritized if not all requirements
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can be met. Heuristic content balancing methods include the weighted deviation

method (Swanson & Stocking, 1993), the maximum priority index method (Cheng &

Chang, 2009), and the weighted penalty method (Shin et al., 2009).

Optimal test design approaches (Birnbaum, 1968, Theunissen, 1985, van der Lin-

den & Reese, 1998) to content balancing are more modern approaches that make use

of mathematical programming techniques. Mathematical programming has a wide

range of applications in other disciplines such as economics and operations research.

In the �eld of educational assessment, the use of mathematical programming for test

assembly purposes was �rst suggested by Theunissen (1985). At the time the optimal

test design approach was �rst proposed, a fast-enough implementation for operational

test assembly purposes was di�cult to achieve because of limitations in computing

power. Over time, developments in more e�cient optimization algorithms and also

in computing technology have enabled fast enough implementations of optimal test

design approaches to be used for operational test assembly.

The main advantage of optimal test design approaches is that they make sure that

all content requirements are strictly satis�ed in every assembled test, a feat enabled

by translating content speci�cations into constrained optimization problems. Optimal

test design can be used for content balancing in both �xed and adaptive test assembly.

For adaptive assembly, optimal test design uses the shadow-test approach (van der

Linden & Reese, 1998) to allow for adaptively selecting items while maintaining a

complete satisfaction of content requirements.

Implementing optimal test design approaches is not without its own requirements.

The requirements are that 1) the information quantity for each item must be scalar-

valued (the term �information� here is agnostic to the type of information, and is not

necessarily Fisherian), and 2) the information quantity must have an additive property

between item-level and test-level quantities (i.e., the sum of item-level information

for items in a test must be equal to test-level information). These requirements arise

from that optimal test design approaches formulate a test assembly problem as a

combinatorial search for �nding the best combination of items.

For the unidimensional case of adaptive testing, optimal test design approaches

o�er a clear advantage over heuristic approaches in that they make sure that all

content speci�cations are satis�ed in every assembled test. For unidimensional cases,

there is also a number of viable options for information quantity that satisfy the two

17



requirements of the optimal test design approach. These include Fisher information,

Kullback-Leibler information, and mutual information, which are all scalar-valued

and have the additive property between item-level and test-level quantities.

For multidimensional adaptive testing, some issues arise in the optimal test design

approach. Because Fisher information for multidimensional ability is a matrix, it must

be converted into a scalar-valued quantity in some way to be able to be used with

the optimal test design approach. Methods that have been introduced in the general

test assembly literature not speci�c to optimal test design, involve taking various

functions of the information matrix. These include taking the determinant of the

matrix (D-optimality), taking the trace of the matrix (A-optimality), and taking the

smallest eigenvalue (E-optimality). However, while these scalar conversion methods

can be used with heuristic approaches to content balancing, these methods are not

compatible with optimal test design approaches because the converted scalar does

not have the additive property between item-level and test-level quantities.

Viable options for multidimensional optimal test design include using Kullback-

Leibler information, mutual information, and directional information as information

quantities. These information types provide a scalar-valued quantity for each item,

and the quantities also have the additive property required for optimal test design

approaches. The use of Kullback-Leibler information for multidimensional adaptive

testing was introduced by Veldkamp & van der Linden (2002), and the use of mu-

tual information for multidimensional adaptive testing was introduced by Mulder &

van der Linden (2010). For the third option, the use of directional information in

multidimensional �xed-form testing was examined by Reckase & McKinley (1991),

but applications in the context of multidimensional adaptive testing have been lim-

ited in the test assembly literature. Directional information can be a good can-

didate for operational multidimensional adaptive testing based on the optimal test

design approach, because one of the advantages of directional information compared

to Kullback-Leibler and mutual information is in its simpler computation. Kullback-

Leibler and mutual information both require numerical integration, which can be

prohibitively time-consuming especially in high-dimensional cases.
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1.5 Research question

One important empirical question that needs to be addressed in comparing the

separate-models and the single-models approach, is evaluating how calibration error

interplays with domain and overall score recovery. The separate-models approach

may bene�t from being able to use between-domain correlation estimates as priors,

but this can also be a pathway for correlation estimation error to be introduced to the

test assembly engine. In contrast, the single-model approach is based on a bifactor

model which cannot utilize between-domain correlation data. However, this may

o�er some protection to the test assembly engine by keeping correlation estimation

error from a�ecting score estimates in undesirable ways. From these observations, a

research question can be formulated:

ˆ Research Question. When between-domain correlations are estimated with

error, does the single-model approach to adaptive testing o�er better recovery

of domain and/or overall scores compared to the separate-models approach,

despite the single-model approach not being able to utilize between-domain

correlation estimates as in the separate-models approach?

The single-model approach may also be combined with the optimal test design

approach to develop a multidimensional adaptive testing system with full content

balancing. This may o�er potential advantages in that (1) it would o�er a simpler

approach without having to �t separate models for a single test, and (2) it would

ensure full content balancing without violation. Investigating these alternative de-

signs to multidimensional test assembly will inform how operational adaptive tests

for single-subject multiple-domain content can be improved in the areas of domain

score estimation and content balancing.

The goal of the current study was to explore how overall and domain scores can be

more meaningfully and reliably estimated in adaptive tests, where content balancing

is required on single-subject multiple-domain content. The impact of the choice of

scoring approaches on domain and overall score reliability was investigated, in the

context of adaptive testing where calibration error was present. Multidimensional

content balancing methods were also compared in terms of their satisfaction rates on

content requirements. The study used Monte Carlo simulations.
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Chapter 2

Literature Review

Optimal test design (Birnbaum, 1968, Theunissen, 1985, van der Linden & Reese,

1998) is a test assembly framework that aims to tailor test items to individual trait

levels. Examples of traits include psychological constructs, such as ability, attitude,

aptitude, and personality factors. In educational testing, the primary construct of

interest is in a test-taker's ability. Theories on optimal test assembly cover various

mechanisms that are used throughout the test assembly process, including how to

select items from a given item pool, how to obtain ability estimates, how to accom-

modate various test speci�cations, and how to control exposure rates of items.

The earliest iteration of the framework was �rst laid out by Birnbaum (1968),

where the concept of test information was �rst utilized for test construction. Tradi-

tionally, the reliability of a single test has been quanti�ed as a constant value that

was �xed throughout all ability levels. Test information extended the quanti�cation

of test reliability as an index that varies with the ability level. The goal asserted in

the earliest version of the optimal test design framework was therefore to maximize

test information at a speci�ed ability level where maximum reliability was desired.

A practical need that arose in designing computerized adaptive testing (CAT)

systems was how to make the assembly process also account for various content spec-

i�cations. For example, a test that covers three domains in a subject area may require

at least 10 items to be administered from each domain, and the expected time to read

all questions in the test to not exceed 20 minutes. This problem is referred to as a

content balancing problem in the CAT literature (Cheng & Chang, 2009, van der

Linden, 2010).

Approaches to the content balancing problem are mainly grouped into 1) heuristic

approaches and 2) optimal test design approaches. Heuristic approaches are methods

that are based on relatively simple computations, with a limitation that some content

requirements may not be met. Optimal test design approaches are more sophisticated

approaches that use combinatorial optimization techniques to ensure that all content

requirements are strictly satis�ed in every assembled test.
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2.1 Heuristic approaches

Heuristic approaches to the content balancing problem are based on relatively

straightforward calculations. Heuristic approaches involve checking whether the test

being assembled is violating each content requirement, and selecting items in a way

that would lead to the least number of violations. To achieve this, heuristic ap-

proaches use an objective function to decide which item from the item pool should be

administered. The objective function combines two properties of an item into a single

value: 1) the information of the item, and 2) how the item contributes to content

requirements. By the nature of the algorithm, heuristic approaches have a limitation

in that the �nal assembled test may not satisfy all content constraints.

For unidimensional cases, examples of heuristic approaches include the weighted

deviation method (Stocking & Swanson, 1993), the maximum priority index method

(Cheng & Chang, 2009), and the weighted penalty method (Shin et al., 2009). The

three heuristic methods vary in how the two properties are quanti�ed and aggregated.

Multidimensional extensions of these approaches have been also developed in the

literature, which are described later in Section 2.7. The current section focuses on

the unidimensional versions.

2.1.1 Weighted deviation method

The weighted deviation method (Stocking & Swanson, 1993) is one of the early

methods developed for the content balancing problem. Formally, the objective func-

tion of the weighted deviation method is:

arg min
i

X

8c

wc� c(t+ i ) + wt+ i � t+ i (�̂ ): (2.1)

In the �rst half of Equation 2.1, wc is the weight assigned to content constraintc (i.e.,

a content requirement). The term� c(t+ i ) is the amount of deviation based on each

candidate test t + i , compared to the bounds asserted in content constraintc (such

that � c � 0). A candidate test t + i is formed by adding a candidate itemi on the

set of previously administered itemsVt . For example, if a constraintc required the

number of items from a domain to be in the range of[5; 10], and the actual number of

items in that domain in the candidate test is four, then this would lead to� c(t+ i ) = 1
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re�ecting that the number of domain items is deviating by one from the lower bound

of �ve. If the candidate test had seven items in the domain then the amount of

deviation would be� c(t+ i ) = 0, re�ecting that the number of domain items is within

the lower and upper bounds. If the number of items in the domain is12, then this

would lead to � c(t+ i ) = 2, re�ecting that the number of domain items is deviating by

two from the upper bound of ten.

While these examples illustrate how the deviation term� c(t+ i ) is calculated for

domain coverage constraints, the method can be applied to other types of content

constraints as well. For example, if a constraintc required the total number of words

for a domain to be in the range of[400; 500], and the actual number of words in the

domain was300in the candidate test, then this would lead to� c(t+ i ) = 100, re�ecting

that the number of words is deviating by100 from the lower bound of400. If the

number of words for the domain is550 in the candidate test, then this would lead to

� c(t+ i ) = 50, re�ecting that the number of words is deviating by50 from the upper

bound of 500.

In the second half of Equation 2.1,wt+ i is a weight, and � t+ i (�̂ ) is the amount

of deviation that the test information of a candidate test has at the current ability

estimate �̂ . Because adaptive testing is usually performed to maximize test informa-

tion, this would lead to using an inde�nite lower bound for evaluating the amount

of deviation. In practice, this would be implemented by using an arbitrarily large

number for the lower bound. For example, suppose the lower bound is set to20:0.

Then, if a candidate test had test information of15:0 at the current ability estimate

�̂ , then this would lead to a deviation of� t+ i (�̂ ) = 5 :0, re�ecting that test information

is deviating by 5:0 from the lower bound20:0.

2.1.2 Maximum priority index method

The maximum priority index method (Cheng & Chang, 2009) is another method

developed for the content balancing problem. Formally, the objective function of the

maximum priority index method is:

arg max
i

I i

Y

8c

(wc� c)
xci : (2.2)

Here, I i is the item information of item i at the current ability estimate �̂ . The term
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wc is the weight assigned to content constraintc, and � c is the amount of violation

for content constraint c. The exponentxci indicates whether itemi has the property

required by constraintc. For example, suppose that constraintc required the number

of items in a domain to be in some range. If itemi is in the domain, then xci = 1

is used indicating that any violation of item i towards constraint c should explicitly

enter the equation. If itemi is not in the domain, thenxci = 0 is used indicating that

item i does not have any potential to violate constraintc, and thus should not enter

the equation.

The amount of violation � c for constraint c is computed as:

� c =

8
<

:
(LBc � nc[administered] )=LBc until LB c is reached for allc

(UBc � nc[administered] )=UBc afterwards,
(2.3)

where LBc and UBc are respective lower and upper bounds of constraintc, and

nc[administered] is the number of items administered so far that count towards satisfying

constraint c. For example, if a constraint required the number of items from a domain

to be in the range of[5; 10], and the actual number of items in the domain in the

assembled test was four so far, then this would lead to� c = (5 � 4)=5 = 0:2. If the

test had seven items in the domain so far then the amount of violation would be

� c = 0, re�ecting that the domain coverage is within the lower and upper bounds.

If 12 items have been administered for the domain so far, then this would lead to

� c = (10 � 12)=10 = � 0:2. Here, a negative value indicates that items belonging to

this domain should be given less priority in item selection, because the number of

domain items administered (12) has exceeded the desired maximum of ten.

The method can be applied to other types of content constraints as well. For

example, if a constraintc required the total number of words for a domain to be in

the range of[400; 500], and the actual number of words in the domain was300so far,

then this would lead to � c = (400 � 300)=400 = 0:25. If the number of words for the

domain was550so far, then this would lead to� c = (500 � 550)=500 = � 0:1. Again,

a negative value here indicates that items that would add more words to the domain

should be given less priority in item selection.
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2.1.3 Weighted penalty method

The weighted penalty method (Shin et al., 2009) is a more advanced method de-

veloped for the content balancing problem. Compared to other methods, a unique

aspect of the weighted penalty method is that it performs normalization across calcu-

lation steps, so that the terms become on comparable metrics. The method involves a

two-stage process: 1) computing the penalty value for each item, and 2) categorizing

each item into one of four groups based on the number of violations that would result

from administering the item.

First, the item-wise penalty value� i is computed as follows:

� i = w[content] �
�
i [content] + w[info] �

�
i [info] : (2.4)

The superscript� indicates the term is a normalized term. In the �rst half of Equation

2.4, the item-wise content penalty� �
i [content] is computed by �rst computing the non-

normalized item-wise content penalty� i [content] as:

� i [content] =
X

8c

wc� ci : (2.5)

The term � ci is computed as:

� ci =

8
>>><

>>>:

( 1
kLD c

ED2
c + LD c

k )xci if EPc < LPc

EDcxci if LP c � EPc < UPc

( 1
kUD c

ED2
c + UD c

k )xci if UPc � EPc:

(2.6)

Here, LPc and UPc are desired lower and upper bounds on the proportion of admin-

istered item in content speci�cationc, relative to the test length. The terms LDc and

UDc are mean-centered lower and upper bounds, where the mean used for centering is

MPc = ( LPc + UPc)=2. Again xci indicates whether itemi has the property required

by constraint c. The weight k is an arbitrary number, which k = 2 was used by Shin

et al. (2009). The term EPc is the expected proportion of items that match content

speci�cation c that a completed test would have, obtained as:

EPc = ( nc[administered] + pc[pool]n[remaining] )=nmax : (2.7)
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Here,nc[administered] is again the number of items administered so far that count towards

satisfying constraint c. The term pc[pool] is the proportion of items in the pool that

count towards constraintsc relative to item pool size, and the termn[remaining] is the

number of remaining items until the test length is reached. The denominatornmax

is the test length. Lastly, the term EDc in Equation 2.6 is the expected deviation

EDc = EPc � MPc.

After obtaining the non-normalized content penalty value� i [content] using Equation

2.5 for all items, the values are normalized using the range:

� �
i [content] =

� i [content] � min(� i [content] )
max(� i [content] ) � min(� i [content] )

; (2.8)

completing the computation of the �rst half of Equation 2.4.

For the second half of Equation 2.4, the item-wise information penalty� �
i [info] is

computed as:

� �
i [info] = �

�
I i

I max

� 2

: (2.9)

Here, I i is again the item information at the current ability estimate �̂ , and I max is

the maximum information that an item in the pool can provide at the current ability

estimate �̂ .

The second step of the weighted penalty method involves sorting the items and

constraints. First, each constraint c is assigned a priority level (a lower number

represents a higher priority) based on whether its bounds are reached:

priority c =

8
>>><

>>>:

00 if the lower bound is reached

10 if the lower bound is reached but not the upper bound

20 if the upper bound is reached:

(2.10)

Then, each itemi is assigned a priority level (a lower number represents a higher

priority) based on the priorities of constraints associated with the item:
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priority i =

8
>>>>>><

>>>>>>:

0 if all constraint priorities are 2 f 00g or f 00; 10g

1 if all constraint priorities are 2 f 00; 10; 20g or f 00; 20g

2 if all constraint priorities are 2 f 10g

3 if all constraint priorities are 2 f 10; 20g or f 20g:

(2.11)

The items are sorted based on priorityi , and within each priorityi group the items

are sorted based on the penalty value� i . In its simplest form, the sorted list can

be used to select the item with the highest priority (lowest priorityi value) and the

lowest penalty � i . It is also possible to incorporate a randomesque exposure control

by selecting the top few items and randomly selecting from them.

2.2 Optimal test design approach

The optimal test design approach is a more sophisticated approach to the content

balancing problem, and is based on mathematical optimization techniques. A major

advantage of the optimal test design approach compared to heuristic approaches is

that it ensures that every assembled test strictly satis�es all content requirements

(van der Linden & Reese, 1998). The optimal test design approach can be used for

both �xed and adaptive test assembly. For adaptive test assembly, optimal test design

uses the shadow-test approach (van der Linden & Reese, 1998) to allow for adaptively

selecting items while maintaining full adherence to content speci�cations.

Having its roots on Birnbaum (1968)'s framework as introduced at the beginning

of this chapter, the optimal test design framework as mathematical optimization was

shaped by Theunissen (1985), where test assembly problems were formally formulated

as a combinatorial optimization problem. A combinatorial optimization problem is

a type of optimization problem, where the objective is to �nd a combination so that

a prede�ned objective function yields the optimal value. In the context of test as-

sembly, the objective is to �nd a combination of items that has the maximum test

information at a given ability level. The formulation of test assembly as a combinato-

rial optimization enabled psychometricians to incorporate various test speci�cations

into optimization problems as formal mathematical constraints.
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The framework was subsequently applied to adaptive test assembly, where the

composition of the test would be dynamically determined to adapt to the ability level

of each examinee. However, the formulation of adaptive test assembly with complex

content constraints revealed a dilemma. To achieve adaptive assembly, it was required

that each item in the test must be selected one at a time, so that the ability estimate

can be updated after administering each item. The dilemma was that sequentially

selecting items while satisfying all constraints was a task that could not be directly

achieved by solving a formal combinatorial optimization problem. Solving a formal

problem meant immediately determining the entire content of the test, leaving no

room for adaptively determining each item (see Section 9.1.7, van der Linden, 2005).

The remedy to this problem was the shadow-test approach, �rst proposed by

van der Linden & Reese (1998). The shadow-test approach introduced an intermediate

layer between solving a complex test assembly problem and selecting items to be

administered, so that �rst a shadow-test meeting all constraints is assembled from

the item pool, and then an item is selected from the shadow-test. The shadow-test

approach for adaptive test assembly problems enabled the adaptive selection of each

item after each item administration, while also achieving full adherence to all test

constraints.

Formally, shadow-test-based adaptive testing for a unidimensional ability� is

performed in the following steps:

ˆ Step 1. Let �̂ 0 be the initial ability estimate.

ˆ Step 2. Let k = 1, where k represents item administration position (i.e., test

progress).

ˆ Step 3. Using constraints, enforce all previously administered itemsi 1; :::; ik� 1

to be included in the a full-length testVk . Then, assembleVk maximizing test

information at �̂ k� 1, subject to all constraints.

ˆ Step 4. Select an item with the highest informationI (�̂ k� 1) from Vk . Let this

be the item i k to be administered at positionk. Return other unadministered

items in Vk to the pool.

ˆ Step 5. Administer item i k and record the response asuk .
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ˆ Step 6. Update the ability estimate using all responsesu1; :::; uk from the

examinee. Let�̂ k be the updated estimate.

ˆ Step 7. Increment k by 1 and go to Step 3. Repeat until the test administration

is completed for the examinee.

2.3 Multidimensional extension

Latent constructs measured in educational and psychological studies are often

multidimensional. As such, a line of literature has focused on computerized adaptive

testing in the context of multidimensional item response theory (e.g., Segall, 1996,

Veldkamp & van der Linden, 2002, Haberman & Sinharay, 2010, Wang et al., 2011,

Seo & Weiss, 2015, Liu et al., 2019). In the multidimensional extension of adaptive

testing, multidimensional item response models are used in place of unidimensional

counterparts as a basis of test construction.

This section provides item response functions and Fisher information matrices

for multidimensional cases, as well as optimality criteria that can be used for select-

ing items. One important distinction between unidimensional and multidimensional

models is that when using Fisher information, unidimensional item information is

a scalar value, and multidimensional item information is a matrix. Because of this

di�erence, optimality criteria for item selection in multidimensional adaptive testing

are based on converting the information matrix into a scalar in some way.

2.3.1 Multidimensional item response functions

This section describes item response functions of commonly used item response

models for measuring multidimensional ability. In multidimensional item models, the

p-dimensional ability vector
#�
� of an examinee takes a value inRp. For a given item

i , the item responseui from an examinee takes a non-negative integer value inZ � 0,

with 0 as the lowest possible response category.

An item response model is represented as a set of category response functions. A

category response function describes the probability of obtaining a response category

u on item i using the ability vector
#�
� as an input. Category response functions have

the form of
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Piu = Pi (ui = u j
#�
� ; � i ) = f iu (

#�
� ; � i ); (2.12)

wherePiu denotes the probability of obtaining a response categoryu on item i from

a person whose ability vector is
#�
� ; ui is a random variable that represents a response

on item i ; and f iu is a function that describes the probability using� i , the set of item

parameters for itemi .

Multidimensional two-parameter logistic model (M2PL). The multidimensional ex-

tension of the two-parameter logistic model is as follows (Reckase, 2009). The item

parameter set for this model is� i = f #�ai ; di g, where #�ai is a length-p vector of slope

parameters, anddi is a scalar value for the intercept parameter. The response prob-

ability is:

Pi (ui = 1 j
#�
� ; � i ) =

exp(� i )
1 + exp(� i )

; where� i = #�ai
#�
� | + di : (2.13)

Multidimensional three-parameter logistic model (M3PL). The multidimensional

extension of the three-parameter logistic model is as follows (Reckase, 2009). The

item parameter set for this model is� i = f #�ai ; di ; ci g, whereci is a scalar value for the

guessing parameter. The response probability is:

Pi (ui = 1 j
#�
� ; � i ) = ci + (1 � ci )

exp(� i )
1 + exp(� i )

; where� i = #�ai
#�
� | + di : (2.14)

Multidimensional generalized partial credit model (MGPC). The multidimensional

extension of the generalized partial credit model was given by Yao & Schwarz (2006).

For an item with allowed scoresU i = f 0; 1; :::; mg, the item parameter set for this

model is� i = f #�ai ; di 1; :::; dim g. The categorical response probability is:

Pi (ui = u j
#�
� ; � i ) =

exp(� iu )
P

u � 2 U i
exp(� iu � )

; (2.15)

� iu = u( #�ai
#�
� | ) + diu ;

where di 0 = 0, leading to � i 0 = 0( #�ai
#�
� | ) + 0 = 0 . Here, u� denotes a response level
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that belongs to the set of all possible response levelsU i = f 0; 1; :::; mg.

Multidimensional graded response model (MGR). The multidimensional extension

of the graded response model was developed by Muraki & Carlson (1995). For an

item with allowed scoresU i = f 0; 1; :::; mg, the item parameter set for this model is

� i = f #�ai ; di 1; :::; dim g. The categorical response probability is:

Pi (ui = u j
#�
� ; � i ) = Pi (ui � u j

#�
� ; � i ) (2.16)

� Pi (ui � u + 1 j
#�
� ; � i );

Pi (ui � u j
#�
� ; � i ) =

exp(� iu )
1 + exp(� iu )

;

� iu =

8
>>><

>>>:

+ 1 for u = 0
#�ai

#�
� | + diu for u = 1; :::; m

�1 for u = m + 1:

2.3.2 Multidimensional Fisher information functions

This section describes Fisher information associated with multidimensional item

models. The multidimensional Fisher information of ap-dimensional item i at an

ability vector
#�
� is a p � p matrix. Let this information matrix be denoted as I i (

#�
� ).

As with the unidimensional case, the sum of item information matrices for all items

in a test is equal to the test information matrix:

I t (
#�
� ) =

X

i 2 Vt

I i (
#�
� ); (2.17)

whereVt denotes the set of items in testt.

Equations for commonly used item models are listed below. Multidimensional

Fisher information matrices for the item models listed here share a feature compared

to their unidimensional counterparts, where the squared slope terma2 is changed to

a p � p matrix
#�
a|

i
#�ai .

Multidimensional two-parameter logistic model (M2PL). The Fisher information

matrix of a multidimensional 2PL item is as follows.

30



I i (
#�
� ) = (

#�
a|

i
#�ai )Pi 0Pi 1: (2.18)

Multidimensional three-parameter logistic model (M3PL). The Fisher information

matrix of a multidimensional 3PL item is as follows.

I i (
#�
� ) = (

#�
a|

i
#�ai )

Pi 0

Pi 1
((Pi 1 � ci )2=(1 � ci )2): (2.19)

Multidimensional generalized partial credit model (MGPC). The Fisher informa-

tion matrix of a multidimensional GPC item is as follows.

I i (
#�
� ) = (

#�
a|

i
#�ai )

�� X

u � 2 U i

u2
� Piu �

�
�

� X

u � 2 U i

u� Piu �

� 2�
: (2.20)

Here,u� denotes a response level that belongs to the set of all possible response levels

U i = f 0; 1; :::; mg.

Multidimensional graded response model (MGR). The Fisher information matrix

of a multidimensional GR item is as follows.

I i (
#�
� ) = (

#�
a|

i
#�ai )

X

u � 2 U i

��
P �

iu �
� P �

i (u � +1)

��
1 � P �

iu �
� P �

i (u � +1)

� 2�
; (2.21)

P �
iu =

exp(� iu )
1 + exp(� iu )

;

� iu =

8
>>><

>>>:

+ 1 for u = 0
#�ai

#�
� | + diu for u = 1; :::; m

�1 for u = m + 1:

Here, P �
iu denotesPi (ui � u j

#�
� ; � i ) in Equation 2.16, the probability of obtaining a

response level ofu or higher.
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2.3.3 Multidimensional optimality criteria

This section describes optimality criteria used for item selection in multidimen-

sional adaptive testing. The multidimensional extension of adaptive testing shares

many components with its unidimensional counterpart. One change needed to ac-

commodate the multidimensional structure is a change in the item selection criterion.

This is because the Fisher information for a multidimensional item is a matrix, which

must be converted to a scalar to be able to compare the information between items.

D-optimality. This criterion selects the item that maximizes the determinant of

the information matrix:

arg max
i

det (I t (
#�
� )) : (2.22)

This is geometrically analogous to maximizing the volume of test information ellipsoid

(Segall, 1996).

A-optimality. This criterion selects the item so that it minimizes the trace of the

inverse of the test information matrix:

arg min
i

tr ( I t (
#�
� )� 1): (2.23)

Conceptually, this criterion aims to minimize the asymptotic standard error of es-

timation across all dimensions, weighting all dimensions equally (Mulder & van der

Linden, 2009).

c-optimality. This item selection criterion is a generalized version of A-optimality,

where each dimension is allowed to have di�erent weights:

arg min
i

#�w> (I t (
#�
� )� 1) #�w: (2.24)

Here, #�w is a length-p vector of weights to be assigned to dimensions of
#�
� . The use

of c-optimality in adaptive testing was �rst introduced by Mulder & van der Linden

(2009).

E-optimality. This item selection criterion selects the item so that the smallest

eigenvalue of the test information matrix is maximized:

arg max
i

eigp (I t (
#�
� )) ; (2.25)
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whereeigp denotes thep-th eigenvalue (i.e., the smallest) (Mulder & van der Linden,

2009).

The impact of di�erent optimality criteria on ability estimation has been exam-

ined previously. Mulder & van der Linden (2009) evaluated the performance of six

optimality criteria in the context of a generic multidimensional structure. The au-

thors found that A- and D-optimalities performed well when all ability dimensions

were intended for measurement, andc-optimality performed well when a composite of

ability dimensions was sought for. Seo & Weiss (2015) compared four optimality cri-

teria in the context of bifactor models. The authors found that A- and D-optimalities

performed well for recovering speci�c factors, and that E-optimality had the lowest

performance.

2.4 Multidimensional score estimation

Another component of adaptive testing that needs to be adapted for the multi-

dimensional extension is the estimation of the ability vector. While the expected a

posteriori (EAP) method is commonly used for unidimensional adaptive testing, it

is less suitable for multidimensional adaptive testing, especially in high dimensions.

This is because EAP for multidimensional items requiresqp quadrature points for per-

forming numerical integration (q quadrature points for each ofp dimensions). This

makes EAP computationally expensive and thus not practical for multidimensional

adaptive testing, especially whenp is a large number.

Instead, ability vector estimation in multidimensional cases of adaptive testing

can be done using the maximum a posteriori (MAP) method. Formally,

#̂�
� MAP = arg max

#�
�

f (
#�
� j #�u ) (2.26)

= arg max
#�
�

P( #�u j
#�
� )f (

#�
� );

where f (
#�
� j #�u ) is a function that describes the posterior density,#�u is the response

vector, and f (
#�
� ) is a function that gives the prior density of

#�
� .
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2.5 Overall and domain scores

The main interest of a test on a multiple-domain subject is in generating two types

of scores. The �rst type is a score that represents the performance on the subject area

as a whole, and the second is a score that represents the performance on each domain

area. The two score types are referred to as overall and domain scores respectively.

A real-life example for obtaining overall and domain scores is based on a separate-

models approach. In the ELPA21 testing system, a correlated-factors model is used

for obtaining domain scores, and a bifactor model is used for obtaining overall scores

(American Institutes for Research, 2017). The correlated-factors model is used as the

main assembly model in ELPA21.

Alternatively, overall and domain scores may be obtained from a single-model

approach, where the same model is used for obtaining both overall and domain scores.

The single-model approach can be based on a bifactor model, where overall and

domain scores are estimated as weighted composites of general and speci�c factors

(DeMars, 2013, Liu et al., 2019, DeMars, 2021). This means that forp domains,

the interim ability estimate vector
#̂�
� is a length-(p + 1) vector. This requires item

a-parameters to be inp + 1 dimensions in the bifactor structure.

2.5.1 Separate-models approach

One approach that can be taken to obtain overall and domain scores is the

separate-models approach. In a separate-models approach, one model is used to

obtain overall scores, and another model is used for domain scores. The English

Language Pro�ciency Assessment for the 21st Century (ELPA21; American Insti-

tutes for Research, 2017) is an example of an operational test program that uses a

separate-models approach.

To obtain domain scores, ELPA21 uses a correlated-factors model where each

factor represents a domain, and all factors are allowed to be correlated with each other.

Throughout the test, a correlated-factors model is used as the main test assembly

model. This means that forp domains, the interim and �nal ability estimate vector
#̂�
� is a length-p vector. This requires itema-parameters to be in the same number of

dimensionsp.

After a test is completed, a bifactor model is used separately for the purpose of
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obtaining overall scores. The bifactor model used here uses one general factor andp

speci�c factors, with all factors uncorrelated with each other. The model used also

has a simple structure assumed. This means that each item measures two factors in

total: the general factor and one speci�c factor (i.e., has two positivea-parameters).

From the model, general factor score estimates are taken as overall score estimates.

This means that for p domains, a separate �nal ability estimate vector
#̂�
� of length-

(p + 1) is obtained, where the �rst element is the general factor score estimate. This

requires itema-parameters to be inp + 1 dimensions in the bifactor structure.

As such, a key requirement of the separate-models approach is that it requires each

item to have item parameters in two di�erent formats: (1) a correlated-factors format

and (2) a bifactor format. The correlated-factors format item parameters are used for

item selection, and also for interim and �nal ability estimation inp dimensions, which

are used as domain score estimates. The bifactor format item parameters are used

for performing separate �nal ability estimation in p + 1 dimensions for the purpose

of obtaining overall score estimates.

While making use of two di�erent models may appear less ideal, there is a good

rationale behind the separate-models approach. That is, the choice of using the

correlated-factors model as the main model allows for utilizing between-domain cor-

relations as priors in score estimation. However, doing this would only provide domain

score estimates, so overall score estimates must be obtained by some other means.

For this purpose, the separate-models approach utilizes a bifactor model to obtain

overall score estimates.

2.5.2 Single-model approach

Alternatively to the separate-models approach, the single-model approach uses

a single model throughout the test assembly. The single-model approach uses a

bifactor model for obtaining both overall and domain scores. A bifactor model can

be a sensible choice for modeling single-subject multiple-domain content.

The overall and domain scores in the single-model approach are obtained by taking

weighted sums of general and speci�c factors in a bifactor model (DeMars, 2013).

Strategies for determining the weights for computing the composite were explored by

Liu et al. (2019). In the study, Liu et al. (2019) found that the weights obtained by a

method the authors have labeled as Method 4 (M4) provided a good recovery of true
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score composites. In this method, the overall score for a single examinee is taken as:

� [overall] = wg[overall] � g +
X

p� 2 P

wp� [overall] � p� ; (2.27)

wg[overall] =
� X

i 2 V

aig

���
(
X

i 2 V

aig ) + (
X

p� 2 P

X

i 2 Vp�

aip � )
�
;

wp� [overall] =
� X

i 2 Vp�

aip �

���
(
X

i 2 Vt

aig ) + (
X

p� 2 P

X

i 2 Vp�

aip � )
�
;

whereP is the setf 1; 2; :::; pg of all domains;V is the set of all items in the pool;Vp�

is the set of items measuring domainp� ; aig is the item discrimination parameter on

the general dimension; andaip � is the item discrimination parameter on the dimension

for domain p� . Then, domain scores are taken as:

� p� [domain] = wgp� [domain] � g + wp� [domain] � p� ; (2.28)

wgp� [domain] =
� X

i 2 Vp�

aig

���
(

X

i 2 Vp�

aig ) + (
X

i 2 Vp�

aip � )
�
;

wp� [domain] =
� X

i 2 Vp�

aip �

���
(

X

i 2 Vp�

aig ) + (
X

i 2 Vp�

aip � )
�
:

One issue related to overall and domain scores in the single-model approach is

that overall and domain scores obtained using Equations 2.27�2.28 do not have unit

variances when the general and speci�c factors in
#�
� have unit variances (DeMars,

2021). The fact that the weights sum to one demonstrates this problem; when� g

and � p� have unit variances, the squared weights must sum to one for the weighted

composite to have a unit variance. To address this issue, DeMars (2021) suggested

the weights in Equations 2.27, 2.28 to be normalized as:
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w�
g[overall] = wg[overall]

� q
w2

g[overall] + w2
1[overall] + ::: + w2

p[overall] ; (2.29)

w�
p� [overall] = wp� [overall]

� q
w2

g[overall] + w2
1[overall] + ::: + w2

p[overall] ;

w�
gp� [domain] = wgp� [domain]

� q
w2

gp� [domain] + w2
p� [domain] ;

w�
p� [domain] = wp� [domain]

� q
w2

gp� [domain] + w2
p� [domain] :

2.6 Calibration error

In a practical setting, item parameters need to be estimated in advance from a

separate calibration sample before an adaptive testing system is employed. The pro-

cess of estimation is called �calibration� in the psychometrics literature to imply that

the metric of parameter estimates is tied to the speci�c sample used for the calibra-

tion process. From the calibration, the item parameter estimates are then treated

as known in all computational steps in CAT, including but not limited to computing

information for the purpose of item selection and estimating interim abilities within

a test. It is therefore crucial for item parameters to be estimated accurately in the

calibration stage, because any error will propagate onto subsequent steps in CAT.

The multidimensional case of CAT has yet another source of calibration error:

the correlations between ability dimensions. For example, when a correlated-factors

model is used for calibration, the between-domain correlations will be estimated along

with item parameters. In contrast, when a bifactor model is used for calibration,

between-factor correlations are assumed to be zero.

An interesting problem related to this is how it would interplay with the choice

of scoring approaches. As discussed previously, the choice between the two scoring

approaches for overall and domain scores (i.e., separate-models or single-model) boils

down to whether to use a correlated-factors model or a bifactor model as the main test

assembly model. When the separate-models approach is used, the between-domain

correlation estimates obtained from calibration can be used as priors to help in per-

forming multidimensional ability estimation. This may be an advantage over using

the bifactor model as the main model in that it would allow improved ability estima-
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tion by utilizing information from other domains. However, at the same time, this

can also act as a pathway for calibration error to be introduced to the test assembly

engine, especially the calibration error on between-domain correlation estimates.

In contrast, if the main assembly model is a bifactor model, there would be no

calibration error in terms of correlation, because correlations between dimensions are

set to zero in a bifactor model. This may o�er some protection from calibration error

in between-domain correlations from having detrimental e�ects on ability estimation.

However, this protection would come at the cost of not being able to make use of

between-domain correlation estimates to help in ability estimation. It would be an

empirical question to evaluate whether the protection o�sets the cost.

2.7 Multidimensional heuristic approaches

For content balancing, extensions of heuristic approaches have been developed

in the literature to accommodate multidimensional structures. The multidimensional

maximum priority index method (Frey et al., 2011) and the multidimensional weighted

penalty method (Born & Frey, 2017) are respective extensions of the maximum pri-

ority index method and the weighted penalty method. A multidimensional extension

of the weighted deviation method has not been proposed in the literature, which will

be brie�y introduced after describing the two existing extensions.

2.7.1 Multidimensional maximum priority index method

Frey et al. (2011) introduced a multidimensional extension of the maximum pri-

ority index method. The multidimensional extension is obtained by replacing the

unidimensional information termI i in Equation 2.2 with the determinant of a prior-

weighted multidimensional information matrix W t+ i (Segall, 1996):

W t+ i = I t+ i (
#̂�
� ) + � � 1; (2.30)

whereI t+ i (
#̂�
� ) is again the test information of a candidate test at the current estimate

#̂�
� , and � is the prior variance-covariance matrix for

#�
� . ReplacingI i in Equation 2.2

with detW t+ i yields the following objective function:
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arg max
i

(det W t+ i )
Y

8c

(wc� c)
xci : (2.31)

As in the unidimensional case in Equation 2.2, the termwc is the weight assigned to

content constraint c, and � c is the amount of violation for content constraintc. The

exponentxci indicates whether itemi has the property required by constraintc. The

amount of violation � c for constraint c is computed in the same way using Equation

2.3.

2.7.2 Multidimensional weighted penalty method

Born & Frey (2017) introduced a multidimensional extension of the weighted

penalty method. Similar to the multidimensional extension of the maximum pri-

ority index method, the multidimensional extension of the weighted penalty method

is obtained by replacing unidimensional information termsI i and I max with their

multidimensional counterparts. Speci�cally, Equation 2.9 is replaced with:

� �
i [info] = �

�
detW t+ i

detW max

� 2

: (2.32)

Here,W t+ i is again the prior-augmented multidimensional information matrix at the

current estimate
#̂�
� for the candidate test t + i (Equation 2.30), and W max is the

maximum value obtainable by a candidate test at the current estimate.

2.7.3 Multidimensional weighted deviation method

At the time of writing, a multidimensional extension of the weighted deviation

method has not been introduced in the literature. Using similar techniques used

in the extensions of the maximum priority index and weighted penalty methods, a

multidimensional extension of the weighted deviation method can be formulated as:

arg min
i

X

8c

wc� c(t+ i ) + wt+ i � t+ i (
#̂�
� ); (2.33)

where � t+ i (
#̂�
� ) is the amount of deviation that the determinant ofW t+ i has at the

current ability estimate vector
#̂�
� . Here, W t+ i is again the prior-augmented multidi-
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mensional information matrix at the current ability estimate
#̂�
� for the candidate test

t + i (Equation 2.30).

In the unidimensional case described in Section 2.1.1, the computation of� t+ i (�̂ )

required using an arbitrary large number as the lower bound for evaluating the amount

of deviation. The same is required for the computation of� t+ i (
#̂�
� ) in Equation 2.33.

Because� t+ i (
#̂�
� ) is in the metric of determinants, the lower bound for evaluating the

deviation can be set to an appropriately-sized value, e.g.,2:0. Then, if a candidate

test had a determinant of0:5 at the current ability estimate
#̂�
� , then this would lead

to a deviation of � t+ i (
#̂�
� ) = 1 :5, re�ecting that the determinant is deviating by 1:5

from the lower bound2:0.

2.8 Multidimensional optimal test design approach

The multidimensional extension of optimal test design approaches is less straight-

forward compared to the extension of heuristic approaches. This is because the test

assembly model in optimal test design is a combinatorial optimization problem, which

requires the information for each item to be a scalar. Because Fisher item information

for multidimensional items is a matrix, I i (~� ) cannot be used directly in the matrix

form.

The optimality criteria for multidimensional items introduced in Section 2.3.3

are also not compatible with the optimal test design approach. This is because

the formulation of a test assembly problem as a combinatorial optimization problem

requires the item-level quantity for information to have an additive relationship with

the test-level quantity. The optimality criteria described in Section 2.3.3 do not

meet the additivity requirement, and hence cannot be used with optimal test design

approaches.

To address this issue, some recent developments in the CAT literature that use

other types of information were examined for a multidimensional optimal test de-

sign approach. These include (1) Kullback-Leibler information (Veldkamp & van der

Linden, 2002), (2) mutual information (Mulder & van der Linden, 2010), and (3)

directional information (Reckase & McKinley, 1991).
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2.8.1 Kullback-Leibler information

Kullback-Leibler (KL) divergence index is a type of information index that quan-

ti�es the di�erence between two probability distributions. In the context of adaptive

testing, KL information is used to represent the di�erence between probability distri-

butions under the current ability estimate vector
#̂�
� and a hypothetical ability vector

#�
� h representing the unknown true ability vector (Mulder & van der Linden, 2010).

Formally,

I i [KL] (
#̂�
� ;

#�
� h) =

X

u 2 U i

Piu (
#̂�
� ) log

Piu (
#̂�
� )

Piu (
#�
� h)

: (2.34)

KL information in the context of adaptive testing is computed for a range of
#�
� h

values. The purpose of using a range of
#�
� h values is to select an item that has the

largest amount of expected information compared to what the current ability estimate

provides, with the expectation taken over a range of hypothetical
#�
� h values where the

true
#�
� might be located. Denoting the range of

#�
� h values asD , KL information for

adaptive testing is expressed as:

I i [KL] (
#̂�
� ; D ) =

Z

D
I i [KL] (

#�
� ;

#�
� � ); (2.35)

where
#�
� � 2 D . An approximation can be obtained by using numerical quadratures

over D :

I i [KL] (
#̂�
� ; D ) �

X

#�
� � 2 D

I i [KL] (
#�
� ;

#�
� � ): (2.36)

For the purpose of adaptive testing, a major limitation of KL information is its

computational requirements. The number of quadrature points in the multidimen-

sional context would rapidly increase as the number of domains is increased. This

may impose di�culties in using KL information for operational adaptive testing,

where fast computations are required for computerized test administration.
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2.8.2 Mutual information

Mutual information (MI; Mulder & van der Linden, 2010) is another index that

quanti�es the di�erence between two probability distributions. In the context of

adaptive testing, MI is used to quantify the dependence between two distributions:

(1) the posterior distribution of the current ability estimate, and (2) the response

probabilities on the candidate item based on the current estimate. Formally,

I i [MI] (
#̂�
� ; i ) =

X

u � 2 U i

Z

D
f (

#�
� � ; u� j Vt ) log

f (
#�
� � ; u� j Vt )

f (
#�
� � j Vt )f (u� j Vt )

; (2.37)

where
#�
� � 2 D . An approximation can be obtained using numerical quadratures:

I i [MI] (
#̂�
� ; i ) �

X

u � 2 U i

X

#�
� � 2 D

f (
#�
� � ; u� j Vt ) log

f (
#�
� � ; u� j Vt )

f (
#�
� � j Vt )f (u� j Vt )

(2.38)

=
X

u � 2 U i

X

#�
� � 2 D

Piu � (
#�
� � )f (

#�
� � j Vt ) log

Piu � (
#�
� � )f (

#�
� � j Vt )

f (
#�
� � j Vt )f (u� j Vt )

=
X

u � 2 U i

X

#�
� � 2 D

Piu � (
#�
� � )f (

#�
� � j Vt ) log

Piu � (
#�
� � )

f (u� j Vt )
:

Here, Piu � (
#�
� � ) is the probability of respondingu� on item i at quadrature

#�
� � . The

term f (
#�
� � j Vt ) is the posterior density of the current estimate of

#̂�
� at quadrature

#�
� � based on the set of administered itemsVt so far. The denominatorf (u� j Vt ) is

the probability of respondingu� on item i based on the posterior distribution of the

estimate, based on the set of administered itemsVt so far.

For the purpose of adaptive testing, mutual information also has a major limitation

in its computational requirements. The number of quadrature points in the multidi-

mensional context would rapidly increase as the number of domains is increased. This

may impose di�culties in using mutual information for operational adaptive testing,

where fast computations are required for computerized test administration.
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2.8.3 Directional information

Directional information represents the amount of information towards a speci�c

direction on an information surface. Directional information of ap-dimensional item

at an ability vector
#�
� is always a scalar. The direction in which the derivative is taken

is represented by ap-dimensional directional angle vector#�� = f � p� ; p� 2 P g. Here,

P is the set of all axesP = f 1; :::; pg, and � p� is the angle of the direction on axisp� .

Equations for directional information share a common feature compared to equations

for Fisher information in Section 2.3.2, where thep� p matrix (
#�
a|

i
#�ai ) is changed to a

scalar ( #�ai
#�� |

cos)
2. Here, #�� cos is a directional cosine vector#�� cos = f cos� p� ; p� 2 P g.

One advantage of directional information over KL and mutual information is its

fast computation. The computation of directional information does not require nu-

merical integration. This makes directional information a good candidate for using

in computerized test administration.

Multidimensional two-parameter logistic model (M2PL). The directional informa-

tion of a multidimensional 2PL item is as follows:

I i (
#�
� ; #�� ) = ( #�ai

#�� |
cos)

2Pi 0Pi 1: (2.39)

Multidimensional three-parameter logistic model (M3PL). The directional infor-

mation of a multidimensional 3PL item was given by Bryant (2005).

I i (
#�
� ; #�� ) = ( #�ai

#�� |
cos)

2 Pi 0

Pi 1
((Pi 1 � ci )2=(1 � ci )2): (2.40)

Multidimensional generalized partial credit model (MGPC). The directional infor-

mation of a multidimensional GPC item is as follows.

I i (
#�
� ; #�� ) = ( #�ai

#�� |
cos)

2

�� X

u � 2 U i

u2Piu

�
�

� X

u � 2 U i

uPiu

� 2�
: (2.41)

Here,u� denotes a response level that belongs to the set of all possible response levels

U i = f 0; 1; :::; mg.
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Multidimensional graded response model (MGR). The directional information of a

multidimensional GR item is as follows.

I i (
#�
� ; #�� ) = ( #�ai

#�� |
cos)

2
X

u � 2 U i

��
P �

iu �
� P �

i (u � +1)

��
1 � P �

iu �
� P �

i (u � +1)

� 2�
; (2.42)

P �
iu =

exp(� iu )
1 + exp(� iu )

;

� iu =

8
>>><

>>>:

+ 1 for u = 0
#�ai

#�
� | + diu for u = 1; :::; m

�1 for u = m + 1:

The directional information for an item can be computed using any directional

angle vector #�� . The directional angle vector that will yield the highest information

surface from the item is referred to as the direction of best measurement (Zhang &

Stout, 1999). For item i , the direction of best measurement#�� = f � ip � ; p� 2 P g can

be obtained from itema-parameters as:

� ip � = cos� 1

�
aip �P

p�� 2 P a2
ip ��

�
: (2.43)

A global direction of best measurement (i.e., a reference composite; Wang, 1985;

1986) can also be obtained from a set of items. The global directional angle vector
#�� is obtained as the �rst eigenvector ofA | A , where A is a matrix containing a-

parameter vectors from all items (Reckase, 2009, p. 126). DeMars (2021) noted that

the global direction of best measurement is conceptually close to the M4 weighting

method by Liu et al. (2019) in Equations 2.27�2.28, with between-item heterogeneity

in item-level direction of best measurement leading to minor discrepancies between

the global direction of best measurement and the M4 weighting method.

2.9 Study objective

The main objectives of the current study are as follows. First, an empirical ques-

tion that needs to be addressed in comparing the separate-models approach and the

single-model approach, is evaluating how the calibration error interplays with domain
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and overall score recovery. The separate-models approach can bene�t from being able

to use between-domain correlation estimates as priors, but this is also a pathway for

correlation estimation error to be introduced to the test assembly engine in the form

of incorrectly speci�ed priors. In contrast, the single-model approach is based on a

bifactor model and thus cannot utilize between-domain correlations. However, this

also o�ers some protection to the adaptive test assembly engine by keeping correla-

tion estimation error from a�ecting score estimates in undesirable ways. From these

observations, a research question can be formulated:

ˆ Research Question. When between-domain correlations are estimated with

error, does the single-model approach to adaptive testing o�er better recovery

of domain and/or overall scores compared to the separate-models approach,

despite the single-model approach not being able to utilize between-domain

correlation estimates as in the separate-models approach?

Second, the single-model approach may also be combined with the optimal test de-

sign approach to develop a multidimensional adaptive testing system with full content

balancing. This may o�er potential advantages over the separate-models approach,

in that (1) it would o�er a simpler approach without having to �t separate mod-

els, and (2) it would ensure full content balancing without violation. The proposed

design may have potential advantages compared to existing designs such as that of

ELPA21, where the separate-models approach is used for obtaining scores and a

heuristic method is used for content balancing.

The single-model approach is expected to provide a better recovery of overall and

domain scores compared to the separate-models approach, based on the study of Liu

et al. (2019). Also, the use of optimal test design will ensure all test speci�cations

are satis�ed in every assembled test. Investigating the performance of the proposed

system will inform how operational adaptive tests for single-subject multiple-domain

content can be improved in the areas of domain score estimation and content balanc-

ing.

The goal of the current study was to explore how overall and domain scores can be

more meaningfully and reliably estimated in adaptive tests, where content balancing

is required on single-subject multiple-domains content. The impact of the choice of

scoring approaches on domain and overall score reliability was investigated, in the
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context of adaptive testing where calibration error was present. Multidimensional

content balancing methods were also compared in terms of their satisfaction rates on

content requirements. The study used Monte Carlo simulations, based on a realis-

tic item pool and content speci�cations. For the purpose of the study, a computer

program for multidimensional adaptive testing was developed to accommodate both

optimal test design approaches and heuristic approaches to content balancing.
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Chapter 3

Method

3.1 Study design

A total of 72 conditions were created by crossing the following design factors: the

scoring method (two levels), the content balancing method (four levels), the number

of domains (three levels), and the calibration sample size (three levels). This section

describes each design variable and their levels, as well as detail on how the design

variables were implemented.

Scoring methods. The scoring method was varied between two options: (1)

a separate-models approach, or (2) a single-model approach. The scoring method

in each condition was used to obtain overall and domain score estimates. For each

simulated examinee, one overall score estimate andp domain score estimates were

obtained. (p denotes the number of domains in the condition.)

The separate-models approach for estimating overall and domain scores was per-

formed as follows. First, the main objective function for interim ability estimation

was based on a correlated-factors model (p dimensions). After a test was completed

for an examinee, the ability estimate vector̂
#�
� [cor-factors] (length p) was taken as domain

score estimates. Second, a bifactor ability estimate vector̂
#�
� [bifactor] (length p+1) was

obtained using items administered to the examinee, but using the item parameters

in the bifactor format (p + 1 dimensions). The general factor score estimate from
#̂�
� [bifactor] was taken as the overall score estimate. This required each item to have

item parameters in two di�erent formats, one in the correlated-factors format (p di-

mensions) and one in the bifactor format (p + 1 dimensions). Steps taken to obtain

the two formats are described in detail in Section 3.2.

The single-model approach was performed as follows. First, the main objec-

tive function for interim ability estimation was based on a bifactor model (p + 1

dimensions). After a test was completed for an examinee, the ability estimate vector
#̂�
� [bifactor] (length p+ 1) was obtained. Then, from

#̂�
� [bifactor] , overall and domain score

estimates were computed using the normalized weights in Equations 2.27�2.29. These

weights have been found to be the best performing in the study by Liu et al. (2019),

compared to other weighting methods. The weights were computed in advance based
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on all items in the pool.

Content balancing methods. Content balancing methods were varied between

four options. The options were (1) optimal test design using directional information,

(2) the multidimensional weighted penalty method (Born & Frey, 2017), (3) the

multidimensional maximum priority index method (Frey et al., 2011), and (4) the

multidimensional weighted deviation method; an extension provided in the current

study based on the unidimensional case (Stocking & Swanson, 1993) using the prior-

weighted information matrix (Segall, 1996).

The computation of directional information for optimal test design method re-

quires an angle vector#�� . The angle vector was determined in advance and remained

constant within a test. Directional information for the single-model approach (i.e.,

when a bifactor model is used as the main assembly model) was computed using the

global direction of best measurement (Wang, 1985; 1986). The global direction of best

measurement was obtained by computing the reference composite from the set of all

items in the pool. For the separate-models approach, the direction was computed

based on factor loadings obtained from a one-factor exploratory factor analysis on

the (p; p) correlation matrix. These are described in detail in Section 3.5.

The multidimensional weighted deviation method in Equation 2.33 requires a

weight value: the information weightwt+ i . This was set to1 to align it with other

heuristic methods. Also, the lower bound for computing� t+ i (
#̂�
� ) was set to a large

value of 10000to make sure that it is not exceeded by the determinant of the prior-

augmented test information matrixW t+ i .

Number of domains. The number of domainsp was varied between3, 4, or

5. These values were chosen so that they resemble the number of domains usually

assessed in real-life multidimensional tests in educational and psychological assess-

ments.

Item pool size. Item pool size was determined by the number of domainsp,

with 180 items generated for each domain. The item pool size was based on that

the e�ective test length of an operational multiple-domain (p = 4) test was at least

60 (National Council of State Boards of Nursing, 2020), and a rule of thumb that

the size of item pool should be about12 times the test length (Stocking, 1994).

These guidelines led to that the item pool size for a60-item test suggested by the

rule of thumb was 60(12) = 720, and in the p = 4 case generating180 items per
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domain would give the same item pool size of180(4) = 720. The item pool size was

n[items] = 540; 720; 900 for the number of domainsp = 3; 4; 5 respectively.

Calibration sample size. In operational CAT programs, true item parameters

are never available to psychometricians. For the purpose of operating a CAT engine,

item parameter estimates must be obtained in advance by performing calibration on

a separate response dataset. When the main model to be used for adaptive test

assembly is a correlated-factors model, this includes estimating between-domain cor-

relations. As described in Section 2.6, this can also be a pathway for any estimation

error in between-domain correlations from the calibration step to be propagated to

the CAT engine in the form of incorrectly speci�ed priors. This may adversely a�ect

the recovery of ability parameters in CAT.

In the current study, calibration error was simulated by �rst generating a true item

pool and a calibration sample, and then calibrating bifactor and correlated-factors

models each to obtain item parameter estimates in respective formats. Calibration

sample sizen[calibration] was varied between three levels:1000, 3000, and 1 . For

correlated-factors calibration, between-domain correlations were freely estimated. For

bifactor calibration, between-dimension correlations were assumed to be zero. In

both correlated-factors and bifactor calibrations, factor variances were constrained

to unit variances, and factor means were constrained to be zeroes. These were done

to ensure that resulting� estimates would be on the same unit variance metric with

true � values. In the n[calibration] = 1 level, true item parameters and between-

domain correlations (only for correlated-factors models) were made available to the

CAT engine, representing an ideal case for comparison purposes.

3.2 True item parameters generation

This section describes the generation method used for true item parameters. A

schematic of the generation process is displayed in Figure 3.1, and Figure 3.2 shows

a diagram of models used in the simulation.

Item parameter generation using higher-order model. Item parameters

were �rst generated based on a higher-order model (Figure 3.2a). The rationale

of using a higher-order model was to allow for converting to bifactor and correlated-

factors formats afterwards (Figure 3.2b, 3.2c respectively). The use of the two formats
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Figure 3.1

Schematic of the data generation process.

Item parameters
� [h-order]
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Note. Within each cell, the �rst row is the description of the data the cell represents;
the second row is the notation used for the entity; the third row is the the dimension
of the data. n is the number of simulees;n[items] is the number of items in the pool;
p is the number of domains.
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Figure 3.2

Three-domain examples of models used in the simulation.
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was required to be able to implement the separate-models approach, where item

parameters in the two formats were utilized to estimate overall and domain scores.

First, a vector containing the loadings from the higher-order factor ontop lower-

order factors was generated as
#�
� [h-order] = f � 1; :::; � pg. The factor loading � p� of the

higher-order ability onto each domainp� 2 f 1; :::; pg was generated from a uniform

distribution U(0:85; 0:95). The factor loading range was set so that the resultinga-

parameters would resemble a single-subject multiple-domain structure with a strong

dominant factor, such that it would be suitable for �tting bifactor and correlated-

factors models.

Multidimensional three-parameter logistic (M3PL) items were used for generating

the item pool. Item parameters were generated as follows:

ˆ a-parameters. The a-parameters were generated from a log-normal distribution.

This was done by �rst sampling from N (0:5; 0:1) and converting it using a

reverse log transformation (i.e.,a = exp(z) wherez is the normal sample), such

that the resulting a-parameter had a mean of approximately1:65. This also

ensured that the resultinga-parameters were strictly positive. For each item,

only one dimension had a non-zeroa-parameter to create a simple structure.

ˆ d-parameters. The item d-parameters were generated fromN (0:0; 1:3).

ˆ c-parameters. The item c-parameters were generated from a logit-normal dis-

tribution. This was done by �rst drawing from N (� 1:4; 0:2) and applying a

reverse logit transformation (i.e.,c = exp(z)
1+exp( z) wherez is the normal sample), so

that the resulting c-parameter had a mean of approximately0:2.

The set of item parameters (i.e.,a-, d-, and c- parameters) for all items was denoted

as � [h-order] . This had p + 2 columns, with p columns for thea-parameters and the

other two for d- and c- parameters. The number of rows was the number of items

n[items] = 180p.

Conversion to correlated-factors and bifactor formats. To allow for utiliz-

ing the same items between the separate-models approach and the single-model ap-

proach, the item parameters and the factor loadings generated for higher-order models

were converted into two di�erent formats: (1) the correlated-factors format and (2)

the bifactor format. A higher-order model can be transformed into a correlated-

factors model by converting the higher-order loadings into a correlation structure. A
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higher-order model can also be transformed into a special case of a bifactor model

that is subject to proportionality constraints (Yung et al., 1999).

The item parameter conversion process is now described using a three-domain

example (i.e., p = 3). Let A [h-order] denote the subset of item parameter matrix

� [h-order] where it only includesa-parameters. This origina-parameter matrix A [h-order]

has the following shape:

A [h-order] =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� 0 0
...

...
...

� 0 0

0 � 0
...

...
...

0 � 0

0 0 �
...

...
...

0 0 �

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.1)

where� denotes a non-zero positive value.

To convert the higher-order format matrix into the correlated-factors format, the

A [h-order] matrix was copied and used as-is:

A [cor-factors] = A [h-order] : (3.2)

Then, the d- and c- parameters from� [h-order] were appended toA [cor-factors] to create

the set of item parameters� [cor-factors] . This is equivalent to using� [h-order] as-is for

� [cor-factors] .

The loadings
#�
� [h-order] were converted to a factor correlation matrix� [cor-factors] for

correlated-factors models, by �rst computing
#�
� [h-order]

#�
� |

[h-order] and raising its diago-

nals to unity. This completed the conversion of item parameters in the higher-order

format to the correlated-factors format.

For use in bifactor models, thea-parameter matrix A [h-order] and the loadings
#�
� [h-order] in the higher-order format were converted into a bifactor formata-parameter

matrix A [bifactor] . The conversion was done using a Schmid-Leiman transformation

(hereafter S-L transformation). The rotation matrix T for the transformation was
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T =

2

6
6
4

� 1

p
1 � � 2

1 0 0
... 0

. . . 0

� p 0 0
p

1 � � 2
p

3

7
7
5 (3.3)

and the S-L transformation was performed by

A [bifactor] = A [h-order] T : (3.4)

Continuing the three-domain example, the convertedA [bifactor] had the following

shape:

A [bifactor] =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� � 0 0
...

...
...

...

� � 0 0

� 0 � 0
...

...
...

...

� 0 � 0

� 0 0 �
...

...
...

...

� 0 0 �

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.5)

where � denotes a non-zero positive value. Finally, thed- and c- parameters from

� [h-order] were appended toA [bifactor] to create the set of item parameters� [bifactor] .

This completed the conversion of item parameters from the higher-order format to

the bifactor format.

True ability generation using higher-order model. Consistently with the

item parameter generation method and the conversion, the multidimensional true

ability vector
#�
� [h-order] for each examinee was generated based on a higher-order model

and then converted to correlated-factors and bifactor formats. Conceptually, the

higher-order factor score in a higher-order model corresponds to the overall ability,

and lower-order factor scores in the model correspond to domain scores.

First, the higher-order ability � h[h-order] was generated from a unit normal distri-

bution N (0; 1). Then, the lower order ability � p� [h-order] on dimensionp� was modeled

as a linear expression of the higher order ability:
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� p� [h-order] = � p� � h[h-order] + � p� "p� ; " � N (0; 1): (3.6)

Here, " is an unscaled disturbance term for dimensionp� . In the factor analysis

literature, the above Equation 3.6 is often written using a scaled disturbance term

" � N (0; � 2
p�

) instead of the unscaled term. The reason the unscaled disturbance is

explicitly generated here is because it is used in the corresponding bifactor format
#�
� [bifactor] (Equation 3.8) when item parameters are obtained from a Schmid-Leiman

transformation (Yung et al., 1999).

The residual variance� 2
p�

for dimensionp� was set so that the variance of� p� [h-order]

became unity. For each examinee, the number of� p� [h-order] values generated was equal

to the number of domainsp (i.e., 3, 4, or 5). Then, an ability vector was de�ned for

each examinee, such that
#�
� [h-order] = f � 1[h-order] ; :::; � p[h-order] g. Let � [h-order] denote

the n � p matrix containing the lower-order ability vectors for all examinees, withn

denoting the number of examinees. Let� h[h-order] denote then � 1 matrix containing

the higher-order ability for all examinees. LetE [h-order] denote the n � p matrix

containing the unscaled disturbance for all examinees.

Conversion into correlated-factors and bifactor formats. For the correlated-

factors format, the matrix � [h-order] was copied and used as-is:

� [cor-factors] = � [h-order] : (3.7)

This completed the conversion of true ability from the higher-order format to the

correlated-factors format. Because the true factor loadings� p� were sampled from

U(0:85; 0:95), the between-factors correlations of� [cor-factors] ranged from 0:852 =

0:7725to 0:952 = 0:9025.

For the bifactor format, ability vectors were obtained as:

#�
� [bifactor] = f � h[h-order] ; "1; :::; "pg: (3.8)

The expected variance of each dimension was one, consistent with expectations from

a Schmid-Leiman transformation (Yung et al., 1999). In a matrix expression, this

was:

� [bifactor] = [ � h[h-order]
...E [h-order] ]: (3.9)
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Let � [bifactor] denote the n � (1 + p) matrix containing the bifactor ability vectors

for all examinees, withn denoting the number of examinees. This completed the

conversion of true ability from the higher-order format to the bifactor format.

3.3 Item pool calibration

Figure 3.3

Schematic of the simulation process.
Phase 1

Calibration
Abilities

� [calibration]

Item parameters

�

Response data for
calibration

X [calibration]

Item parameter
estimates

�̂

Phase 2.
Simulation

Abilities

�

Simulation response

X [CAT]

CAT simulation

Ability estimates

�̂

compare

compare

Note. The text on the �rst row in each cell is the description of the data the cell
represents. The notation on the second row in each cell is the notation used for the
data the cell represents.

To simulate calibration error, calibration response dataX [calibration] was generated

based on item parameters in the correlated-factors format (i.e.,� [cor-factors] ). The

choice of using the correlated-factors format here is arbitrary; the choice of the for-

mat does not a�ect the generated data in any way except for pure random variation.

That is, when the same random seed is used, the response data generated from the

correlated-factors format and the data generated from the bifactor format are numer-
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ically identical. Calibration response data was generated for all items in the pool.

The generated response dataX [calibration] had a size ofn[calibration] � n[items] . This was

only done in conditions where the calibration sample sizen[calibration] was �nite (i.e.,

1000or 3000). In the n[calibration] = 1 condition, calibration error was not simulated,

and true item parameters were made available to the main adaptive test assembly

simulation.

On the calibration response dataX [calibration] , item parameter calibrations were

performed using a correlated-factors model and also using a bifactor model, so that

item parameter estimates are obtained in the correlated-factors format and also in

the bifactor format. The correlated-factors model was speci�ed so that each item

loaded onto only one factor. Factors were allowed to be correlated with each other.

The bifactor model was speci�ed so that all items were loaded onto the general factor,

and each item was loaded onto only one speci�c factor. Factors were constrained to

be uncorrelated to each other. In both cases, models were speci�ed so that items were

loaded onto their correct domains, and factors were constrained to have zero means

and unit variances.

Calibration was performed using themirt package in R. Correlated-factors models

were �tted using the mirt() function. The estimation method was changed tomethod

= "QMCEM"to use a quasi-Monte Carlo EM method for estimation. Bifactor models

were �tted using the bfactor() function which utilizes dimension reduction for bi-

factor models. In both cases, convergence tolerance was changed toTOL = 0.001

and the upper limit on the number of iterations was changed toNCYCLES = 100000.

These options were used to allow the calibration to converge within a reasonable

time. Also, the lower bound for alla-parameters was changed to0.0001 to ensure

the estimates were positive values. (The default lower bound is�1 and thus allows

negative estimates fora-parameters.)

Calibration results were stored to be used in the main CAT simulation. For

bifactor models, this was the set of item parameter estimates (denoted as�̂ [bifactor] ).

For correlated-factors models, these were the set of item parameter estimates (denoted

as �̂ [cor-factors] ) and the estimated correlations between the factors/domains (denoted

as �̂ [cor-factors] ).

Table 3.1 shows a summary of calibration performance. To better represent the

overall pattern, performance statistics fora- and d-parameters were computed after

57



Table 3.1

Summary of calibration performance across design variables.

Number of
Domains

Calibration
Sample Size

Model ag as ad d c �

Root mean sqaured error
3 1000 Bifactor :26 :20 :31 :08
4 1000 Bifactor :26 :18 :31 :08
5 1000 Bifactor :26 :17 :31 :08
3 3000 Bifactor :14 :11 :19 :05
4 3000 Bifactor :14 :10 :20 :05
5 3000 Bifactor :14 :09 :21 :05
3 1000 Correlated :53 :31 :08 :18
4 1000 Correlated :61 :32 :08 :20
5 1000 Correlated :65 :36 :08 :21
3 3000 Correlated :47 :19 :05 :18
4 3000 Correlated :53 :24 :05 :20
5 3000 Correlated :57 :31 :05 :21

Bias
3 1000 Bifactor +0 :05 +0 :03 +0 :03 0:00
4 1000 Bifactor +0 :06 +0 :03 +0 :04 0:00
5 1000 Bifactor +0 :06 +0 :03 +0 :07 0:00
3 3000 Bifactor +0 :01 +0 :01 +0 :07 0:00
4 3000 Bifactor +0 :02 +0 :01 +0 :10 0:00
5 3000 Bifactor +0 :01 0:00 +0 :12 0:00
3 1000 Correlated +0 :05 +0 :06 0:00 � 0:15
4 1000 Correlated +0 :14 +0 :10 0:00 � 0:16
5 1000 Correlated +0 :15 +0 :21 � 0:01 � 0:15
3 3000 Correlated +0 :01 +0 :08 0:00 � 0:15
4 3000 Correlated +0 :07 +0 :16 � 0:01 � 0:16
5 3000 Correlated +0 :07 +0 :26 � 0:02 � 0:15

Note. ag is the a-parameter on the general factor;as is the a-parameter on the
speci�c factor; ad is the a-parameter on each domain factor;� is the correlation
between factors. Foras, ad, and � , the tabled values are averages of performance
measures obtained from each dimension.

removing the three most extreme values. This was done because the item parameter

estimates had a few extreme values fora- and d- parameters. Between-domain cor-

relation estimates had a negative bias of� 0:15 . . . � 0:16 across conditions. Figure

3.4 shows the distribution of bifactora-parameter estimates across calibration sample

size levels.
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