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Abstract

A Guide to Photocuring Catalyst Selection

Alex Michael StaffordPh.D

The University of Texas at Austigp23

Supervisor:Zachariah A. Page

The utilization of light as an energy source to convert liquid resins (termed
photopolymers) into solid plasticss a burgeoning field in polymer science
Photopolymerizations have found broad applications in imaging and curing technologies
(e.g.photoresists, photolithography, and photocurable coatags)he driving of rapid
polymerizations with visible to neamfrared light will enable nascent technologies in the
emerging fields of bio and composit8D printing. However, current
photopolymerization strategies are limited by long reaction times, high light intensities,
and/or large catalyst loadings. The improvement of efficiency remains elusive without a
comprehensive, mechanistic evaluation of photocatalysis to better understand how
composition relates to polymerization metrics. With this objective in mind, a series of
BODIPYs, azaBODIPYs, thiopheneBODIPYs and thionaphthalimidese synthesized
and systematically characterized to elucidate key strigtoperty relationships that
correlate tcefficient photopolymerization driven by visible nearIR light. Forall these
scaffolds,access to longer liveghotcexcited statesvas shown as a general method to
increase polymerization rate, quantitatively characterized using a custoftimesal

infrared spectroscopy setup. Furthermore, a combination of sstaidy emission
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guenching experiments, electronic structure calculations, and ultrafast transient
absorption revealed that efficient intersystem crossing to the lowest excited triplet state

was a key mechanistic step to achieving rapid photopolymerization reactions.
Unprecedented polymerization rates were achieved with extremely low light intensities
(<1mW/cnf) and catalyst | oadings (<50 &M), exemj
60 s of irradiation using green, refiir-red, and nealR light-emitting diodes.The

photoredox catalysts were additionally employed to produce complex 3D structures using
high-resolution visible lightand neaiR 3D printing, demonstrating the broad utility of

these catalysts in additive manufacturing.
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GENERAL INTRODUCTION

Light has been used to rapidly convert liquid resins into solid objects in a process
known as photocuring. This process providesitrol over when and where a reaction
occurs (i.e., spatiotemporal control) and has enabled transformative technological
advancements in imaging, photolithography, adhesives, coatings and, most recently,
stereolithographic 3D printiny’ I particular, enormous growth of the field came at the
advent of photolithography, which today has been widely adopted to manufacture modern
microelectronics, such as microprocessors and memory chips, ubiquitous in computers,
phones, and cafs. llh contemporary photolithography, high energy UV light (<420nm)
is used forphotocuring, which limits material compatibility due to degradation and
attenuation by absorption or scattering of high energy photons. The recent widespread
availability of inexpensive visible light emitting diodes (LEDs) offers an alternative
method to UV photocuring that provides (1) milder and more-gifsttive reaction
conditions, (2) larger penetration depths due to reduced scattering and background
absorption, and (3) wavelengsklectivity (i.e., the ability to activate different chemical
pathways with individual wavelengths/colors of electromagnetic radigtibh)A$ such,
visible light photocuring holds the potential to promote the preparation of, inter alia,
biocompatible materials containing LAbsorbing orsensitive components, strong and
lightweight composite structures, and multimaterial objects having predefined
functionality embedded in discrete domains. For example, in dentistry, photocurable
coatings have shifted to blue irradiation to mitigate risks associated with UV exposure by
employing visible light absorbing photoinitiators (e.g., camphorquinone and
acylgermanes¥2® However, photocuring with longer wavelengths of light (green to
nearinfrared, NIR) is an ongoing challenge that, to date, has been restricted to long

exposure times (>60 s) and/or high intensity irradiation (>50 m#/qmecluding their
27



utility in photocuring applications2 ' ?Fo address the grand challenge of efficient
photocuring with visible to NIR light, a number of metal and mf&d photosystems
have been examined for their ability to induce polymerizdfdhThese photosystems
fall into one of two categories: Type | or Type Il and can be seéigure 0.1 Type |

photosystems consist only of a

Type | Type ll
Photosystem Photosystem
O *
.. OMe OMe PI —— PI
Meo O —_— )Y Meéj&@ Monomer Polymer Electron Transfer
(o] +

PI* + Donor —= PI + Donor

PI” + Acceptor —= Pl + Acceptor ~ Monomer

or
o+ Ol
o o PI* + Acceptor —— Pl + Acceptor
~ -p Monomer
J = o} I A 0 Polymer
(j o} [ ]

Polymer

Hydrogen Abstraction

" . . Monomer
k / Q+ Donor —— PI° + Donor Polyy

Figure 0.1 General Reaction Scheme of a Type | and Type Il Photosystem

photoinitiator that degrades upon light absorption to yield reactive fragments capable of
initiating polymerization (e.g., radicals, cations, or anions). Common Type |
photoinitiators for radical polymerizations include acyl derivatives like DMPA-(2,2
dimethoxy2-phenylacetophenone) or acyl phosphine oxide derivatives like TPO
(trimethylbenzoyldiphenyl  phosphine oxide) and BAPO (phenylbis(2,4,6
trimethylbenzoyl) phosphineoxide). Type Il systems, on the other hand, require at least
two components, an initiator and either a hydrogen donor, photosensitizer, or photoredox

catalyst (PRC) to produce reactive units capable of initiating polymerization. While Type

I systems rely on a Aforbiddend n Y ~* tran.

"* excitation with characteristically stroncg

light (>500 nm, green to NIR). Attractive traits accompanying Type Il systems that
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activate with lowenergy light include being environmentally benign, having minimal
side reactions, and not releasing volatile organic compadtirielslowever, reactions are
often slower for Type Il systems in comparison to Type | due to alinateng
intermediate atomor electrontransfer step that relies on an effective collision between
an initiator and excited PRC compound to ultimately produce the requisite reactive units.
Therefore, we hypothesize that efficiency of a Type Il photosystem can be improved by
increasing the excited state lifetime of a PRC compound, whitdrmnwill increase the
number of collisions between initiators and excited PRC compounds per photon
absorbed. Xanthenes and cyanines have received considerable attention as Type Il PRC
compounds, with demonstrated photocuring under visible and NIR light,
respectively’ * ' 2Both Laleve® 162728 and Strehmél® " %ahd their ceworkers have
elegantly shown visiblo-NIR photocuring of acrylates and epoxies using Type |l
photosystems. For example, recent reports have shown that NIR polymerization
chemistry with PRC loadings @0 . 0271 0. 06 mol % can be either
using a high i ntéasesdoteyat 18@MAN0O reasti/ uader low
intensity (~30 mW/crf) LED light centered at ~790 nm, yet requiring longer exposure
times (>100 s§° This apparent tradeff between reaction rate and incident light intensity
necessitates a closer examination of vistblNIR photosystems to advance stafehe-

art photocuring. To this end, an opportunity remains to simultaneously examine critical
facets of photocuring by (1) quantifying apparent polymerization rate under normalized
irradiation conditions and (2) identifying a modular synthetic photoredox catalyst (PRC)

to facilitate a systematic structureipropert
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Chapter 1: BODIPYs as Green Light Photoredox Catalysts

(J. Am. Chem. So2020, 142, 34, 147334742

1.1:INTRODUCTION

A series of borosdipyrromethene (BODIPY) dyes were selected to address the
photopolymerization challenges listed above. In spite of the attractive traits of BODIPYSs,
including tunableoptoelectronic properties, high molar extinction, and facile and modular
syntheses$? they have received far less attention as photopolymer cafdflysts

comparison to their xanthene and cyanine countergegaré 1.1). However, the

Monomer Polymer

& Modular
Functionality

Cyanines

« Near-IR Abs. + Near-IR Abs.

Xanthenes

High Molar
Absorptivity

High Molar
Absorptivity

High Molar

v Absorptivity

v v

 Visible Abs. v~ Visible Abs.  Visible Abs.

Figure 1.1 Boron Dipyrromethene (BODIPY) as an Attractive Photocatalyst Platform
for Visible to NIR Photopolymerizations, in Place of Traditional Xanthene
and Cyanine Derivatives
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BODIPY platform has been heavily examined for imadifgensing, and photodynamic

therapy®!! applications. These extensive studies have unveiled a remarkable range of
optoelectronic properties for compounds bearing a BODIPY scaffold, showing peak
absorption values from 500 to 900 nm (blue/grBR), extinction coefficients

exceeding 5 x OM' tcm' 2, and ground state reduction and oxidation potentials that

span from 1T2.40 to 1 0. 3FB/Cp¥Fe)arespectiiely5Nbostt o 0. 18
important for the present application is efficient intersystem crossing (ISC) tdivendg

triplet excited states that has been observed for various BODIPYs. Previously, these

triplet excited states have played an important role in photodynamic therapy by
generating reactive singlet oxydénand are presented here for the first time in
photocuring applications. A common method to increase the ISC rate in BODIPYs has

been halogenation, which reliesonthecsal | ed fAhea¥what emspfiheotbi
coupling is enhanced through incorporation of elements with high atomic number. This
impressive versatility in absorption, redox potentials, and excited state dynamics make
BODIPY dyes ideal candidates for visible photocuring. Herein, a small library of
BODIPYs are synthesized and quantitatively examined using a custom FTIR setup
systematically unveil design parameters that will serve as a guide to advance
photopolymer development and associated technologies. Specifically, halogenation is
comprehensively examined as a universal method to improve photocuring efficiency,

which builds off the hypothesis that longer lived excited states will increase the
probability of a successful collision in a Type Il initiation process. Triplet state formation

is shown to be critical as PRC efficiency increases with ISC rates. PRC halogenation
resul ts I n a 571 8I rat e i ncrease for di f fe
unprecedented photopolymerization sensitivity at low PRC loadings (down to 0.001 mol

% = 47 tM) and | ight D00 rewWad exgosure). Thus,r green
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halogenation to form lonfived excited states is shown to be a general method to
effectively increase photopolymerization efficiency, which provides a platform to enable

emerging photocuring applications.

1.2:RESULTS AND DISCUSSION

A set of BODIPY dyes were synthesized to contain a mesityl group at the
bridgehead position along with 4 methyl substitutions on the periphery, providing both

solubility and stability against nucleophilic attaékds shown inFigure 1.2, the

Figure 1.2 Modular Synthetic Procedure to Four Differ&®DIPY Derivatives.

Reagents and Conditions: (i) TFA, DCM, 3 h; (ii) DDQ, 1 h; (iii) BJEt

BFs-OEb, 2 h, 65% (two steps); (iv) NCS, DCM (58%) (X = Cl); NBS,

DCM (50%) (X = Br); NIS, DCM/MeOH (65%) (X = 1).
synthesis of the hydrogdonctionalized derivative Mes-H) was accomplished via
reductive coupling between commercially available -dmethylpyrrole and
mesitaldehdye in a facile one pot appro&cfihe resulting modulaMes-H derivative
served as a framework to study the heavy atom effect with respect to photopolymer
catalysis. Subsequent halogenation Més-H with the respective MNhalosuccinimide

derivative yielded the desired chler@Mes-Cl), brome (Mes-Br), and iode (Mes-1)

substituted BODIPY dyes. Upon isolation, it was immediately apparent by eye that each
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compound had a distinct color in solution, ranging from green to deepfrigedd 1.3
inset).

To quantitatively compare the photocatalytic activity between different BODIPY
derivatives, it was critical to first characterize their optical properties (e.g., absorption
profiles and corresponding extinction coefficients). WM absorption spectroscopy in
dilute solution revealed that halogenation resulted D38 nm redshift of the peak

absorpti on myéigweelledn.gthp e cai fakvalwes wese 497,t523¢ o

Mes-H Mes-Cl Ao o Mes-H
sE+o4dl || o
T , —A— Mes-Cl
A —&— Mes-Br
6 E+04 ol + MeS'I

Extinction Coefficient (M-'*cm")

420 460 500 540 580
Wavelength (nm)

Figure 1.3 UVi Vis Absorption Spectroscopyi® 0 € M i n acetonitrile).
Green LED Emission Profile Overlaid with the UVis Absorption Spectra
showing Near Full Spectral Overlap with the Halogenated Derivatives and
Partial Overlap with Mes#l. Inset: Photographs of Distinctly Colored
BODIPYs in Solution.
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523, and 529 nm foMes-H. -Cl, -Br, and -l derivatives, respectivelyTable 1.1).
Extinction coefficients were determined usi
generated from solutions containing different concentrations of each BODIPY derivative.

As is typical f or BODI PY gaWwere uee highs tangimgc t i on ¢
from D67000G 86000 M! cm'? (Table 1.1). The strong absorption cross section with

respect to the green LED, shownhigure 1.3 for the present derivatives is beneficial

for photopolymers as it can facilitate the use of lower catalyst loadings and/or light

intensities.

BODIPY (?]mrj]x) O (“micand Q“a”(tlfjg' Yield (Tri%gt(r\‘(sié @ L-:%:t)lslr?e
MesH | 497 8.6+ 0.2 0.94 + 0.06 i i
MesCl | 523 6.7+0.2 0.70 + 0.05 7.8(0.17) | 370
MesBr | 523 6.9+0.3 0.19 + 0.02 29(0.35) | 370
Mesl | 529 7.9+0.3 0.03 + 0.01 0.2(0.89) | 370

Table 1.2 Optoelectronic Properties of the MBODIPY Photoredox Catalysts

After the isolation of the four BODIPY derivatives, their utility as
photosensitizers to induce polymerization was evaluated. The polymerizations were
carried out using neat isobornyl acrylate as the monomer, selected for its low volatility
and commercial viability. The initiator concentrations used were akin to those reported
by Lalevée and cavorkers® however, they were reported as mol % in lieu of wt % for

direct comparison. Specifically, 0.1 mol % of the BODIPY photosensitizer, 0.1 mol % of
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the donor (D) initiator Abutyryloxy)N,N,N-trimethyletharl-aminium
butyltriphenylborate, and 1.0 mol % of the acceptor (A) initiator- [4
(octyloxy)phenyl](phenyl)iodonium hexafluoroantimonate (diphenyliodonium) were

fully dissolved in the monomeF{gure 1.48). The degassing of the mixture via sparging

(a)
bl 7
O% EE 070

Ph Donor (D) ] %

Ph-B=C,H, @ ok,

IS) +

%o+ (L

OCgH47

I
~
/g\/\OJLC3H7 Acceptor (A)

ATR Crystal

Beam Detector

Figure 1.4 (a) Chemical Structures for the Different Components within the Resin
Formulation: Isobornyl Acrylate as Monomer, Butyltriphenylborate Salt as
Donor, and Diphenyl lodonium as Acceptor. (b) Schematic lllustration for
the Custom Real Time ATRTIR Setup with BottorUp Irradiation.

with nitrogen or argon was followed by irradiation with a green LED resulted in rapid

polymerization, evident by vitrification in less than 60 s. To quantitatively characterize

this polymerization process a novel method to monitor reaction kinetics was developed

using FTIR spectroscop§.A schematic representation of the attenuated total reflectance
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(ATR) FTIR setup is shown ifrigure 1.4b. Critically, LED and IR irradiation occur
from the same face of the ATR crystal (bottop). This setup enables precise kinetics
data to be rapidly collected for opaque photochemical transformations by providing
uniform irradiation and shallow sample measurements. Within thelRniggion, the
depth of measurement ranges frf.55 e m, depending on the spec
absorption signal. For acrylic polymerizations, the disappearance of the C=C vinylic
stretch at 808 chh was monitored and used to determine percent double bond
conversionYcorresponding to a sampling depth of 2
to encase the sample and purge its surrounding atmosphere with inert gas (e.g., nitrogen)
to eliminate oxygen inhibition of the radical polymerization.
To directly compare photocuring efficiency between different BODIPY dyes with
distinct absorption profiles, the number of photons absorbed by each sample was
normalized. This was accomplished by varying the photon flux from a calibrated green
LED after integrating the area of overlap between the absorption profile for each
BODIPY derivative with the emission profile of the LEBidure 1.3). The photon flux
was calculated based on the following supplemental equations:
0= ci_(SEJ)
where E=energyJy, h = Pl ankds *8g,rcs spaadof light3306 26 1 10
m/s)
w =¢ x(-)(SE2
where W =power, n = number of photons, E = energy of photons,tandeconds
T4 ¢ QW=- BEJ
where T=%t r ansmi ssi on, rAolarextiactios eeffitient (Mrem?), &) =

= concentration (M), anbd= path length (cm)
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Equation SE1 and SE2 are used to convert the intensity output of the LED from

(mW/cn? nm) into (# of photons/ctns nm). T was calculated from equati®E3

followed by the portion of photons absorbed ag)1Multiplying the light intensity by

(1-T) provides the fluxof incident photons that ar@bsorbed by the sampfer each

photon wavelengthFinally, integrating each curve provided the tathkorbedohoton

flux (or number of photons absorbed) for each sampliguf(e 1.5. For ATR

me

Photon Flux Absorbed (cm2 s nm-") @

asurement s,

4E+12 ]
3E+12
2E+12 ]

1E+12 |
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15

-
o
L

Photons Absorbed (%)

Mes-H

500 525
Wavelength (nm)

550

575

Figure 1.5 Normalized Photons Absorbed for the M@SDIPY Derivatives Using a
Green LED with a Variable Intensity (1 mW/én®.45 mW/crj, 0.44

mW/cn?, and 0.44 mW/cifor MesH, -Cl, -Br, and-I respectively) to
Normalize the Total Number of Photons Absorbed (~1.3%d®? s?). (a)

Plot of the Photon Flux Absorbed as a Function of Wavelength and (b) Plot
of Percent Photons Absorbed of the Green LED as a Function of
Wavelength, Showing that Measurements Were Performed Far From

Saturation.

wavenumber of 808 cth(vide infrg), a refractive index of 2.4 for the ATR (diamond),

and a sample refractive index of 1.5 (estimate). Notablgs-H has the smallest

absorption cross section with the green LED emission compared to the halogenated
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BODI PYO s, whi ch was c 028gimas highereglotorbflux (kesi ng a
light intensity) to equate the number of photons absorbed.
Photopolymerization kinetics were monitored using real time ATRR to
determine the photocatalytic efficiency across the BODIPY sefegure 1.6. A
dramatic enhancement in the rate of polymerization was observed (>2x) when employing

halogenated vs nonhalogenated derivatives. Furthermore, a trend in the halogenated

100

60 -

Intensity Rate
(mW/cm?) (M/s)

—— Mes-H 1.00 0.24
—A— Mes-Cl  0.45 0.43
—@— Mes-Br 0.44 0.91
—&o— Mes-| 0.44 0.95

I ! ] T T
0 20 40 60 80 100 120
Time (s)

40 -

Double Bond Conversion (%

Figure 1.6. Plot of Conversion vs Time Using an Intensity that Normalizes Photons
Absorbed Between Different Md&ODIPY Derivatives. No Polymerization
is Observed in the Dark (Gray Region). Upon Irradiation, Polymerization
Rates Increase in the OrderMés-H, -Cl, -Br, and-I, respectively.

series was detected, with increasing maximum polymerization rates (0.43 + 0.03 to 0.91
+ 0.02 to 0.95 £ 0.03 M/s) correlating to an increase in the atomic number of the heavy

atom: -Cl to -Br to -I, respectively. As a negative control, no polymerization was

observed within the first 10 s prior to light exposure, indicative of resin stability in the
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dark and that light is necessary to drive the polymerization. Moreover, resins stored in the

dark for D3 weeks showed no observable loss in activitigre 1.7). When the light

was turned on, all polymerizations were rapidly initiated and reached a maximum

monomer tepolymer conversion of ~80%. The ~80% conversion is hypothesized to be

an upper limit for this particular mixture due to vitrification of poly(isobornyl acrylate), a

gl assy pol ymtrh atTgfldo cOkds OAQ)emai ni ng smal |l mo
is further supported by near quantitative conversion for the less diffusion limited

polymerization of zhydroxyethyl acrylateRigure 1.8). ForMes-Br andMes-|, the time
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Figure 1.7 BODIPY Isobornyl Acrylate Resin Stability. Mé4$ + Donor + Acceptor
(0.1, 0.1, 1.0 mol%) and M&3r + Donor + Acceptor (0.1, 0.1, 1.0 mol%)

Were Stored in Glaséials Wrapped in Aluminum Foil to Protect from
Light and Stored in &20°C Freezer. Each Resin Was Tested Weekly Using

PhoteATR FTIR with a 530 nm LED at the Normalized Photon Flux
Intensities.
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Figure 1.8: HEA Photopolymerization With MesBODIPY Using Resin Formulation:
0.1 mol% BODIPY, 0.1 mol% Borate V (Donor), and 1.0 mold%iti 254
(Acceptor). Irradiated with a 530 nm LED at 16 mW#@and 1 mWeén?.

to reach maximum conversion after turning the light on was 8.5 £ 0.9 sand 6.5 + 0.3 s,
respectively. Impressively, this was achieved under very low light intensity, <0.5
mW/cn?, which, for comparison, i92 orders of magnitude less intense than an
unfocused commercial laser point&10i 100 mW/cni). The ability to react under low

light intensity saves energy for photocuring applications, which can enable rapid thin film
formation for coatings and adhesives, and 3D printing via digital light processing (DLP),
where irradiation at the build plane is typically <20 mWiciAs a testament to the
versatility of the present photosystemN-dimethylacrylamide was also examined and
provided similar photopolymerization results to those described above with isobornyl

acrylate and -hydroxyethyl acrylateRigure 1.9).
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Figure 1.9 DMA Photopolymerization With MesEBODIPY Using Resin Formulation:
0.1 mol% BODIPY, 0.1 mol% Borate V (Donor), and 1.0 mol%iti 254
(Acceptor). Irradiated with a 530 nm LED at 16 mW#dfolymerization
Rate: 5.7+ 0.2 %Conv/s) and 1 mW/c{Rolymerization Rate: 3.1 + 0.4
%Conv/s).

Up to this point, the photopolymerizations examined have all been performed
under an inert atmosphere with degassing. As a final demonstration of the flexibility of
this photosystem, the polymerizations were conducted without degassing and under
aerobic conditions. As can be seenFigure 1.1Q the photosystem is able to achieve
rapid polymerization even in the presence of oxygen. Due to the ability of BODIPY
triplet excited states being able to undergo tripiptet energy transfer to generate
singlet oxygen, we observe a shift in overall efficiency wWiths-Cl outperforming the

other halogenated derivatives. The triplet yieldves-Cl is only 17% whereables-| is

89%, thudMes-| is more impacted by the presence of oxygen and therefore the decrease
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Figure 1.10 BODIPY Isobornyl Acrylate Photopolymerizations Aerobic Tests. (a)-Mes
H, -Cl, -Br, -1 in the Optimized Resin Formulation (0.1 mol% Mes0.1
mol% Donor,1.0 mol% Acceptor) Were Tested on the RAGIR-FTIR
With a 530 nm LED at 16 mW/cinThe Samples Were Not Degassed Prior
to Polymerization and the Polymerizations Were Carried Out Under
Ambient environmental conditions. (b) Polymerization Rate in
%Conversion/second of Optimized Resin Formulation. Error Bars Represent
+ 1 standard deviation.
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in its rate.

Fluorescence spectroscopy was used to probe the steddyphotophysics of the
Mes-BODIPY derivatives and better understand the mechanism(s) that lead to faster
polymerization rates. The fluorescence quantum yield (QY) was determined following
literature precedetitin acetonitrile with Rhodamine 6G as a reference &jgu¢e 1.11).

The fluorescence QY values were inversely related to the polymerization rate,
specifically 0.94 + 0.06, 0.70 + 0.05, 0.19 + 0.02, and 0.03 + 0.0MésfH, -ClI, -Br,

and-I derivatives, respectivelyT@ble 1). The decreased QY for halogenated derivatives
in dilute solution suggests that an intramolecular nonradiative quenching pathway

outcompetes fluorescence, such as ISC.

Mes-H vs Mes-|

O - R
. 0 O
S “ \
8
>‘ \
5 0
o ‘
o) |
= |
° 00— Mes-H
N —A— Mes-ClI
® a
€ ‘ —@— Mes-Br
[e]
pd
g
ljl T T d < — =
480 500 520 540 560 580 600

Wavelength (nm)

Figure 1.11 Photoluminescence (PL) of M&ODIPY Series, Showing a Decrease in
Emission Upon Halogenation, Suggestive of a Nonradiative Intramolecular
Process. Inset: Photographdvés-H andMes-1 in Acetonitrile (0.3 mM)
Irradiated with a HandHeld 365 nm UV lamp.
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Subsequently, intermolecular fluorescence (i.e., singlet) quenching by D and A
initiators was probed to elucidate the mechanisms for radical generaigume( 1.12).
The SterinVolmer plot for Mes-H and Mes-Br shows quenching by both D and A
compounds, represented as an increase in the ratio between initial fluorescence intensity
(lo) and intensity (I) at a particular concentration of D or A (idl). IThis suggests that
some contribution towargolymerization derives from the singlet photoexcited state for
both Mes-H and Mes-Br, although to a lesser extent fidles-Br as represented by the
weaker quenching. Consecutive additions of D result in a steeper slope relative to

equimolar additions of A for both M&ODIPY derivatives. This indicates that

Figure 1.12 Sterri Volmer Plot ofMes-H (1 mM) andMes-Br (1 mM) in the Presence
of D andA, Showing thaD Results in More Efficient Quenching for Both
Dyes.

a7



