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Abstract 

 

Leveraging living copolymerizations as a tool to tailor the architecture 

and mechanical properties of polymer networks 

 

Aaliyah Z. Dookhith, Ph.D. Chemical Engineering 

The University of Texas at Austin, 2024 

 

Supervisor:  Gabriel E. Sanoja 

 

Polymer networks pervade our society in many different shapes and forms, 

including pressure sensitive adhesives, engineering elastomers, and biomedical hydrogels. 

These materials date back to the 15th century when Mayan Civilizations would react latex 

from rubber trees in the presence of oxygen to form a brittle and unstable rubber. It was 

not until many years later that Charles Goodyear substituted oxygen with sulfur that a tough 

and stable rubber was obtained. While this was perhaps one of the first demonstrations of 

how key the polymer chemistry is to the ultimate mechanical properties, centuries later, we 

still lack the fundamental understanding to rationally design polymer networks using 

polymer chemistry. This Ph.D. aims to answer this question by leveraging living 

copolymerizations to tune the gelation, architecture and mechanical properties of polymer 

networks. Living copolymerizations in the last century revolutionized polymer chemistry, 

and allowed for the formation of linear chains with well-defined molecular weight and 

dispersity. Today, a library of techniques exists to synthesize any backbone chemistry, but 

they remain rather underutilized for making 3-dimensional polymer networks through the 
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copolymerization of monomer and crosslinker. Here, we focus on epoxide 

copolymerizations catalyzed using organo-aluminum catalysts and acrylate 

copolymerizations mediated by Reversible Deactivation Radical Polymerizations (RDRPs) 

techniques, namely RAFT and ATRP. In both systems, differences between rates of 

polymerization are used to tune the cluster growth rate, the architecture and mechanical 

properties of polymer networks. The key results from this Ph.D. are that delayed gelation 

observed with more controlled systems yield phase separated networks. If decomposing 

spinodally, these networks are stiffer, and if phase separating by nucleation and growth, 

they tend to be softer. Compared to their non-phase separated analogs synthesized using 

uncontrolled polymerizations, these materials offer a different trade-off between their 

small- and large-strain mechanical properties. As such, we provide engineering guidelines 

for designing tougher materials, to be used either in their as-synthesized state or as fillers 

in a multiple network architecture, for new emerging technologies. 
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solid. (C) Transmittance spectra as measured in specimens of å 1 mm 

thickness. (D) Stress-strain curves in uniaxial tension. These 
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Figure 1. Optical and mechanical properties of initial filler and multiple 
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extensibility of the filler networks. The RDRP fillers strain harden 

earlier and are less extensible. ....................................................................310 
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picture, and are pervaded by defects such as loops, entanglements 

and dangling side chains. ........................................................................69 
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Scheme 11. Mechanical properties of entangled polymer networks. (A) In 

uniaxial extension, at low strains, the entanglements relax and 

untangle, observed as strain softening in the stress-stretch curves at 

low to intermediate strains. At high deformation, the chains approach 
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prior to failure. (B) The reduced stress, f*(l), plotted as a function of 

1/ l, often referred to as a Mooney-Rivlin plot, shows the two 

regimes of strain softening and strain hardening. The minimum point 

of the curve represents the shear modulus resulting from the 

elastically active chains and can be used to compute the 
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Scheme 14. Mechanophores in polymer networks. (A) Spiropyran is a non-scissile 

mechanophore that undergoes a color change upon loading and can 

be used to map stress distributions. (B) Bis(adamantyl) 1,2-dioxetane 

is a scissile mechanophore that when stretched, releases a moiety 
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in real time. (C) p-extended anthracene is also a scissile 

mechanophore that yields 9ˊ-extended fluorescent anthracene with a 
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for mapping and quantifying damage post-mortem. ...............................92 
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Scheme 1. The major difference between free radical polymerization and RDRPs 

is the presence of elementary steps that reversibly deactivate the 

propagating radicals. This step slows the rate of polymerization 

and allows for the synthesis of linear polymers with narrow 

dispersity and well-defined molecular weight. The two RDRPs, 

RAFT and ATRP, differ in their reversible deactivation step, which 

involves fragmentation of a chain transfer agent in RAFT and 
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Scheme 2. Competition between gelation and phase separation in polymer 
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Scheme 4. Polymer networks synthesized by RDRP suffer from phase separation 

after gelation, and offer a different trade-off between small- and 

large-strain mechanical properties. When composed of a similar 
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narrower distributions of elastically active chains and are less 
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Chapter 1:  Leveraging living copolymerizations to tailor the 

architecture and mechanical properties of polymer networks 
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McKetta Department of Chemical Engineering, The University of Texas at Austin, 

Austin, TX 78712, USA 

Introduction  

Polymer networks find widespread use in applications that require large reversible 

deformations. These applications include elastomers in rubber tires, dampers, and seals; 

hydrogels in contact lenses and superabsorbent diapers; and pressure-sensitive adhesives 

in tapes1,2. The origins of these materials date back to the 15th century when Mayan 

civilizations first produced brittle and unstable rubbers by reacting latex sap from rubber 

trees with oxygen from the air2. Over time, Charles Goodyear pioneered the vulcanization 

of natural rubber with sulfur, while researchers at I.G. Farben polymerized styrene and 

butadiene to introduce Styrene-Butadiene-Rubber (SBR)3. Despite being integral to our 

daily lives, polymer networks remain challenging to design due to the elusive relationship 

between synthesis, architecture, and bulk mechanical properties. 

The elusive nature of this relationship primarily stems from the complex 

architecture of polymer networks4. Synthesized either by crosslinking a polymer melt or 

solution or through the reaction of a monomer and a crosslinker, polymer networks are 

heterogeneous across multiple length scales. At the molecular level, they comprise 

topological defects like loops and dangling side chains, while at the mesoscopic level, 

pronounced concentration fluctuations can emerge4. The kinetics of gelation and 

thermodynamics of phase separation dictate the architecture of polymer networks. Yet, 
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controlling these processes with state-of-the-art synthetic methods is challenging and often 

involves extensive trial-and-error. 

In contrast, the synthesis of linear polymers with controlled architectures is now 

possible with living polymerizations. Techniques like NMR, RAFT, ATRP, ionic, and 

pseudo-ionic polymerizations are often used to synthesize styrenic, acrylic, and 

methacrylic polymers of narrow dispersity and well-defined molecular weights. These 

techniques are characterized for having fast initiation, slow propagation and negligible 

termination or, in other words, for procuring control over the kinetics of chain growth. 

However, they remain relatively unexplored for synthesizing polymer networks through 

monomer-crosslinker copolymerization.  

In previous investigations, Fukuda, Matyjaszewski, Billingham and Armes, and co-

workers observed that, under similar reaction conditions, living copolymerizations had 

slower rates of copolymerization and higher percolation thresholds than conventional free 

radical copolymerizations. This observation led them to conclude that living 

copolymerizations yield more homogeneous polymer networks5ï9. However, their picture 

raises several questions. Specifically, how such control over the kinetics of 

copolymerizations impacts the formation of heterogeneities at the molecular and 

mesoscopic scales, and the mechanical properties of the networks. This Ph.D. aims to 

answer these questions by investigating the effect of (i) organo-aluminum catalysts, (ii) 

trithiocarbonate chain transfer agents, and (iii) copper ligand catalysts on the architecture 

and mechanical properties of model poly(ethyl glycidyl ether) and poly(ethyl acrylate) 

networks.  

In this chapter, the first section explains the mechanisms of polymerization in the 

different systems, the second section discusses several models from polymer physics and 

fracture mechanics employed to understand the architecture and mechanical properties of 
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the polymer networks, and the last section introduces novel techniques to elucidate the 

relationship between architecture and fracture properties.  

Polymer chemistry: From conventional methods to living and controlled 

polymerizations 

Polymeric materials have always played a vital role in society, whether as the DNA 

in our bodies, the cellulose in plants, or the proteins in our diet. Yet, the concept of a 

polymer remained unknown for centuries. The first synthetic polymer, Bakelite, emerged 

in 1907 when Leo Baekeland reacted phenol with formaldehyde2. In 1920, Hermann 

Staudinger introduced the groundbreaking idea that polymers are macromolecules, 

composed of many molecules linked to one another by covalent bonds. Staudingerôs 

hypothesis was later validated by Wallace Carothers, who laid the foundation of polymer 

chemistry by demonstrating that large molecules could be synthesized from smaller 

molecules through repeating organic reactions10. Since then, many advances in polymer 

synthesis have facilitated the use of polymeric materials in a range of technologies. Among 

these advances, living polymerizations are noteworthy, as they have enabled the synthesis 

of linear polymers with narrow dispersity and well-defined molecular weight.  

Linear polymers 

A polymer chain consists of numerous repeating units known as monomers and are 

formed through two major synthetic routes: step growth polymerization and chain growth 

polymerization. These routes differ in the kinetics of propagation. In chain growth 

polymerization, monomers add to a growing chain one at a time, whereas in step growth 

polymerization, instead, monomers and oligomers couple to form the final polymer11. Here 

we focus on chain growth polymerizations, specifically radical and epoxide ring-opening 

polymerizations. 
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Chain growth polymerizations typically involve three elementary steps11: (i) 

Initiation: An active species is formed by initiator decomposition, (ii) Propagation: The 

active species react with monomers to grow the polymer chains, and (iii) Termination: Two 

growing chains combine or disproportionate to form a polymer (see Scheme 1). The 

molecular weight distribution depends on the rates of these steps and, even in the absence 

of side reaction, can be broad.  

 

 

Scheme 1. Elementary steps in a chain growth polymerization. Initiator, I, decomposes 

in initiation to from an active species, I* with a rate constant ki. Active 

species react with monomers, M, to start a propagating chain, Pn
*
 with a 

rate constant kp. Termination occurs if a propagating chain meets another 

active species to couple (kco) or disproportionate (kdis). 

Chain growth polymerizations are typically fast and permit the bulk production of 

polymers. These reactions commonly involve free radicals and are tolerant to protic 

solvents and trace impurities. In addition, they are compatible with a wide range of acrylic, 

methacrylic, and styrenic monomers. Hence, they are used to produce approximately 45% 

of synthetic polymers, including poly(methyl methacrylate), poly(acrylonitrile), 

poly(styrene), and poly(butadiene).  

Free radical polymerizations feature slow initiation, fast propagation, and fast 

termination rates. Radicals are slowly and continuously generated in the initiation step, 

resulting in a high concentration of free active radicals (10-4-10-2 M). Propagation is fast 
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and, when the heat of reaction is excessive, the polymerization auto-accelerates. Drastic 

changes in the viscosity also introduce diffusion limitations, particularly when the reaction 

is conducted in bulk or concentrated solution. Chain termination by combination and 

disproportionation make free radical polymerizations uncontrolled and preclude the 

formation of polymer chains with well-defined molecular weights12. 

In 1956, Michael Szwarz introduced the concept of controlled/living 

polymerizations by initiating the anionic polymerization of styrene with sodium salt13. 

Over the years, the development of group-transfer polymerization, living carbocationic 

polymerization, living ring-opening metathesis polymerization, or living transition-metal-

catalyzed alkene polymerization, expanded living polymerizations to other monomers and 

backbone chemistries14. While these techniques permitted the synthesis of polymers with 

well-defined architectures (block, comb, star, end-group functionality), precise molecular 

weights, and narrow distributions, it was not until much later that these became possible 

with radical polymerizations. In 1982, Otsu, was probably one of the first polymer chemists 

to enable living radical polymerizations, using initiators known as iniferters to reversibly 

deactivate growing chains15. 

In the realm of reversible deactivation radical polymerizations (RDRPs), a wide range 

of techniques are available today (see Scheme 2). The three main techniques are Nitroxide-

Mediated Polymerization (NMP), Reversible Addition Fragmentation Chain Transfer 

(RAFT), and Atom Transfer Radical Polymerization (ATRP). All three techniques are 

based on the reversible deactivation of polymer chains in very distinct ways14: 

(i) NMP entails the reversible termination of active chains through coupling with 

a stable persistent radical, typically a nitroxide. 
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(ii)  RAFT involves the reversible transfer of a group such as a thioester from one 

chain to another, causing the chain without the thioester to become active and 

the one receiving the group to become dormant. 

(iii)  ATRP is similar to NMP, but the reversible termination occurs by the transfer 

of a halogen group from the metal-ligand complex to the propagating chain end. 

 

Scheme 2. Reversible deactivation of polymer chains. Unlike conventional free radical 

polymerizations, in RDRPs the polymer chains can be deactivated 

through the use of a nitroxide, chain transfer agent or a halogen. NMP and 

ATRP involve the reversible termination of polymer chains whereas 

RAFT revolves around the reversible transfer of radicals from an active 

to a dormant chain. This allows all chains to grow at the same rate to target 

molecular weight with a narrow dispersity. 

In all of these RDRPs, initiation is fast, propagation is slow, and irreversible 

termination is negligible11. The propagating radicals are temporarily converted to inactive 

dormant species, suspending the growth of the polymer chain ends. As such, in RDRPs, 

the radical lifetime of a single propagating chain is significantly lower (a few hours) than 

in free radical polymerizations (a few seconds). The interconversion between active and 

dormant species is very fast compared to the rate of propagation, allowing all the 
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propagating chains to grow essentially at the same rate. Additionally, the higher 

concentration of dormant chains significantly mitigates side reactions such as 

disproportionation, chain transfer, and cyclization. As such, RDRPs offer polymers with 

narrow dispersity and well-defined molecular weight. However, it is important to note that, 

even though these side reactions are suppressed, they are still present and occur at 

extremely slow rates. 

The major difference between the three techniques lies in their mechanisms of 

deactivation and the inherent equilibrium constant that exists between the active and 

dormant chains. Here, we focus mainly on RAFT and ATRP polymerizations. In ATRP, 

the reversible termination reduces the number of propagating chains whereas in RAFT, the 

reversible transfer maintains the concentration of propagating chain ends nearly constant. 

Seminal investigations by Werner, Tang and co-workers report equilibrium constant 

values, Keq, for RAFT polymerizations to be much greater (103-105) than that of ATRP 

polymerizations (10-9-10-4)16,17. As such, in ATRP polymerizations, during propagation, 

the chains are mostly dormant. On the other hand, in RAFT polymerizations, the high 

equilibrium constant combined with the reversible transfer of the active radical results in a 

higher concentration of actively propagating chains. This increases the probability of 

irreversible termination reactions, which even though remains negligible compared to free 

radical, is still more significant than in ATRP polymerizations. 

The mechanisms for free radical, RAFT and ATRP polymerizations, and their 

respective rate equations are outlined below. 
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Free radical polymerization 

 

 

Scheme 3. Steps of a free radical polymerization. Initiator, I, decomposes in initiation to 

from radical, I.. Radicals react with monomers, M, to start a propagating 

chain, Pn
.. Side reactions such as chain transfer (ch) can occur during 

propagation. Termination can occur if two propagating chains couple (co), 

or two propagating chains meet and disproportionate (dis). 

In a free radical photo-polymerization18, assuming the rate of initiation is equal to the rate 

of termination, the rate of polymerization is given by 

Ὧ ὓ    (Eq. 1) 

The conversion of monomer as a function of time can then be obtained as follows, 

ὢ ρ ρ ὩὼὴὯ ὸ (Eq. 2) 

where [M] is the concentration of monomer at time t, [M]0 is the initial concentration of 

monomer, t is the time, kp is the propagation rate constant, F is the quantum yield of the 

photo-initiator, Ia is the intensity of the lamp, and kt is the termination rate constant 

obtained from the sum of kco and kdis. 
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RAFT polymerization 

 

 

Scheme 4. Steps of a RAFT polymerization. Initiator, I, decomposes in initiation to from 

radical, I.. Radicals react with monomers, M, to start a propagating chain, 

Pn
.. The propagating chain reacts with a thiocarbonate and enters an 

equilibrium to generate a dormant chain and a radical, R.. This radical can 

also propagate a chain, Pm
., which can also participate in the equilibrium. 

Termination is minimal but can occur if a propagating chain meets a free 

radical or two propagating chains couple. 

It is important to note the similarities that exist in the mechanisms of free radical and RAFT 

polymerizations (compare Scheme 3 and Scheme 4). Both mechanisms maintain the 

concentration of active species constant during propagation, despite the existence of an 

additional equilibrium step in RAFT. This step involves the reversible transfer of the 

thiocarbonate moiety from a dormant chain to an active chain such that the concentration 

of active chains remains unchanged. The rate equations should thus be similar. However, 

RAFT polymerizations are experimentally slower. This observation led Vana, Anasthasaki, 

Konkolewicz, and co-workers to empirically modify the rate equation using an 

intermediate radical termination model. Specifically, for a RAFT photo-polymerization, 

the rate is given by 19,20. 

Ὧ ὓὩὼὴὯὸ  (Eq. 3) 
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And the monomer conversion: 

ὢ ρ ρ Ὡὼὴ ὩὼὴὯὸ ρ   (Eq. 4) 

where [CTA] is the concentration of chain transfer agent, kd is the initiator decomposition 

rate constant and Keq is the equilibrium constant between propagating and dormant chains 

given as, 

ὑ   (Eq. 5) 

with kact and kdeact representing the rate constants for activation and deactivation of polymer 

chains respectively. 

Since kd tends to be very small (~10-6 s-1), the equations Eq. 2-4 can be simplified to 

Ὧ ὓ   (Eq. 6) 

ὢ ρ ρ ὩὼὴὯ ὸ  (Eq. 7) 

ATRP polymerization 

 

Scheme 5. Steps of an ATRP polymerization. Halogenated initiator, R-Br, couples with 

the copper/ligand catalyst to oxidize the copper and generate a radical, 

R.. The radical reacts with monomers, M, to start a propagating chain, 

Pn
.. The propagating chain can react with the copper/ligand catalyst to 

enter an equilibrium, and the chain is reversibly terminated as the copper 

is oxidized. Termination can occur if a propagating chain meets a free 

radical. 
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Conversely in an ATRP polymerization, the rate of propagation21 is given by 

Ὧὑ Ὅ ὓ   (Eq. 8) 

and conversion as a function of time then follows 

ὢ ρ ρ ὩὼὴὯὑ Ὅ ὸ  (Eq. 9) 

where [I]0 is the initiator concentration, [CuI] and [CuII] are the concentrations of copper(I) 

activator and copper(II) deactivator. 

Both free radical polymerizations and RDRPs follow first-order kinetics but the 

evolution of the molecular weight with time is linear only in RDRPs. This linear evolution 

is due to the presence of a reversible deactivation step that suppresses side reactions and 

promotes all polymer chains to grow at similar rates. The increase in molecular weight with 

time is often used to confirm the controlled/living nature of the polymerization.  

RDRPs comprise one of the major achievements in polymer science, enabling the 

growth of linear polymer chains of narrow dispersity and well-defined molecular weight. 

These techniques are used to synthesize a myriad of polymers, such as poly(acrylates), 

poly(acrylamides), poly(acrylonitrile), poly(styrenes), poly(dienes) and many other vinyl 

monomers10. The presence of the reversible deactivation step in these polymerizations 

revolutionized polymer chemistry, and served to inspire the design of catalysts/initiators 

that today can be used to grow poly(olefins), poly(ethers), poly(lactones) and many others 

through a controlled/living mechanism10. 

A class of polymer of particular interest are poly(ethers). Their oxygen-rich 

backbone allows them to interact with many small molecules such as ions, gases, and 

pharmaceuticals. As such, they are ubiquitous in our daily lives and find uses as polymer 

electrolytes, gas separation membranes, and artificial tissue scaffolds22. Poly(ethers) 

typically result from the ionic polymerizations of epoxides or alkyl glycidyl ethers using 

organometallic catalysts and are sensitive to the presence of oxygen and water in the 
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atmosphere10. In 1966, Dreyfuss and Dreyfuss first introduced the living cationic 

polymerizations of cyclic ethers by employing a hexafluorophosphate salt as a catalyst to 

hinder suppress chain transfer and termination reactions23. However, the catalyst efficiency 

was very low resulting in polymer chains with molecular weights 4 to 5 times greater than 

the target, making the polymerization uncontrolled. On the other hand, E. J. Vandenberg 

in 1968 took inspiration from the Ziegler-Natta catalysts used in olefins polymerizations 

and reacted alkyl aluminums with water and acetyl acetone to form an organo-aluminum 

catalyst24. The Vandenberg catalyst can polymerize a wide range of monomers, including 

epoxides, alkyl glycidyl ethers, and lactones. Itôs ease of preparation, stability, and 

stereoselectivity makes it well suited for industrial production of poly(ethers) in large 

amounts rapidly25. 

However, the Vandenberg catalyst suffers from one important limitation: It can 

only produce polymer chains of high molecular weights (Mn > 106 Da), and high 

dispersities (ņ > 2). This lack of control has spurred the development of new systems. For 

example, Carlotti and Deffieux reacted onium salts with a trialkyl aluminum to activate the 

ring-opening polymerization of propylene oxide monomer26,27. More recently, Lynd and 

co-workers took inspiration from the Vandenberg catalyst and explored an aluminum-

based catalyst-initiator system for the polymerization of epoxides28,29. The initiating and 

catalytic species were formed from the reaction of an amine containing an alcohol ligand 

and a trialkyl aluminum. Both these ionic initiating systems allowed for the synthesis of 

poly(ethers) with molecular weights up to 100 kDa with narrow distributions ((ņ < 1.3), 

enabling investigation of the structure-property relationships in applications such as 

cryopreservation30, polymer electrolytes31 and gas separation membranes32.  

It is important to note that while the mechanisms of these epoxide organometallic-

catalyzed ring opening polymerizations are not well-established, they are chain-growth 
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polymerizations with elementary steps involving initiation and propagation. Termination 

tends to be absent in these mechanisms, and typically has to be purposefully induced 

through the addition of oxygen, water or alcohols. As such, despite their inherent 

mechanistic differences, the Vandenberg and Lynd organo-aluminum catalysts share 

similar concepts with the conventional free radical and the RDRPs. The fast kinetics of 

polymerization and uncontrolled nature of the Vandenberg catalyst is comparable to the 

observations with conventional free radical polymerizations. On the other hand, the slower 

rate of polymerization, control over molecular weight and dispersity and ñlivingnessò 

observed with the Lynd catalyst is reminiscent of the RDRPsô mechanism.  

While the mechanisms of the Lynd and Vandenberg organoaluminum catalyst 

systems remain poorly understood, both are based on the coordination-insertion ring 

opening of the epoxide through the catalyst to grow the polymer chains. The first scheme 

proposed by E. J. Vandenberg demonstrates the propagating chain and the unreacted 

epoxide coordinating with two catalyst molecules to open the ring and continue 

propagation24. On the other hand, in the Lynd system, the proposed mechanism included a 

similar coordination and insertion between the epoxide and the catalyst, but in this case, 

this propagation step was considered to be equilibrium limited28. In a noteworthy 

investigation, Ferrier and co-workers, revisited the Vandenberg catalystôs mechanism and 

established a similar equilibrium in the propagation step33. However, DFT calculations 

showed that the free energy associated with the coordination-insertion step in the 

Vandenberg system is very low. In other words, the equilibrium constant is very high, and 

the chains are constantly propagating. 

The mechanism for the Vandenberg and Lynd polymerizations, and their rate 

equation are given below. 
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Scheme 6. Steps of the Vandenberg/Lynd catalyzed organo-metallic polymerization. 

Initiator, I, couples with a hydrogen from the solvent or monomer to reach 

an activated state, [I-H]*. The activated initiator then reacts with a 

monomer, M, to start propagation, and form polymer chains, P*. It should 

be noted that the concentration of active species remains constant 

throughout the propagation steps, and every single propagation step can 

be reversible, resulting in depolymerization, kdp. Termination is absent in 

these polymerizations, and only occurs upon exposure to oxygen, water 

or alcohols to quench the reaction. 

It should be noted that both polymerizations follow first-order kinetics. The rate of 

propagation in a ring opening polymerization is given by, 

Ὧ ὓ ὖᶻ Ὧ ὖᶻ  (Eq. 10) 

where [P*] is the concentration of actively propagating species and kdp is the rate of 

depolymerization. 

At equilibrium,  

π  (Eq. 11) 

Ὧ Ὧ ὓ   (Eq. 12) 

where [M]e is the equilibrium concentration of monomer. 

The rate equation can then be simplified and integrated as follows, 

Ὧ ὖᶻ ὓ ὓ   (Eq. 13) 

ὢ ρ ρ ρ ὩὼὴὯ ὖᶻὸ   (Eq. 14) 

While these techniques in both radical and coordination polymerizations have been 

well exploited lately to grow linear chains of well-defined architectures, they remain rather 



 68 

unexplored when it comes to making polymer networks. In the section that follows, we 

discuss the importance of these polymeric materials and the use of polymer chemistry in 

their design. 

Polymer networks 

A polymer network is a 3-dimensional structure formed by covalently linking 

different polymer chains together to form a single molecule of infinite molecular weight. 

These linkages between chains prevent the material from flowing, and make it a solid. An 

important class of crosslinked networks are elastomers. These materials have low glass 

transition temperatures and are rubbery, soft, and deformable11. Examples include 

poly(isoprene), Tg ~ -70 , poly(dimethylsiloxane), Tg ~ -123 , poly(ethyl acrylate), Tg 

~ -18 , and many others. Today, there exists a whole library of monomers that can be 

used to make polymer networks with different backbone chemistries and functionalities. 

However, controlling their mechanical properties from the point of synthesis remains 

challenging.  

Such challenge stems from the heterogeneous structure of polymer networks. 

Formed by either crosslinking a polymer melt or concentrated solution, or copolymerizing 

a monomer-crosslinker mixture, polymer networks tend to have a broad distribution of 

chain lengths between crosslinks, and contain defects such as loops, entanglements, and 

dangling side chains4 (see Scheme 7). This distribution leads to a non-uniform mesh size 

and impacts the bulk mechanical properties. Several investigations have focused on 

understanding the relationship between the synthetic conditions and the molecular 

architecture of polymer networks by end-linking polymer chains of well-defined molecular 

weight and narrow dispersity. For instance, Cohen and co-workers explored the effect of 

molecular weight and concentration of polymer chains on the densities of crosslinks and 

entanglements in poly(dimethylsiloxane) networks34, and Ferry, Creton, and co-workers 
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performed similar studies on poly(butadiene)35 and poly(urethane)36 networks. In 2008, 

Sakai and co-workers were able to design an ideally ñhomogeneousò polymer network by 

combining two symmetrical tetrahedron-like macromonomers in poly(ethylene glycol) 

hydrogels37. These studies provided important insights into tailoring the network 

architecture and served to refine molecular models on the elasticity38, swelling39 and 

fracture40 of real polymer networks. 

 

 

Scheme 7. Synthesis of polymer networks. Polymer networks can be synthesized by 

either (A) crosslinking a polymer melt/solution or (B) copolymerizing low 

viscosity solution of monomer and crosslinker. Both strategies yield 

polymer networks that deviate from the ideal picture, and are pervaded by 

defects such as loops, entanglements and dangling side chains. 

In addition to these molecular defects, polymer networks suffer from another 

heterogeneity that can span nano- to microscopic length scales, namely phase separation4. 

During the gelation process, the change of viscosity makes the reaction diffusion limited, 

and accentuates concentration fluctuations. As the polymer chains crosslink or the 

monomer crosslinker mixture react to form a swollen network, nano- to microscopic 

polymer solvent demixing can occur before or after the gel point. At the gel point, these 

phase-separated domains freeze within the architecture. This process, called 
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microsyneresis, was first recognized by Dusek41 and later observed in a wide variety of 

networks, including poly(acrylamide)42,43, poly(hydroxy ethyl methacrylate)44 and 

poly(ethylene glycol)45,46 gels, and bimodal poly(dimethylsiloxane)47,48. The degree of 

phase separation strongly depends on the rate at which the system transitions from a liquid 

to a solid, i.e. percolation. If the percolation line of the system lies closer to the phase 

boundary, the system is likely to undergo more phase separation4. The percolation 

threshold can however be tuned through the crosslinker concentration and temperature49. 

The phase boundary line on the other hand depends on the interaction energies between the 

reactants, reactants-products and products in the system, and can be shifted through the 

compatibility of the monomer-crosslinker pair, or the monomer-solvent interactions50,51. 

The rate of gelation thus governs the architecture of polymer networks at the 

molecular scale, their phase separation at the mesoscopic scale and their physical properties 

at the macroscopic scale. Yet, the inability to control it through conventional synthetic 

methods has precluded a better understanding of how phase separation competes with 

percolation to dictate the structure-property relationships. Many polymer networks are 

synthesized by the chain growth copolymerization of monomers and crosslinkers using 

conventional free radical polymerizations. These copolymerizations are typically 

uncontrolled, forming ñdeadò gels or clusters at low conversions that interconnect at the 

gel point into a network9. Moreover, they also suffer from static concentration fluctuations 

and phase separate during gelation41,42,44. Over the past decades, reversible deactivation 

radical polymerizations (RDRPs) such as RAFT, ATRP, and NMP have emerged as 

techniques to control the kinetics of chain growth, suppressing the concentration of 

propagating chain ends during polymerization and offering linear polymers of narrow 

dispersity and well-defined molecular weight. Nonetheless, they remain somewhat 

unexplored for tailoring the architecture and mechanical properties of polymer networks.  
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Scheme 8. Reversible deactivation copolymerization of polymer networks. Polymer 

networks synthesized by reversible deactivation radical 

copolymerizations prevent the formation of dead clusters and allow the 

formation of a more homogeneous structure. 

Ide and Fukuda first postulated the formation of more homogeneous architectures 

by NMP copolymerizations as opposed to conventional free radical copolymerizations. 

Model poly(styrene) gels synthesized from NMP copolymerizations featured higher 

percolation thresholds, and higher swelling ratios. These observations were attributed to 

the reversible activation and deactivation of the propagating chains which (i) increases the 

percolation threshold and (ii) promotes the formation of a more homogeneous 

nanostructure5,6. Since then, Zhu, , Billingham and Armes, Matyjaszewski, and co-workers 

have extended these studies to other systems and have argued that RDRPs prevent the 

formation of ñdeadò gels or clusters at low conversions and, as a result, enable a more 

homogeneous distribution of ñdormantò gels or branched polymers that grow and percolate 
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at a higher threshold5ï9 (see Scheme 8). However, systematic studies on the effect of 

RDRPs on phase separation remain absent from the literature.  

The complex architecture arising from (i) the higher percolation thresholds, and (ii) 

the possibility of phase separation can be leveraged to design advanced polymer networks. 

These include poly(olefins), poly(ethers) and poly(lactones), which can be copolymerized 

into polymer networks using initiators/catalysts that permit the reversible deactivation of 

chains and procure control over the growth of polymer chains and the percolation 

threshold.   

Polymer physics: From linear chains to complex 3-dimensional polymer networks 

With the emergence of synthetic tools to control the molecular structure of linear 

and three-dimensional polymers, there came a corresponding effort from the physics 

community to develop several models to describe their mechanical properties10. In 1934, 

Werner Kuhn applied statistical mechanics to  describe the viscosity of polymer solutions 

and concluded that the chains exist as coils52. Later in 1949, Paul Flory introduced the 

concept of excluded volume,53 whereby one part of the polymer chain cannot occupy the 

space that is already occupied by another. Many other models explaining the elasticity, 

swelling and fracture of polymers came about in the following years. Some of these models 

are discussed in the section below.   

Polymer chains 

A polymer chain is comprised of a given number of monomers, N+1, linked 

together by N bonds of length, l0. The maximum length of the polymer chain, if all the 

bonds are aligned, known as its contour length, Rc, is then simply,  

Ὑ ὔὰ  (Eq. 15) 
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In reality, the bonds are not aligned but instead have a bond angle with respect to one 

another (see Scheme 9), such that the maximum length of the polymer chain, Rmax, is given 

by  

Ὑ ὔὰÃÏÓ  (Eq. 16) 

where q is the valence angle between the bonds. 

 

 

Scheme 9. Length of a polymer chains. The bonds in a polymer chain are not aligned but 

instead have a bond angle between them. 

A more appropriate definition of the polymer chain length is its average end to end 

distance, R0, at thermodynamic equilibrium. The chain is modeled as a random walk of 

monomers through space that maximizes conformational entropy (see Scheme 10). If each 

segment of the chain is described by a vector, ὶᴆ,, then the end-to-end vector of the polymer 

chain, ộὙᴆỚ, is defined as, 

ộὙᴆỚ В ὶᴆ  (Eq. 17) 

For many segments, the average of the end-to-end vector is zero due to the random 

orientation in space. However, the mean squared end-to-end distance is finite and given by 

ộὙ Ớ ὔὰ   (Eq. 18) 

This end-to-end distance is shorter than the contour length, consistent with the chain being 

curled in a compact random coil while maximizing entropy.  

In addition to the backbone rigidity, interactions between different segments often causes 

coiling of the polymer chain such that all the possible conformations are not as probable. 



 74 

This probability, as calculated by W. Kuhn, follows a Gaussian distribution52, and 

highlights the random nature of the polymer chainôs orientation and configuration.  

A correlation factor, known as the characteristic ratio, CÐ, is then introduced to account for 

the random orientation of the monomers with respect to one another53. This parameter is 

given by: 

ὅ
ộ Ớ

  (Eq. 19) 

 

 

Scheme 10. Random walk of a polymer chains. The bonds in a polymer chain are 

randomly oriented with respect to one another, and interactions between 

the different segments of the chain, often causes the polymer to coil. 

The maximum extensibility of the polymer chain llimit, is then dictated by the ratio of the 

contour length and the Gaussian end-to-end distance as, 

‗
ộ Ớ

ÃÏÓ   (Eq. 20) 

Polymer networks 

A polymer network comprises polymer chains linked to one another at crosslinking 

points. This three-dimensional structure also contains topological defects such as loops, 

entanglements and dangling chains. The simplest model to describe the elasticity of 

polymer networks is the affine network model, where the presence of topological defects 

is neglected54. Developed by Kuhn and Flory, this model assumes that the bulk and the 

individual polymers deform affinely and reversibly. 
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If the material deforms in the x, y and z directions, its relative deformations in the different 

planes are given by lx, ly and lz. The free energy of the system, DG is then defined as, 

ɝὋ  ‗ ‗ ‗ σ  (Eq. 21) 

where n is the number of elastic polymer chains, kB is the Boltzmann constant, and T is the 

absolute temperature. 

For incompressible systems,  

‗‗‗ ρ  (Eq. 22) 

and for uniaxial extension in the x-direction, 

‗ ‗  (Eq. 23) 

‗ ‗
Ѝ

  (Eq. 24) 

The free energy can then be rewritten as, 

ɝὋ  ‗ σ  (Eq. 25) 

The force, F, required to deform the material in the x-direction is given by the partial 

derivative of the free energy with respect to the deformation. 

Ὂ  ‗   (Eq. 26) 

where Lx0 is the initial length in the x-direction. 

The engineering stress can then be calculated as,  

„ ‗ ‗ ’ὯὝ‗   (Eq. 27) 

where Ly and Lz are the initial lengths in the y and z-directions, V is the specimen volume, 

and nx is the density of elastic chains. 

The elastic modulus, E, is described as the derivative of the stress with respect to the strain, 

at low deformations, or as lŸ1. 

Ὁ  σ’ὯὝ  (Eq. 28) 
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The above equations Eq. 27-28 describe the elasticity of polymer network and, in 

analogy to the ideal gas law, reveal that each elastically active chain contributes an equal 

amount of energy, kBT, to the modulus E. The network is referred to as ñidealò.  

If the material is isotropic and incompressible (Poisson ratio is 0.5), the shear modulus and 

elastic modulus, E, are related as,  

Ὁ σ‘  (Eq. 29) 

It is important to note that this relationship is in good agreement with experimental data 

only at small strains. Experimentally, specimens are tested in uniaxial extension and the 

engineering stress, s, and stretch, l, are calculated from the force-displacement curve 

according to 

„   (Eq. 30) 

‗   (Eq. 31) 

where F is the measured force, A is the cross-sectional area of the sample, L is the deformed 

length of the sample and L0 is its initial length. At very small strains, rubber elasticity 

applies and the elastic modulus can be estimated from the slope of the stress-stretch curves. 

At small to intermediate strains, real networks tend to show deviations from this 

relationship due to the presence of defects such as loops, entanglements, and dangling side 

chains3,55ï57. 

Entanglements are present in most polymer networks if the molecular weight 

between crosslinks is higher than the critical entanglement density of the polymer chains58. 

Entanglements are physical interactions between polymer chains that constrain their 

motion and play a transient role in the modulus of the material. Upon deformation, the 

entanglements can either relax or slide along the polymer chains, making them strain- and 

strain-rate dependent. Polymer networks that contain entanglements typically exhibit strain 

softening during their deformation, and this strain softening that occurs at low to 
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intermediate strains can be used to estimate the density of entanglements in the polymer 

network. 

Mooney and Rivlin provided an empirical model59 where the reduced stress, f* , 

with respect to the strain is attributed to two parameters, C1 and C2, and serves to 

understand the crosslinks and entanglements contributions to the small strain modulus. 

Ὢᶻ ςὅ   (Eq. 32) 

This equation highlights the difference between a real polymer network and an ideal 

polymer network that follows rubber elasticity (C2 = 0). Most entangled polymers will 

show C2 > 0 at low strains, i.e. strain softening, plateau once all the entanglements relax 

and then strain harden, C2 < 0 as the large strain regime is approached and the polymer 

chains approach their limiting extensibilities (see Scheme 11). This model however only 

works for samples in tension and the parameters C1 and C2 remain empirical with no 

physical meaning regarding the material. 
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Scheme 11. Mechanical properties of entangled polymer networks. (A) In uniaxial 

extension, at low strains, the entanglements relax and untangle, observed 

as strain softening in the stress-stretch curves at low to intermediate 

strains. At high deformation, the chains approach their limiting 

extensibilities, and the material shows strain hardening prior to failure. 

(B) The reduced stress, f*(l), plotted as a function of 1/ l, often referred 

to as a Mooney-Rivlin plot, shows the two regimes of strain softening and 

strain hardening. The minimum point of the curve represents the shear 

modulus resulting from the elastically active chains and can be used to 

compute the corresponding elastic modulus. 
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To provide molecular rationale for the strain softening, Rubinstein and Panyukov 

proposed a non-affine slip-tube molecular model58. In this model, the polymer chains are 

confined in a tube and can undergo fluctuations of varying amplitudes dependent on the 

strain experienced by the tube (elastic chains). The slip links along the tube, can slide along 

the chain but cannot cross one another (entanglements). In uniaxial extension, the stress is 

given by, 

„ ὯὝ’
Ȣ Ȣ Ȣ Ȣ

‗   (Eq. 33) 

where nx and ne are the crosslinking and entanglements densities respectively. This model 

works well in both tension and compression (note that some pre-factors need to be altered 

to account for biaxial strain), but shows good agreement with experimental data only in the 

intermediate strain regime (0.1 < l < 10). 

It should be noted that during the last couple of years, several models capturing the 

contributions from other topological defects such as dangling side chains, and loops have 

emerged to more accurately represent the architecture and behavior of real polymer 

networks57. 

At large strains, the polymer chains approach their limiting extensibility, and are 

no longer in their random coil configuration. Instead, they are oriented in the loading 

direction. As such, the polymer chains do not follow Gaussian statistics and all the 

previously discussed models become inaccurate. At large strains, the number of possible 

conformations of the polymer chains is very low. As such, the mechanical properties are 

no longer dominated by entropy, but instead depend on the enthalpy of the system, which 

comprises the energies associated with the bonds in the network. The free energy required 

to deform the chains becomes very high, and the material becomes stiffer with increasing 

deformations, i.e. strain hardening. 
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The finite extensibility of polymer chains can be modeled by combining non-

Gaussian network theory and Langevin statistics, as shown by Arruda and Boyce60.  

Gent1,61 also proposed an empirical expression that maps the limiting extensibility of 

polymer chains as,  

„ ’ὯὝ   (Eq. 34) 

where J1 is the first strain invariant given by as  

ὐ ‗ σ  (Eq. 35) 

and Jm is the maximum admissible value of J1. The limiting extensibility, lh, can then be 

computed as, 

ὐ ‗ σ  (Eq. 36) 

This model fits both tension and compression data on polymer networks and can used to 

quantify the limiting extensibility of polymer chains.  

The imperfect nature of polymer networks makes it hard for a single model to 

consider all the defects and elastically active chains, and predict the appropriate behavior 

under different strain regimes. However, one can still make use of the different models for 

the gain a better understanding of the network architecture, through its mechanical 

properties.  

While understanding how polymer networks behave at different strains is important 

to ensure they can be used for the appropriate application, another key aspect to consider 

is their resistance to failure. 

During fracture, the broad distribution of chain lengths readily leads to stress 

concentrations and nucleation of microscopic defects known as cracks. How the stress gets 

distributed at the molecular scale depends on the architecture of polymer networks and the 

interactions between the chains. However, as polymer networks are architecturally 
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complex, it remains challenging to predict and design (i) the stress distribution among the 

chains, (ii) the energy dissipation, and (iii) and the fracture properties.  

Fracture of polymer networks 

The study of fracture in polymer networks revolves around measuring the amount 

of energy required to propagate a crack. In linear elastic fracture mechanics, the material 

is assumed perfectly elastic, except in a small region around the crack tip. This assumption, 

referred to as small-scale yielding, reduces fracture to the creation of two surfaces at a 

strain energy release rate, G,  

Ὃ    (Eq. 37) 

where dWm is the change in the total mechanical energy per unit area dA of the crack 

surface. According to Griffith, the crack propagates through the material at the critical 

energy release rate or fracture energy, Gc
62. Irwin expanded on LEFM and described the 

stress concentration at the crack tip63, as  

„ὶ  
Ѝ

  (Eq. 38) 

where s is the stress at a given distance r from the crack tip and K is the stress intensity 

factor. It follows from his description that the crack will propagate at a critical stress 

intensity factor or fracture toughness, Kc. If the material is linearly elastic, the descriptions 

in terms of energy and stress are equivalent to each other.  

Linear elastic fracture mechanics works well with brittle materials such as glasses 

but fails in soft polymer networks61. This limitation is because soft polymer networks attain 

high strains in the vicinity of cracks and do not obey small-scale yielding. Gent and Schultz 

considered the fracture toughness of polymer networks as a sum of (i) the intrinsic fracture 

energy of the material, G0, and (ii) any form of dissipation occurring during crack 

propagation, as G0f(v,T), where f(v,T) is a function denoting the rate and temperature 

dependence of the dissipative processes (see Scheme 12). The function f(v,T) has been 



 82 

estimated from the linear viscoelastic properties of polymer networks but often times fails 

to match experimental data due to the non-linear behavior of the material during crack 

propagation64. 

 

Scheme 12. Fracture of polymer networks. The crack propagates through the material 

only when the energy release rate reaches a critical value. The zone ahead 

of the crack tip, known as the process zone, constitutes the area where the 

material undergoes non-linear deformation, and dissipates energy by 

friction and scission. 

The intrinsic fracture energy, G0, has been predicted by Lake and Thomas65, and it 

is characterized as the energy released from the scission of a monolayer of bonds ahead of 

the crack tip. In the absence of viscoelastic dissipation, this molecular model assumes that 

when a stretched chain breaks, the total energy in each bond is released. The minimum 

energy required to break a stretched chain then scales with the number of C-C bonds in the 

chain. If only the chains crossing the plane of the crack break during crack propagation, 

then the intrinsic fracture energy, can be calculated as follows, 

꞉ ὔὟɫ  (Eq. 39) 

where Nx is the number of C-C bonds in the chains, Ub is the energy of C-C bond which is 

around 350 kJ/mol, and S is the areal density of chains. The energy released from a C-C 
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during chain scission has been recently revised by Craig and co-workers to be ~60 kJ/mol, 

which is much lower than the homolytic scission of a C-C bond66.  

Nx can be estimated from the elastic modulus, E, and expressed in terms of the crosslinking 

density, nx, as, 

ὔ   (Eq. 40) 

where r is the density of the network, NA is Avogadroôs number, and M0 is the molecular 

weight of the monomer. 

Additionally, the areal density S can be expressed as, 

ɫ
ộ Ớ

  (Eq. 41) 

By combining the equations Eq. 39-41, the intrinsic fracture energy is shown to scale with 

the crosslinking density as G0 ~ nx
-1/2 and hence, with the elastic modulus as G0 ~ E-1/2 

꞉ ὔὟɫ  ’ Ὁͯ   (Eq. 42) 

This equation highlights an important trade-off in polymer networks, whereby the higher 

the density of crosslinks, the stiffer the material, and the lower the material toughness. The 

Lake and Thomas model shows good agreement with soft polymer networks in threshold 

conditions when viscoelastic dissipation is negligible (high temperature or solvent 

concentrations)67ï69, and the scaling of the fracture energy with the crosslinking density 

provides insights into the processes occurring in the zone ahead of the crack tip. 

Experimentally, the fracture energy can be measured using a single-edge notch test 

which involves putting a notch of a given size into the sample, and stretching the sample 

to induce crack propagation. The critical energy release rate, Gc, can then be calculated 

using the Greensmith model70 for a neo-Hookean elastomers in a single-edge notch test, as 

꞉   (Eq. 43) 
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where lc is the critical stretch at which the crack propagates, c is the initial length of the 

notch in the sample, and W(l) is the strain energy density stored in the sample, which can 

be obtained from the un-notched sampleôs stress-stretch curve as, 

ὡ ‗ ᷿ „ Ὠ‗  (Eq. 44) 

The one important assumption for using the Greensmith model is that the crack length 

should be much smaller compared to the width of the sample, c << a, and crack propagation 

should occur at small to moderate strains to accurately measure the fracture energy. The 

model has some limitations worth highlighting. First, it does not reduce to linear elastic 

fracture mechanics as lcŸ1, and underestimates the fracture toughness by about 25%. 

Second, it works well with rubbers that obey the Mooney-Rivlin model which fails in most 

elastomers undergoing strain hardening at large deformations71. 

Over the recent years, several models have emerged to understand how defects such 

as loops and dangling side chains impact the fracture process in real polymer networks40,72. 

However, these models apply only to polymer networks in threshold conditions when 

viscoelastic dissipation is suppressed. While hydrogels are in such conditions as a result of 

their high-water concentrations, elastomers are viscoelastic and dissipate considerable 

energy by molecular friction during fracture. 

Establishing the link between architecture and fracture properties: Multiple 

networks and mechanochemistry 

In the presence of a crack, a polymer network can dissipate energy either through 

friction between polymer chains or by scission of stretched polymer chains lying in the 

zone ahead of the crack3. The amount of energy dissipated through either of these two 

processes is small, and the toughness of soft polymer networks is around Gc ~100 J.m-2. 

Moreover, in threshold conditions, i.e. high temperatures or high solvent concentrations, 
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when friction is suppressed, the polymer networks can only dissipate energy by bond 

scission and are extremely brittle (for example in gels, Gc ~ 10 J.m-2)61. Their lack of 

inherent dissipation mechanisms and heterogeneous architecture cause them to fail prior to 

reaching their limiting extensibilities3. As such, they typically fail at low strains and a 

molecular picture of their large-strain behavior remains abstract. In order to circumvent 

this trade-off and design soft, elastic and tough polymer networks (Gc  ~ 1,000-10,000 J.m-

2), the architecture of the polymer networks needs to be modified or tailored to incorporate 

some form of strain- and strain-rate dependent energy dissipation. In this section, we focus 

on the latest tools used to (i) toughen polymer networks, (ii) probe their large strain 

mechanical properties and (iii) understand their fracture at the molecular scale. 

Engineering dissipation mechanisms into the architecture 

The need for such a tool to probe the large strain behavior of polymer networks 

might be perplexing, when a range of mechanical characterizations today exist to fully 

understand the behavior of any novel materials. The reason is simple, as synthesized 

polymer networks are defective and brittle (Gc ~ 10-100 J.m-2). They readily concentrate 

stress and nucleate cracks. As such, they fail prior to reaching their limiting extensibilities 

and their large strain mechanical properties cannot be captured with current 

characterization tools. Over the years, numerous efforts have focused on engineering the 

fracture properties of polymer networks by tailoring the molecular architecture to 

delocalize these stress concentrations and delay the nucleation of microscopic cracks. 

Examples of such architectures include homogeneous tetra-PEG hydrogels37,73,74 and 

cyclodextrin-based polyrotaxane slide-ring networks75ï77. 

Another typical strategy to toughen polymer networks is to fill them with stiff 

particles of carbon black or silica. The resulting materials, referred to as filled rubbers, 

dissipate considerable strain energy by molecular friction between polymer chains and 
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particles in the vicinity of cracks. However, they suffer from some shortcomings worth 

noting: (i) they require high shears and high temperatures to disperse the filler particles in 

a high molecular weight, entangled, and viscous polymer melt, (ii) the filler particles are 

very likely to agglomerate, scattering light and precluding transparency, (iii) they exhibit 

rate and temperature dependent fracture and are moderately tough at high temperatures and 

(iv) the relationship between polymer-particle interactions, particle fractal structure, and 

macroscopic mechanical properties remains poorly understood. These materials, however, 

served as a strong inspiration for Gong et al. to engineer a family of soft materials that are 

remarkably tough at high temperatures and solvent concentrations: Multiple networks83 

(see Scheme 13).  

 

 

Scheme 13. Synthesis of multiple networks. Multiple networks comprise a stiff and 

brittle network, filler network, embedded into a loosely crosslinked matrix 

network. The filler network is swollen to equilibrium in a bath of 

monomer and crosslinker where the polymer chains untangle and become 

pre-stretched, l0. Upon polymerization under UV, the filler network is 

locked in its pre-stretched state. This not only reinforces the material but 

allows us to probe large strain properties of the filler network. 
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By interpenetrating a highly crosslinked and stiff filler network into a loosely 

crosslinked and soft matrix network; energy is dissipated in the vicinity of cracks by 

scission of filler network bonds and the bulk exhibits an outstanding combination of 

reversible elasticity and fracture toughness83ï85. Since then, multiple networks have been 

extensively studied in both gels and elastomers to gain a better understanding of their 

fracture mechanisms. With their resemblance to conventional composites, these multiple 

networks have also served as model systems to understand the fracture properties of 

industrially relevant composites. 

 Irrespective of backbone chemistry, multiple networks can today be applied to a 

wide range of monomers using different polymerization techniques, and should yield soft 

and tough materials, as long as the first network, the filler network, is stiff and the second 

network, the matrix network, is soft and loosely crosslinked. Millereau et al carried out a 

systematic study on a family of multiple networks synthesized by the copolymerization of 

ethyl acrylate monomer and 1,4-butanediol diacrylate crosslinker and varied the pre-stretch 

of the filler network using a mixture of monomer and solvent ethyl acetate86. The pre-

stretch of the filler in a multiple network, l0, can be calculated as shown below.  

‗    (Eq. 45) 

where Lf is the final dimension of the multiple network, L0 is the initial dimension of the 

starting filler network, mf is the mass of the multiple network and m0 is the initial mass of 

the filler. Note that the mass/volume fraction of the filler and its pre-stretch are related and 

either parameter could be used to describe the state of the multiple network. 

The key observations from that study are that (i) the multiple networks exhibit 

characteristic behavior at different pre-stretches, of the filler (strain hardening observed at 

l0 ~ 1.6, strain softening at l0 ~ 2 and necking at l0 ~ 3), and (ii) renormalization of the 



 88 

stress-stretch curves of the multiple networks made from the same filler, by the pre-stretch 

of the filler, results in a master curve (see Fig. 1). This renormalization brings about an 

important point about multiple networks: their large strain mechanical properties are 

governed by the pre-stretch of the filler network. In other words, multiple networks can be 

used as a tool to probe large strain mechanical properties of filler networks. In this Ph.D., 

we use these multiple networks to not only toughen our brittle filler networks, but make 

use of this tool to characterize their respective limiting extensibilities. 
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Figure 1. Mechanical properties of multiple networks. (A) At the different pre-stretches, 

l0, the corresponding multiple network displays the characteristic behavior, 

strain hardening is observed at l0 Ó 1.6, and strain softening at l0 Ó 2.0. The 

higher the pre-stretch of the filler, the tougher the multiple network. (B) 

Renormalization of the stress-stretch curves by l0, yields a master curve, with 

the onset of strain hardening representing the limiting extensibility of the filler 

chains, and the load transfer to the matrix network. 

A clearer picture of fracture through polymer mechanochemistry 

While multiple networks provide insights into the limiting extensibilities of 

polymer networks, understanding how the stresses are redistributed within the network 

architecture, and how bond scission occurs in the material upon failure, remain important 
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limitations in the design of soft and tough polymer networks. The complex architecture of 

polymer networks makes it hard to predict the stress distribution, molecular friction and 

bond scission in the material during fracture. The last decade has seen a breakthrough in 

elucidating the fracture mechanisms in soft polymer networks through the development of 

polymer mechanochemistry87,88. Mechanophores are force- or damage-activated probes 

that experience a change in color or fluorescence. They can be integrated into polymer 

networks either as an initiator or a crosslinker. As the material is loaded, depending on 

which mechanophores are being used, the force/stress distribution can be captured or the 

damage profile can be mapped. The high precision, sensitivity and quantum yield of 

mechanophores makes them the perfect tool for bridging the gap between the architecture 

and fracture properties of polymer networks. 

Mechanophores have historically been broadly used in molecular biology as 

probes89, but only recently found use in soft matter mechanics for detection of stress, strain 

or bond scission. With the wide variety of mechanophores available today, choosing the 

right one for the specific study can be tricky. Mechanophores can be categorized into 3 

main groups, depending on their optical detection technique: mechano-chromism, 

mechano-chemiluminescence, and mechano-fluorescence (see Scheme 14).  

Mechano-chromism entails a change in the absorption spectrum with force, with 

the color changes during the loading and unloading of the material, able to be directly 

observed. A well-characterized mechanophore in this category is spiropyran. Spiropyran is 

a non-scissile mechanophore that upon loading or irradiation with UV, forms a fluorescent 

red merocyanine molecule. In 2009, J. S. Moore and N. R. Sottosôs group synthesized 

mechanoresponsive polymeric materials with spiropyran by functionalizing poly(methyl 

acrylate) chains in bulk polymers and by using it as a crosslinker in poly(methyl 

methacrylate)90. Since then, spiropyran has been used in many studies to map the stress 
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distribution in polymer glasses91, and elastomers92,93 including multiple networks, and 

nanocomposites.  

Mechano-chemiluminescence involves the generation of a molecule that emits 

photons without the need for additional excitation sources upon loading. These 

mechanophores thus offer time-resolved and dynamic information on the scission of bonds 

occurring in the material during fracture. Bis(adamantyl) 1,2-dioxetane, synthesized and 

isolated by Kopecky and Mumford in 196995, constitutes the only auto-luminescent 

mechanophore known. While bis(adamantyl) 1,2-dioxetane has been in several 

investigations to detect bond scission, one worth mentioning here is that done by E. Ducrot 

et al in 2014, where this mechanophore was used to demonstrate for the first time 

sacrificial/filler bond scission in multiple networks85. It is important to note that 

bis(adamantyl) 1,2-dioxetane is a scissile mechanophore that can be used to map damage 

in real time, but cannot be used to map stress distributions. 

Mechano-fluorescence, on the other hand, refers to the release of a fluorescent 

molecule, a fluorophore, when the mechanophore is subject to a mechanical load. 

Fluorescence is a highly sensitive measurement and requires the molecule to have a high 

quantum yield and high photo-bleaching resistance, to detect bond scission in soft polymer 

networks. Merocyanine obtained when spiropyran is exposed to a mechanical load, is a 

fluorescent molecule but its low quantum yield does not make it suitable to be used for 

fluorescent measurements. A common mechano-fluorophore reported for detection of bond 

scission is Anthracene-maleimide Diels-Alder adduct. Upon loading, chain scission occurs 

through a cycloreversion/retro Diels-Alder reaction to release a fluorescent anthracene and 

a maleimide. This mechanophore has been used by A. Boydstonôs group to investigate 

chain scission rates in linear and three-arm polymers96 and by J. Mooreôs group to measure 

scission of bonds at the nanoparticle-polymer interface97. In 2016, R. Göstl and R. P. 
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Sijbesma modified this system and introduced a ˊ-extended anthracene mechanophore 

which upon the retro Diels-Alder reaction yields a 9ˊ-extended anthracene and 

maleimide98. This fluorophore is characterized by high quantum yield of 0.72, irreversible 

activation, high photostability, and quantifiability, making it ideal for mapping and 

quantifying damage. 

 

Scheme 14. Mechanophores in polymer networks. (A) Spiropyran is a non-scissile 

mechanophore that undergoes a color change upon loading and can be 

used to map stress distributions. (B) Bis(adamantyl) 1,2-dioxetane is a 

scissile mechanophore that when stretched, releases a moiety that 

generates a blue light. It can be used to visualize bond scission in real 

time. (C) p-extended anthracene is also a scissile mechanophore that 

yields 9ˊ-extended fluorescent anthracene with a high quantum yield, and 

photo-stability. This mechanophore is ideal for mapping and quantifying 

damage post-mortem. 

This mechanophore was successfully incorporated in the center of a linear 

poly(methyl acrylate) and in a crosslinked poly(hexyl methacrylate) to observe 
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fluorescence/damage in the systems during sonication and compression of the materials. 

However, it was not until 2020, that this mechanophore was finally used to quantify 

damage in soft polymer networks. In a noteworthy investigation, Slootman et al., labeled 

polymer networks with these damage-activated fluorogenic probes, and unveiled the effect 

of rate and temperature on chain scission and fracture99. By mapping and quantifying the 

damage-induced fluorescence in the vicinity of fracture surfaces, this work demonstrated 

that, contrary to longstanding considerations of fracture and adhesion in soft materials, 

chain scission can extend notably beyond the mesh size, ca. 100 µm, because of chain 

friction. As such, polymer mechanochemistry can now be employed in polymer networks 

with complex architectures and subject to a range of mechanical loads100ï102, to gain a better 

understanding of the molecular picture of fracture (see Fig. 2). 
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Figure 2. Mapping damage in polymer networks using mechanochemistry. The p-

extended anthracene maleimide mechanophore can be functionalized into 

crosslinker that can then be integrated into polymer networks. When the 

polymer networks are fractured, the mechanophore undergoes force-induced 

scission to yield fluorophores. These fluorophores can be detected under a 

confocal microscope, and the fluorescence can be converted to damage using 

a calibration molecule. 

It should be noted that during the last couple of years, other forms of 

mechanophores (not discussed here) that release stored lengths or that behave as sacrificial 

bonds103ï106, have been used to improve the fracture properties of polymer networks, rather 

than being used as a tool for mapping damage.  

Conclusions 

Polymer networks comprise an important part of our daily lives. Despite their 

ancient origins and the revolution of the rubber industry to enable these materials to have 
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diverse functionality and desirable mechanical properties (soft, elastic and tough), today, 

we still lack the fundamental understanding to synthetically control their architecture and 

mechanical properties.  

This lack of understanding stems from the heterogeneous architecture of polymer 

networks, arising from their synthesis. At the molecular scale, defects such as loops, 

entanglements, and dangling side chains can be formed, and at the mesoscopic scale, 

phases separated domains resulting from concentration fluctuations or polymer-solvent 

demixing at gelation, might occur4. Control over this gelation process to fine tune the 

architecture and mechanical properties of these polymer networks has since long precluded 

us.  

During the last decade, reversible-deactivation radical polymerizations or more 

generally, controlled/living polymerizations, have enabled the growth of linear chains with 

well-defined molecular weights and dispersities10. Less explored in copolymerizations, 

these controlled polymerizations characterized by higher percolation thresholds and 

postulated to yield more homogeneous architectures9, can today be used to leverage control 

over the gelation kinetics and the multi length-scale architecture of polymer networks.  

Such control over the architecture at different length-scales offers access to fine 

tune the trade-off in the mechanical properties of these polymer networks. We focus 

primarily on their large-strain/fracture properties which ultimately dictates the mechanical 

lifetime of these materials. As synthesized polymer networks lack dissipation mechanisms, 

and are brittle. They often fail at low strains and their large strain behavior remains 

unprobed3. The multiple networks of Jian Ping Gong83, resolved this paradigm, and 

provided a way to toughen these polymer networks and probe their large strain properties, 

i.e., limiting extensibilities. On the other hand, the development of polymer 

mechanochemistry brought a new milestone towards understanding the fracture of polymer 
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networks at a molecular scale99. Molecular damage in different architectures under 

different loads, can now be quantified allowing long-standing models on fracture to be 

validated or revisited. 

This Ph.D. aims to combine these advances in polymer chemistry, polymer physics 

and fracture mechanics to rationally design soft polymer networks. Chapter 1 and 2 focus 

on epoxide systems, while Chapter 3 and 4 discuss acrylate systems. Controlled 

polymerizations are employed to leverage control over gelation kinetics and tailor the 

architecture and mechanical properties of polymer networks. The link between the 

architecture and large-strain/fracture properties is then established by making use of 

reinforced multiple networks, and polymer mechanochemistry. As such, we hope to 

elucidate the relationship between synthesis, architecture and mechanics of polymer 

networks. 
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