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An early vision in Computer Science was to create intelligent systems ca-

pable of reasoning on large amounts of data. Independent results in the areas of

Description Logic and Relational Databases have advanced us towards this vision.

Description Logic research has advanced the understanding of the tradeoff between

the computational complexity of reasoning and the expressiveness of logic languages,

and now underpins the Semantic Web. The Semantic Web comprises a graph data

model (RDF), an ontology language for knowledge representation and reasoning

(OWL) and a graph query language (SPARQL). Database research has advanced
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the theory and practice of management of data, embodying features such as views

and recursion which are capable of representing reasoning. Despite the independent

advances, the interface between Relational Databases and Semantic Web is poorly

understood.

This dissertation revisits this vision with respect to current technology and

addresses the following question: How and to what extent can Relational Databases

be integrated with the Semantic Web? The thesis is that much of the existing Re-

lational Database infrastructure can be reused to support the Semantic Web. Two

problems are studied.

Can a Relational Database be automatically virtualized as a Semantic Web

data source? This paradigm comprises a single Relational Database. The first con-

tribution is an automatic direct mapping from a Relational Database schema and

data to RDF and OWL. The second contribution is a method capable of evalu-

ating SPARQL queries against the Relational Database, per the direct mapping,

by exploiting two existing relational query optimizations. These contributions are

embodied in a system called Ultrawrap. Empirical analysis consistently yield that

SPARQL query execution performance on Ultrawrap is comparable to that of SQL

queries written directly for the relational representation of the data. Such results

have not been previously achieved.

Can a Relational Database be mapped to existing Semantic Web ontologies

and act as a reasoner? This paradigm comprises an OWL ontology including inher-

itance and transitivity, a Relational Database and mappings between the two. A

third contribution is a method for Relational Databases to support inheritance and

transitivity by compiling the ontology as mappings, implementing the mappings as

SQL views, using SQL recursion and optimizing by materializing a subset of views.

This contribution is implemented in an extension of Ultrawrap. Empirical analysis

reveals that Relational Databases are able to effectively act as reasoners.
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Chapter 1

Introduction
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An early vision in Computer Science was to create intelligent systems capable

of reasoning on large amounts of data. Reasoning means to infer new knowledge from

what is already known. Large amounts of data is usually understood to mean data

sufficient to warrant the explicit use of a database management system[6]

The vision can be traced back to a landmark workshop on logic and databases

organized by Gallaire, Minker and Nicolas in 1977 [59]. The interest in logic and data

accelerated through the 1980’s. To support the computational workload, specialized

parallel computers were developed1. A large-scale japanese initiative, the Fifth

Generation Project [80], stimulated world-wide research2. Scientific publications

appeared in mainstream Database and AI venues (e.g. SIGMOD and AAAI), as

well as a number of specialized workshops and conferences; interest continued into

the 21st century3.

Despite the amount of research towards this vision, it is still largely un-

fulfilled. Nevertheless, independent results in the areas of Description Logic and

Relational Databases have advanced towards this vision.

Description Logic research has advanced the understanding of the tradeoff

between the computational complexity of reasoning and the expressiveness of logic

languages. Description Logic underpins the Semantic Web, an extension to the Web

that enables intelligent access to data on the Web. The technologies supporting

the Semantic Web consist of a set of standards. Data on the Semantic Web is

represented in a graph data model called RDF (Resource Description Framework).

Ontologies are a form of knowledge representation and reasoning which provide

semantic relationships, such as inheritance or transitivity, between concepts. The

standardized ontology languages are called RDFS (RDF Schema) and OWL (Web

1See for example The DADO Production System Machine [123] and The Connection Machine [77]
2e.g. MCC in Austin, Texas and Alvey in the UK.
3See the proceedings of workshops on Expert Systems (1984-1988) [82, 81, 83], Deductive

Databases (1990-1999) [43, 111, 110, 62, 50, 61, 58] and Knowledge Representation meets Databases
(1994-2003) [15, 16, 17, 20, 25, 26, 56, 27, 91, 24, 34]
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Ontology Language). Data can be accessed by a graph based query language called

SPARQL. Figure 1.1 presents the Semantic Web languages as an inheritance stack.

RDF$
(1998)$

RDF$Schema$(RDFS)$
(1999)$

OWL$
(2004/2008)$ S$

P$
A$
R$
Q$
L$

Figure 1.1: Semantic Web stack

Database research has advanced the theory and practice of storage and man-

agement of data. Modern Relational Database Management Systems (RDBMS) are

founded on the relational model, which is based on first order logic. RDBMS are

also comprised by a set of standards which have evolved over the past two decades.

Rela%onal(Model(
(1970s)(

Table(Defini%on(
(SQL(86<89)(

Constraints(and(Views(
(SQL(92)(S(

Q(
L(

Recursion(
(SQL(99)(

Figure 1.2: Relational Database stack

SQL 86-89 provided the capability to describe schemas. SQL 92 increased ex-

pressivity by adding constraints and views, which are mechanisms of adding domain

3



semantics. SQL 99 further increased the expressive power of RDBMS by supporting

recursion. Figure 1.2 presents the RDBMS standards as a stack.

This dissertation revisits the early Computer Science vision of combining

data and logic with the current technologies: Relational Databases and Semantic

Web. The overarching question this dissertation investigates is:

How, and to what extent, can Relational Databases be integrated

with the Semantic Web?

The thesis is that the independent development of Description Logic, and the evo-

lution of Relational Database Management Systems, each manifesting in standards,

contain substantive overlap. That overlap enables much of the existing Relational

Database infrastructure to be reused in support of the Semantic Web. The ulti-

mate deliverable of this dissertation is an intelligent system capable of reasoning,

through means of the Semantic Web, on large amounts of data stored in a Relational

Database.

This dissertation resolves two controversies. The first is concerned with the

applicability of Relational Database query execution methods for the Semantic Web.

The second is concerned with the capability of a Relational Database to act as a

reasoner.

Approximately 70% of websites have relational database back-ends [75]. The

sheer number of websites suggests the success of the Semantic Web is tied to main-

taining compatibility and consistency with legacy RDBMSs. Therefore, the goal is

to have Semantic Web applications coexist with the legacy applications by execut-

ing SPARQL queries over the RDBMS instead of creating consistency problems by

creating a replicated copy of the relational data as RDF. In 2008, it was shown that

SPARQL is equivalent, from an expressive point of view, to relational algebra [8].

4



This result suggests that SPARQL can be optimized by the native SQL optimizer.

However, in 2009, two studies evaluated three SPARQL to SQL systems and came

to the opposite conclusion: existing SPARQL to SQL systems do not compete with

traditional relational databases and require additional optimizations [23, 66].

The first goal was to resolve the apparent contradiction between theses re-

sults. Towards that end, the Ultrawrap system was built. In order to use as much

of the native SQL optimizer as possible, a key intuition was to represent a map-

ping, from the relational data to RDF, as SQL views. SPARQL queries are then

translated to SQL queries in terms of the views. The result of this approach is that

existing query optimizations can be applied directly by the native SQL optimizer.

When it comes to reasoning, the goal is to answer SPARQL queries over an

OWL ontology using mappings between the RDBMS and the OWL ontology. This

paradigm has recently taken the name of Ontology Based Data Access (OBDA).

Commonly, researchers have taken one of two approaches to develop OBDA sys-

tems: a materialization-based approach (forward chaining) or a query rewriting-

based approach (backward chaining). In the query rewriting approach, a common

assumption is that the RDBMS is only capable of relational algebra (i.e. SQL

92) [35]. Therefore, the research focuses on applying optimizations to queries out-

side of the RDBMS [105, 115, 85, 86, 92, 65, 45, 130, 54, 114]. Another effect of this

assumption is that recursion in SQL 99 is not exploited. Therefore, existing OBDA

systems do not support ontologies with transitivity.

The second goal was to identify how a Relational Database can act as a rea-

soner by exploiting advanced database capabilities. Towards that end, Ultrawrap

was extended to support OBDA. The extension, UltrawrapOBDA, is designed to

be a bidirectional evaluation engine; that is, a hybridization of query rewriting and

materialization. In order to exploit the native SQL optimizer as a reasoner, a key in-

tuition was that mappings can be unified with the ontology to create new mappings,
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denoted as saturated mappings, and then represent them as SQL views. SPARQL

queries are also translated into SQL queries in terms of those views. Inspired by

database research on OLAP and view materialization for query optimization, a cost

model was defined to determine which views to materialize in order to optimize

query performance. The result of this approach is that the Relational Database is

able to act as a reasoner for ontologies that include inheritance and transitivity.

This dissertation is organized as follows. The remainder of this chapter

presents background, the methodology used in this research, and details of the

challenges and contributions of this dissertation. Chapter 2 provides the definition

and notation used throughout the dissertation. Chapter 3 defines a default and

automatic mapping of Relational Databases to RDF and OWL, coined the direct

mapping. Chapter 4 presents the Ultrawrap system capable of executing SPARQL

queries over the Relational Database by taking advantage of the existing SQL op-

timizer. The ultimate goal of Ontology Based Data Access is presented in a single

chapter, Chapter 5. We conclude and detail future work in Chapter 6.

1.1 Background

1.1.1 Relational Databases

A database is a collection of data which can be managed by a database management

system (DBMS). A DBMS is a set of programs that enables data storage, modifi-

cations, and access from a database. In the 1970s, Codd proposed the relational

model, which became the foundations of Relational Databases [46]. Based on First

Order Logic, the relational model represents data in terms of tuples (rows), grouped

into relations (tables). A relational database management system (RDBMS) is a

DBMS that is based on the relational model. Research in databases have advanced

the theory and practice of storage, querying, and managing data. Today, RDBMSs
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continue to be the predominant choice for the storage and management of data.

SQL is a standardized language used to manage a Relational Database. Over

the last two decades, Relational Databases have been evolving through an ongoing

sequence of expanding standards [120].

SQL consists of a data definition language (DDL), a data manipulation lan-

guage (DML) and a data query language (DQL). SQL-DDL is used to define and

modify the schema of a database. SQL-DML is used to modify the records of the

database. SQL-DQL is the query language, based on relational algebra, used to

access data stored in the database.

SQL-DDL has had the following evolution. The initial SQL standard, SQL86-

89 was limited to defining tables, attributes, datatypes and replaced abbreviated for-

mal relational notations with full English words (e.g. CREATE TABLE). SQL 92 added

data integrity constraints such as CHECK, PRIMARY KEY, FOREIGN KEY and UNIQUE.

This was the first approach to increase expressivity and offer domain semantics by

connecting relations and permitting a developer to know beforehand what values

are allowed. The addition of views to SQL (i.e. CREATE VIEW) enabled the creation

of derived relations defined by a query in terms of existing relations and/or other

views.

Throughout the past decades, features encompassing Artificial Intelligence

concepts have been incorporated into Relational Databases [125, 124]. An example

is SQL Views. Views add deductive (reasoning) capabilities to a relational database,

as evidenced by Datalog4. A view can be seen as an intensional predicate in the

head of a Datalog rule, while the base tables in the Relational Databases are the

extensional predicates in the body of a Datalog rule. Subsequently, recursion in

Datalog inspired the addition of recursion to the SQL standard in 1999.

Views have also been studied in the context of a variety of data manage-

4The reader is referred to [6] for details on Datalog
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ment problems such as query optimization, data integration, and data warehousing

[70, 72, 98, 95, 42]. A common technique to improve query performance is to mate-

rialize a view. A materialized view is when the query result of a view is computed

and persistently stored. Accessing a materialized view can be much faster than re-

computing the defining query. Techniques have been developed to determine when

views should be materialized and how an optimizer may rewrite a query to use

materialized views [71]. These techniques have been implemented in commercial

Relational Databases [22, 134, 64].

Relational Databases have also benefited from semantic knowledge for query

optimization, known as Semantic Query Optimizations (SQO). The purpose is to

use the semantics encoded in integrity constraints to transform a query into a se-

mantically equivalent query with a lower execution cost. For instance, joins can

be eliminated if the results are known a priori. For example, in the query SELECT

A.X, B.Z FROM A, B WHERE A.Y=B.Z, where A.Y is a foreign key referencing B.Z,

the join to the table B can be dropped because the value of B.Z is already known to

be A.Y. Therefore, the semantically equivalent query, with a lower execution cost is

SELECT X, Y FROM A. Query predicates inconsistent with integrity constraints can

be eliminated a priori because the query will not have an answer. For example, even

though the query SELECT * FROM A WHERE ID = 1 AND ID = 2 is valid, the result

will always be empty because an attribute can only have one value. These tech-

niques were initially designed for deductive databases and have also been integrated

in commercial relational databases [41].

1.1.2 Description Logic and the Semantic Web

Description Logics (DL) are a family of languages for knowledge representation and

reasoning that are used to represent ontologies [18]. An ontology is an explicit

specification of a conceptualization of a domain of interest [69]. DLs are a decidable
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fragment of First Order Logic (FOL).

Ontologies, represented in DL, have two functionalities. First, as a descrip-

tive language to express expert knowledge in an unambiguous and formal way. This

is accomplished by representing knowledge as a set of concepts within a domain

and the relationships between those concepts. A second functionality is as a logical

language to infer implicit knowledge from the knowledge explicitly represented in

the ontology. This aspect of inferring additional knowledge distinguishes ontologies

from modeling languages such as UML.

Description Logics were introduced to solve the lack of formal logic-based

semantics of two existing knowledge representation approaches from the late 1960s

and early 1970s: semantic networks [109] and frames [97]. Hayes recognized that

these approaches could be given semantics relying on FOL [74]. Brachman and

Levesque later on realized that frames and semantic networks did not require all of

FOL [28], and different features of a knowledge representation language would lead to

different fragments of FOL. An important consequence of this fact is that reasoning

could be accomplished by specialized techniques without requiring FOL theorem

provers. Further, different fragments of FOL lead to computational problems of

different complexity.

The first DL system was KL-ONE [30]. Studying the tradeoff between the

expressiveness and computational complexity of reasoning of a DL language lead

to three approaches: 1) limited expressiveness of the language but with complete

reasoning algorithms; CLASSIC being the primary example [29] 2) expressive lan-

guages but reasoning with incomplete algorithms; LOOM being the primary ex-

ample [93] and finally 3) expressive language with complete complete reasoning

algorithm; KRIS being the primary example [19]. In this early work, the reasoning

algorithms were not efficient. Recently, the focus has been to develop complete and

efficient reasoning algorithms for expressive DL languages [78].
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Description Logics have also influenced the World Wide Web. The growth of

the World Wide Web attracted researchers to envision its next generation. The goal

is to build systems allowing software agents to “semantically” query the web as if

it were a database, rather than relying on human interpretation of the information

on the web. In order to accomplish this goal, software agents must understand how

to interact with information on the web. Thus the meaning of information must be

captured. It was widely agreed that ontologies, grounded in Description Logics, play

a key role in providing meaning to the information on the web [18]. This extension

to the web is known as the Semantic Web.

The technologies comprising the Semantic Web consists of a set of languages

to represent data based on a graph data model (RDF) and represent knowledge

as ontologies based on Description Logic (RDFS and OWL). Additionally, there

is also a query language for graphs based on pattern matching (SPARQL). This

set of languages forms an inheritance stack. RDFS inherits from RDF, and OWL

inherits from RDFS, as illustrated in Figure 1.1. RDFS and OWL ontologies can

be represented as RDF graphs.

1.2 Methodology

To understand the relationship between Relational Databases and Semantic Web,

we adopt a methodology where each technology is decomposed into corresponding

layers [128]. This enables us to identify and exploit similarities. Understanding the

historical context, it is easy to decompose Relational Databases into a stack repre-

senting increasing expressive power (see Figure 1.2) and perhaps not by coincidence,

one that corresponds to the Semantic Web stack (see Figure 1.1). Figure 1.3 shows

the resulting relationship between Relational Databases and the Semantic Web. The

following observations are made:

• The foundational layer of Relational Databases and Semantic Web is the data
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Figure 1.3: Two Layer Cake mapping between Semantic Web and Relational
Databases

model (Relational Model and RDF).

• The next layer provides a language to describe schemas (Table Definitions and

RDFS).

• The top layers increases the expressivity of the language (Constraints, Views,

Recursion and OWL).

• Both technologies have a query language (SQL and SPARQL).

• Each layer has evolved over time.

The direct correspondence observed between the two layer cakes in Figure 1.3

suggests that a framework can be defined to support an automatic way of virtualizing

a Relational Database as a Semantic Web data source. A Semantic Web data

source consists of RDF data and an OWL ontology with the capability of evaluating

SPARQL queries. By virtualization we mean that the data continues to reside in

a Relational Database instead of physically creating the new Semantic Web data

source.
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Subsequently, it is hypothesized that such framework can also support rea-

soning over a Relational Database by mapping to OWL ontologies created inde-

pendent of the database. The research question of this dissertation is tackled by

addressing the following two problems.

1.3 Problem 1: Relational Database as a Semantic Web

data source

In this problem, the goal is to automatically virtualize the Relational Database as

a Semantic Web data source. The input is a single Relational Database. Therefore,

the research question is the following:

Given a Relational Database, how can the Relational Database be

automatically virtualized as a Semantic Web data source?

Figure 1.4 depicts the framework to support the automatic virtualization of

a Relational Database as a Semantic Web data source. Given a single Relational

Database, an automatic mapping is defined which maps the relational data to RDF

and the relational schema to OWL. The automatic mapping is called a direct map-

ping. Given that the OWL ontology is derived from the relational schema, it is

dependent of the relational schema. SPARQL queries evaluated over the Semantic

Web representation of the Relational Database are translated to SQL queries and

subsequently evaluated over the Relational Databases.

Two challenges are identified. First, define a direct mapping and study

the mapping with respect to correctness properties. Second, define a method for

SPARQL queries to be efficiently evaluated by the Relational Database.
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Figure 1.4: Framework 1

1.3.1 Challenge 1: Automatic Mapping of Relational Databases to

Semantic Web

The challenge is to identify a mapping that can serve as an automatic and default

way of translating a relational database schema to an OWL ontology and relational

databases instances to RDF.

In order to understand the state of the art of automatically mapping Rela-

tional Databases to the Semantic Web, we surveyed seven different approaches [119].

Two shortcomings were identified:

1. The focus of existing approaches are direct mappings of a relational schema

to an OWL ontology.

2. Existing direct mappings of relational schemas to OWL are expository in na-

ture, in other words, based on examples without formal semantics.

Our early work was to first to define a direct mapping of a relational schema
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to an OWL ontology with formal semantics defined using Datalog [129]. However,

the challenge of defining a direct mapping from a relational instance to RDF has

not been fulfilled. Additionally, such mappings should be studied from a theoretical

perspective in order to understand properties that can serve as correctness criteria.

1.3.2 Contribution 1: Direct Mapping

The first contribution of this dissertation addresses Challenge 1. A direct mapping

is presented, which in addition to generating an OWL ontology from the relational

schema, it also generates RDF from the relational instance. The semantics of the

direct mapping is defined using non-recursive Datalog. This direct mapping is the

first automatic mapping of Relational Databases to RDF and OWL to be formally

defined.

Four properties are presented in order to define a correctness criteria for

the direct mapping. Two properties are fundamental: information preservation and

query preservation. Information preservation speaks to the ability of reconstructing

the original Relational Database from the result of the direct mapping. In other

words, the mapping does not lose information. Query preservation means that

every query over a Relational Database can be translated into an equivalent query

over the result of the direct mapping. In other words, the mappings does not lose

queries.

Two properties are desirable: monotonicity and semantics preservation. Mono-

tonicity is a desired property because it assures that re-computation of the entire

mapping is not needed after inserts to the database. Finally, a direct mapping is

semantics preserving if the satisfaction of a set of integrity constraints are encoded

in the mapping result.

A direct mapping is proposed and studied with respect to these four proper-

ties. The proposed direct mapping is monotone, information preserving and query
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preserving even in the general and practical scenario where relational databases con-

tain null values. Additionally, it is semantics preserving for consistent databases,

meaning databases where integrity constraints are satisfied. However, it is not se-

mantics preserving for inconsistent databases, meaning databases where integrity

constraints are not satisfied. This is due to the closed world assumption of Relational

Databases and the open world assumption of the Semantic Web (see Section 3.6.2).

The direct mapping presented in this dissertation served as the foundation

of a W3C standard: A Direct Mapping of Relational Data to RDF [13].

1.3.3 Challenge 2: Execute SPARQL on Relational Data

The challenge is to define a method to execute SPARQL queries against a Relational

Database, per the direct mapping. The goal is that such method should make use

of optimizations already incorporated in Relational Databases.

To clarify the focus of this challenge, consider the taxonomy in Figure 1.5.

In RDF data management there are efforts that concern Triplestores and those

that concern legacy Relational Databases. Triplestores are DBMS for RDF data,

and support SPARQL execution against the stored contents. Native triplestores are

those that are implemented from scratch [32, 102, 132]. RDBMS-backed Triplestores

are built by adding an application layer to an existing RDBMS. Within that liter-

ature is a discourse concerning the best database schema, SPARQL to SQL query

translations, indexing methods and even storage managers, (i.e. column stores vs.

row stores) [4, 44, 55, 57, 133]. NoSQL Triplestores are also being investigated as

possible RDF storage managers [57, 79, 88, 47]. In all three cases, RDF is the

primary data model.

The other spectrum consists of systems that integrate legacy Relational

Databaes with the Semantic Web, a.k.a Relational Database to RDF (RDB2RDF)

Within that, there are systems concerning ETL (Extract-Transform-Load) and
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Figure 1.5: Taxonomy of RDF Data Management

Wrappers. An ETL system extracts data from the Relational Database, physically

translates to RDF so it can then be loaded into a Triplestore.

Wrapper systems present a virtual RDF representation of the relational data

physically stored in an RDBMS. Thus, no copy of the relational data is made to

RDF, as opposed to ETL systems. It follows that SPARQL queries need to be trans-

lated to SQL queries through the use of mappings. The research in this dissertation

is concerned with Wrapper systems.

Since both RDBMS-backed Triplestores and Wrapper systems involve Re-

lational Databases and translation from SPARQL to SQL, there is a potential for

confusion. The difference is that RDBMS-backed Triplestores translate SPARQL

queries to SQL queries that are executed on database schemas that model and

store RDF data. For example, many RDBMS-backed Triplestores use the triple

table schema: a table with three attributes, containing one row for each triple [44].

Wrapper systems on the other hand translate SPARQL queries to SQL queries that

are executed on legacy database schemas that model and store relational data (not

RDF data) and where mappings play a key role.

16



In 2008, Angles and Gutierrez proved that SPARQL is equivalent in expres-

sive power to relational algebra [9]. Thus, one might expect that Wrapper systems

would benefit from the native SQL optimizer to evaluate SPARQL queries.

In 2009, two overlapping, refereed studies compares three Wrapper systems

(D2R [1] , SquirrelRDF [117], Virtuoso RDF Views [2]) with native SQL execution

on the Relational Database [23, 66]. Bizer and Schultz compared D2R and Virtuoso

RDF Views on MySQL [23]. Gray et al compared D2R and SquirrelRDF on MySQL

[66]. The result of these experiments concluded that existing Wrapper systems

do not exploit the native SQL optimizer and that rewriting algorithms should be

improved [23, 66].

The March 2009 Berlin SPARQL Benchmark reported that SPARQL queries

on the evaluated Wrapper systems and on the 100 million triple dataset were up

to 1000 times slower that the native SQL queries. Today, those systems are still

the most used in the Semantic Web community and no new system has been in-

troduced and evaluated since then. Bizer and Schultz [23], creators of the Berlin

SPARQL Benchmark, concluded that: “Setting the results of the RDF stores and

the SPARQL-to-SQL rewriters in relation to the performance of classical RDBMS

unveiled an unedifying picture. Comparing the overall performance (100M triple,

single client, all queries) of the fastest rewriter with the fastest relational database

shows an overhead for query rewriting of 106%. This is an indicator that there is

still room for improving the rewriting algorithms.”

Gray et al [66] tested D2R and SquirrelRDF on a scientific database. This

study concluded that “... current rdb2rdf systems are not capable of providing the

query execution performance required to implement a scientific data integration sys-

tem based on the rdf model. [...] it is likely that with more work on query translation,

suitable mechanisms for translating queries could be developed. These mechanisms

should focus on exploiting the underlying database systems capabilities to optimize
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queries and process large quantities of structured data, e.g. pushing the selection

conditions to the underlying database system.”

A motivation for this research is to resolve the apparent contradiction among

the aforementioned papers.

1.3.4 Contribution 2: Ultrawrap

The second contribution of this dissertation is a method capable of evaluating

SPARQL queries against the Relational Database, per the direct mapping, which

pushes the optimization of queries into the existing SQL infrastructure. It is ob-

served that two existing relational semantic query optimizations effect important

query plan transformations for SPARQL queries. These are: detection of unsatisfi-

able conditions and self-join elimination.

The contribution is embodied in a system, Ultrawrap, which is organized as a

set of four compilers that 1) extracts an OWL ontology from the relational schema,

per the direct mapping, 2) encodes a logical representation of the direct mapping

using SQL views, 3) syntactically translates SPARQL queries to SQL queries in

terms of the views and 4) delegates optimizations to the SQL engine. Empirical

analysis consistently yields that the performance of SPARQL query execution on

Ultrawrap is comparable to the performance of SQL queries written directly for the

relational representation of the data. Such results have not been achieved elsewhere.

1.4 Problem 2: Relational Database as a Reasoner

The framework in the first problem enables the automatic virtualization of a Rela-

tional Database as a Semantic Web data source. It has two distinguishing charac-

teristics: 1) a direct mapping and 2) an OWL ontology derived from the relational

schema, which lacks expressive features such as inheritance or transitivity.

Consider now the second problem. Given an OWL ontology with expressive
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features such as inheritance or transitivity, created independent of a Relational

Database; Can a Relational Database act as a reasoner in order to infer new facts

from given facts? In this problem, the input consists of: 1) a Relational Database,

2) an OWL ontology independent of the Relational Database and 3) mappings from

the Relational Database to the OWL ontology. SPARQL queries expressed in terms

of the OWL ontology are to be answered by the Relational Database through use

of the mappings. Therefore, the second question is:

Given a Relational Database, an OWL ontology with inheritance

and transitivity, and a mapping between the two, how can a

Relational Database act as a reasoner?

It is observed that the previous framework can support this new setting.

First, the ontology derived from the relational schema can be replaced by an on-

tology created independent of the Relational Database. This ontology can contain

expressive features such as inheritance and transitivity. Second, the direct mapping

can be substituted for user defined mappings. Figure 1.6 depicts this new framework.

Note that SPARQL evaluation over the relational database is not altered.

Similar to the previous problem, two aspects need to be considered: 1) the

mapping and 2) the Relational Database optimizer as a way to efficiently evaluate

SPARQL queries. The challenge is to identify a method such that mappings can

incorporate features such as inheritance and transitivity from the ontology, and the

existing Relational Database infrastructure can be reused as a reasoner in order to

efficiently evaluate SPARQL queries in terms of the ontology.
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1.4.1 Challenge 3: Reasoning on a RDBMS

Combining a Relational Database, an OWL ontology, and mappings, in order to

answer SPARQL queries over these three components, has recently taken the name

of Ontology-Based Data Access (OBDA). Typically, researchers have taken one of

two approaches to develop OBDA systems: a rewriting-based approach (backward

chaining) or a materialization-based approach (forward chaining).

The rewriting-based approach has been the main focus of the research com-

munity in the past years. Three steps are executed, as shown in Figure 1.7. Given

a SPARQL query and an OWL ontology, a new SPARQL query is generated which

contains knowledge from the ontology. The new SPARQL query is considered the

rewritten query. The majority of the OBDA literature focuses on this step [103].

Depending on the ontology, the size of the rewritten SPARQL query is worst case

exponential w.r.t the size of the query and the ontology [36]. Therefore, even though

each query can be evaluated efficiently on the database, an exponential number of
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queries may need to be evaluated. Recent research has been devoted to understand

the reasons for such large rewritings, focusing on generating a smaller rewritten

query [105, 115, 85, 86, 92, 65, 45, 130, 54]. In the second step, the mapping is

used to compile the rewritten SPARQL query into a SQL query which can then be

evaluated over the database. Little research has been done on this step [106, 107].

Finally, the SQL query is evaluated on the relational database, which gives an the

answer to the initial SPARQL query. To the best of our knowledge, in addition to

UltrawrapOBDA, there is only one other system that completes the entire workflow

[114].

The advantage of the rewriting approach is that reasoning is done over the

original Relational Database. Therefore, query results reflect the latest up-to-date

data. As previously described, the drawback is the overhead entailed by the rewrit-

ing of a SPARQL query.
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SPARQL''
Query'
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SPARQL'Query!

SQL'Query'

Mapping'
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Figure 1.7: Query Rewriting

In the materialization-based approach, the inputs are the Relational Database,
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an OWL ontology and a mapping. These are used to derive new facts as RDF that

are then stored in a Triplestore, as shown in Figure 1.8. The RDF data in the Triple-

store is considered to be the materialization of the data in the Relational Database

given the mapping and the ontology. The answer to a SPARQL query over the tar-

get ontology is computed by directly posing the SPARQL query over the Triplestore

[12].

With this approach, there is no overhead when a SPARQL query is evaluated

over the Triplestore when compared to the rewriting approach. However, a drawback

is that a copy of the original relational data needs to be maintained. If any updates

occur on the original relational data, these need to be propagated to the RDF

version. Additionally, depending on the ontology, the size of the materialized RDF

data can be infinite.
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Mapping$ Materializa)on!

SPARQL$$
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Database$
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Figure 1.8: Materialization

1.4.2 Contribution 3

The third contribution is a bidirectional evaluation approach; that is, a hybridiza-

tion of query rewriting (backward chaining) and materialization (forward chaining)

for Ontology Based Data Access. The method enables Relational Databases to act

as a reasoner supporting inheritance and transitivity by 1) unifying mappings with
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the ontology to create new mappings, denoted as saturated mappings, 2) repre-

senting the saturated mappings as SQL views, 3) translating SPARQL queries in

terms of those views and 4) a cost model to determine which views to materialize

in order to optimize query performance. The result is that the underlying SQL

optimizer is able to reduce the execution time of a SPARQL query by rewriting the

query in terms of materialized views. This contribution is implemented in a system,

UltrawrapOBDA. Empirical analysis reveals that by exploiting the capabilities be-

yond relational algebra, such as query rewriting using materialized views and SQL

recursion, Relational Database are able to effectively act as reasoners for ontologies

that include inheritance and transitivity.
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Preliminaries
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This chapter presents the notation and definitions used. This section also

defines the three standards comprising Semantic Web: RDF, the graph data model;

OWL, the ontology language; and SPARQL, the query language for RDF. Subse-

quently, the expressivity of the OWL dialect used in this research is presented.

2.1 Relational Databases

A database is a collection of data. A Relational Database is a database founded on

the relational model. The relational model represents data in terms of tuples (rows),

grouped into relations (tables). Relational Algebra is used as a query language for

Relational Databases.

Because nulls appear in practice in RDBMS, it is important to present a

formal definition of Relational Databases and Relational Algebra with respect to

null values. Assume, a countably infinite domain D of constants and a reserved

symbol NULL that is not in D. A database schema R is a finite set of relation

names, where for each R ∈ R, att(R) denotes the nonempty finite set of attribute

names associated with R. The arity of R, denoted as arity(R), is the number of

elements of the set att(R). An instance I of R assigns to each relation symbol

R ∈ R, a finite set of tuples RI = {t1, . . . , t`}. Each tuple tj (1 ≤ j ≤ `) is a

function that assigns to each attribute in att(R) a value from (D∪{NULL}), denoted

as t : att(R) → (D ∪ {NULL}). The value of an attribute A in a tuple tj is denoted

by tj .A. Moreover, R(tj) is a fact in I if tj ∈ RI . The notation R(tj) ∈ I is used in

this case. We also view instances as sets of facts.

Example 1 The following university database schema is used as a running example

throughout the dissertation. See Figure 2.1. The schema of this database consists

of tables: STUDENT(SID, NAME), PROF(PID, NAME, TYPE), COURSE (CID, TITLE,

CODE), DEPT(DID, NAME), ENROLLED(SID, CID) and EMP(EID, NAME, TYPE, MAN).
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Moreover, consider the following constraints about the schema of the university:

• SID is the primary key of STUDENT.

• PID is the primary key of PROF.

• CID is the primary key of COURSE.

• DID is the primary key of DEPT.

• (SID,CID) is the primary key of ENROLLED.

• (EID) is the primary key of EMP.

• CODE is a foreign key in COURSE that references attribute DID in DEPT.

• SID is a foreign key in ENROLLED that references attribute SID in STUDENT.

• CID is a foreign key in ENROLLED that references attribute CID in COURSE.

• MAN is a foreign key in EMP that references attribute EID in EMP.

Figure 2.1: Example Relational Schema
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2.1.1 Relational Algebra

Relational Algebra consists of operators which take one or two relations as operands

and produce one relation as a result. The basic operators of relational algebra

are: selection, projection, rename, join, union and difference. Relational Algebra

operators can be composed into relational algebraic expressions. These relational

algebraic expressions are then used to formulate queries over a Relational Database.

Recall that Relational Databases containing null values are considered. There-

fore, the following details the syntax and semantics of Relational Algebra where

null values play a role. For additional details of Relational Algebra that are not

included in this section, the reader is referred to Abiteboul et al.’s Foundations of

Databases [6] or Garcia Molina et al.’s Database Systems: The Complete Book [60]

Syntax of Relational Alegbra

Assume that R is a relational schema. The basic operands of relational algebra are a

relation and the null value. The basic operations of relational algebra are: selection,

projection, rename, join, union and difference. These operations can be composed

into relational algebra expressions in order to formulate queries. A relational algebra

expression ϕ over R and its set of attributes att(ϕ) for the basic operands and

operations are recursively defined as follows:

1. Relation: If ϕ = R with R ∈ R, then ϕ is a relational algebra expression

over R such that att(ϕ) = att(R).

2. Null: If ϕ = NULLA, where A is an attribute, then ϕ is a relational algebra

expression over R such that att(ϕ) = {A}. Note that NULLA is simply a symbol

to represent a null value. The semantics of this symbol is defined in the next

section.
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3. Selection: If ψ is a relational algebra expression over R, A ∈ att(ψ), a ∈ D

and ϕ is any of the following expressions:

(a) σA=a(ψ)

(b) σA 6=a(ψ)

(c) σIsNull(A)(ψ)

(d) σIsNotNull(A)(ψ)

then ϕ is a relational algebra expression over R such that att(ϕ) = att(ψ).

4. Projection: If ψ is a relational algebra expression over R, U ⊆ att(ψ) and

ϕ = πU (ψ), then ϕ is a relational algebra expression over R such that att(ϕ) =

U .

5. Rename: If ψ is a relational algebra expression over R, A ∈ att(ψ) and B is

an attribute such that B 6∈ att(ψ) and ϕ = δA→B(ψ), then ϕ is a relational

algebra expression over R such that att(ϕ) = (att(ψ) r {A}) ∪ {B}.

6. Join: If ψ1, ψ2 are relational algebra expressions over R and ϕ = (ψ1 ./ ψ2),

then ϕ is a relational algebra expression over R such that att(ϕ) = (att(ψ1)∪

att(ψ2)). The type of join consider is the natural join.

7. Union: If ψ1, ψ2 are relational algebra expressions over R such that att(ψ1) =

att(ψ2) and ϕ = (ψ1 ∪ ψ2), then ϕ is a relational algebra expression over R

such that att(ϕ) = att(ψ1).

8. Difference: If ψ1, ψ2 are relational algebra expressions over R such that

att(ψ1) = att(ψ2) and ϕ = (ψ1 rψ2), then ϕ is a relational algebra expression

over R such that att(ϕ) = att(ψ1).
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It is important to notice that operators such as σA=B(ψ), selection expressions

including boolean combinations in their conditions, equi-join, left-outer join, right-

outer join and full-outer join can all be expressed using the previous operators.

Additional types of conditional expressions such as σA>v(ψ) and theta-join are de-

fined in [6, 60]. For more details, the reader is referred to the Appendix and [6, 60].

Semantics of Relational Algebra

The following defines the semantics of relational algebra taking into consideration

null values. Let R be a relational schema, I an instance of R and ϕ a relational

algebra expression over R. The evaluation of a relational expression ϕ over I,

denoted by JϕKI , is defined recursively as follows:

1. If ϕ = R with R ∈ R, then JϕKI = RI .

2. If ϕ = NULLA, where A is an attribute, then JϕKI = {t}, where t : {A} →

(D ∪ {NULL}) is a tuple such that t.A = NULL.

3. Selection: The selection operator selects tuples from a relation satisfying a

condition. Let ψ be a relational algebra expression over R, A ∈ att(ψ) and

a ∈ D. Let F be a condition of the form: A = a, A 6= a, IsNull(A) or

IsNotNull(A). Then, the result of a selection operation σF (ψ) is the set of

tuples of ψ for which the formula F is true. Formally,

(a) If ϕ = σA=a(ψ), then JϕKI = {t ∈ JψKI | t.A = a}.

(b) If ϕ = σA 6=a(ψ), then JϕKI = {t ∈ JψKI | t.A 6= NULL and t.A 6= a}.

(c) If ϕ = σIsNull(A)(ψ), then JϕKI = {t ∈ JψKI | t.A = NULL}.

(d) If ϕ = σIsNotNull(A)(ψ), then JϕKI = {t ∈ JψKI | t.A 6= NULL}.

4. Projection: The projection operator chooses a subset of the attributes of a

relation. Let ψ be a relational algebra expression over R and U ⊆ att(ψ). The
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result of a projection operation πU (ψ), is the set of tuples of ψ which include

values of attributes in U .

Formally, if ϕ = πU (ψ), then JϕKI = {t : U → (D ∪ {NULL}) | there exists

t′ ∈ JψKI such that for every A ∈ U : t.A = t′.A}.

5. Rename: The rename operator enables changing the name of an attribute.

Let ψ be a relational algebra expression over R, A ∈ att(ψ) and B an attribute

such that B 6∈ att(ψ). Then, the result of a rename operation δA→B(ψ) is the

set of tuples of ψ where the attribute A is now B.

Formally, if ϕ = δA→B(ψ), then JϕKI = {t : att(ϕ) → (D ∪ {NULL}) | there

exists t′ ∈ JψKI such that t.B = t′.A and for every C ∈ (att(ϕ) r {B}):

t.C = t′.C}.

6. Join: Join combines two relations into one on the basis of a condition. Let

ψ1 and ψ2 be relational algebra expressions over R. Then the result of a join

operator (ψ1 ./ ψ2) is the set of all possible pairs of tuples from ψ1 and ψ2

where the equality of all common attributes hold. This type of join is known

as natural join.

Formally, if ϕ = (ψ1 ./ ψ2), then JϕKI = {t : att(ϕ) → (D ∪ {NULL}) | there

exist t1 ∈ Jψ1KI and t2 ∈ Jψ2KI such that for every A ∈ (att(ψ1) ∩ att(ψ2)):

t.A = t1.A = t2.A 6= NULL, for every A ∈ (att(ψ1) r att(ψ2)): t.A = t1.A, and

for every A ∈ (att(ψ2) r att(ψ1)): t.A = t2.A}.

7. Union: Union is the relation containing all tuples from both relations. Let ψ1

and ψ2 be relational algebra expressions over R such that att(ψ1) = att(ψ2).

Then the result of a union operator (ψ1 ∪ψ2) is the set of tuples belonging to

the union (in the set-theoretic sense) of ψ1 and ψ2.

Formally, if ϕ = (ψ1 ∪ ψ2), then JϕKI = Jψ1KI ∪ Jψ2KI .
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8. Difference: Difference is the relation containing all tuples of the first relation

that do not appear in the second relation. Let ψ1 and ψ2 be relational algebra

expressions over R such that att(ψ1) = att(ψ2). Then the result of a difference

operator (ψ1 r ψ2) is the set of tuples belonging to the difference (in the set-

theoretic sense) of ψ1 and ψ2.

Formally, if ϕ = (ψ1 r ψ2), then JϕKI = Jψ1KI r Jψ2KI .

The semantics of the additional types of conditional expressions for selection are

presented in [6, 60]. The semantics of theta-join, equi-join, left-outer join, right-

outer join and full-outer join are are defined analogous to the natural join. For

details, see [6, 60]

2.1.2 Integrity Constraints

Integrity constraints are properties that are supposed to be satisfied by all instances

of a relational schema. Two types of integrity constraints are considered: keys and

foreign keys. Let R be a relational schema.

Key: A key is a set of attributes define whose values guarantee only one tuple exists

for each value and such value can not be null. A key ϕ over R is an expression of

the form R[A1, . . . , Am], where R ∈ R and ∅ ( {A1, . . . , Am} ⊆ att(R). Given an

instance I of R, I satisfies key ϕ, denoted by I |= ϕ, if:

1. for every t ∈ RI and k ∈ {1, . . . ,m}, it holds that t.Ak 6= NULL, and

2. for every t1, t2 ∈ RI , if t1.Ak = t2.Ak for every k ∈ {1, . . . ,m}, then t1 = t2.

Foreign Key: A foreign key is a set of attributes in one relation that uniquely

identifies a tuple in another relation. A foreign key over R is an expression of

the form R[A1, . . . , Am] ⊆FK S[B1, . . . , Bm], where R,S ∈ R, ∅ ( {A1, . . . , Am} ⊆

att(R) and ∅ ( {B1, . . . , Bm} ⊆ att(S). Given an instance I of R, I satisfies foreign

key ϕ, denoted by I |= ϕ, if I |= S[B1, . . . , Bm] and for every tuple t in RI : either
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1. there exists k ∈ {1, . . . ,m} such that t.Ak = NULL, or

2. there exists a tuple s in SI such that t.Ak = s.Bk for every k ∈ {1, . . . ,m}.

Finally, given a relational schema R, a set Σ of keys and foreign keys is said

to be a set of primary keys (PKs) and foreign keys (FKs) integrity constraints over

R if:

1. for every ϕ ∈ Σ, it holds that ϕ is either a key or a foreign key over R, and

2. there are no two distinct keys in Σ of the formR[A1, . . . , Am] andR[B1, . . . , Bn]

(that is, that mention the same relation name R). In other words, a relation

can only have one key.

Moreover, an instance I of R satisfies Σ, denoted by I |= Σ, if for every ϕ ∈ Σ, it

holds that I |= ϕ.

2.2 Semantic Web

The Semantic Web is an extension to the Web that enables intelligent access to

data on the Web. The technologies supporting the Semantic Web consist of a set

of standards: RDF as the graph data model, OWL as the ontology language, and

SPARQL as the query language

2.2.1 RDF

RDF stands for Resource Description Framework, which is a framework for repre-

senting information about resources in the Web. By resource, we mean anything

in the world including physical things, documents, abstract concepts, etc1. RDF

considers three types of values: resource identifiers (IRIs) to denote resources, lit-

erals to denote values such as strings, and blank nodes to denote the existence of

1The term “entity” can be considered synonymous to resource.
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unnamed resources which are existentially quantified variables that can be used to

make statements about unknown (but existent) resources.

Assume there are pairwise disjoint infinite sets I (IRIs), B (blank nodes) and

L (literals). A tuple (s, p, o) ∈ (I∪B)×I×(I∪B∪L) is called an RDF triple, where

s is the subject, p is the predicate and o is the object. A finite set of RDF triples is

called an RDF graph. Assume that triple is a ternary predicate that stores RDF

graphs in the obvious way: every triple (a, b, c) ∈ G is stored as triple(a, b, c).

Moreover, assume the existence of an infinite set V of variables disjoint from the

above sets, and assume that every element in V starts with the symbol “?”.

Example 2 Consider representing the statement “There is a student whose name

is Juan Sequeda” in RDF. This can be represented with two RDF triples. The first

RDF triple

triple(http://juansequeda.com#me, rdf:type, foaf:Person)

states that the resource identified by http://juansequeda.com#me is of type Per-

son. The type relationship is represented with rdf:type. Additionally, the concept

Person is identified by the IRI foaf:Person. Note that rdf: and foaf: are being

used instead of a full IRI. These are prefixes that replace a part of the IRI2. The

second RDF triple

triple(http://juansequeda.com#me, foaf:name, "Juan Sequeda")

states that http://juansequeda.com#me has a name which is “Juan Sequeda”. The

concept of name is identified by the IRI foaf:name.

2The prefix “rdf:” represents http://www.w3.org/1999/02/22-rdf-syntax-ns#, hence the
full IRI for rdf:type is http://www.w3.org/1999/02/22-rdf-syntax-ns#type. Additionally, the
prefix “foaf:” represents http://xmlns.com/foaf/0.1/, hence the full IRI for foaf:Person is
http://xmlns.com/foaf/0.1/Person
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2.2.2 OWL

OWL stands for Web Ontology Language, which is the language to represent on-

tologies on the Web. In order to define the notion of ontology, the following set of

reserved keywords are defined as O: {subClass, subProp, dom, range, rdf:type,

equivClass, equivProp, inverse, symProp, transProp, differentFrom}. Assume

that O ⊆ I. Two types of RDF triples are distinguished: ontological and asser-

tional. Ontological RDF triples define the ontology. Assertional RDF triples define

the facts. The formal definitions are the following:

Definition 1 (Ontological RDF Triple) Following the definition presented by

Weaver and Hendler [131], an RDF triple (a, b, c) is ontological if:

1. a ∈ (I r O), and

2. either b ∈ (Or{rdf:type}) and c ∈ (IrO), or b = rdf:type and c is either

symProp or transProp.

In other words, an ontological RDF triple will always have as a subject an element in

I but not in O. There are two types of ontological RDF triples. First, the predicate

is an element in O but not rdf:type and the object is an element in I but not

in O. Second, if the predicate is rdf:type, then the object is either symProp or

transProp.

Definition 2 (Assertional RDF Triple) An RDF triple (a, b, c) is assertional if

it is not ontological.

Definition 3 (Ontology) An ontology O is defined as a finite set of ontological

RDF triples.

The semantics of an ontologyO is usually defined by representing it as a set of

description logic axioms, and then relying on the semantics of the logic [18] (which,
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in turn, is derived from the semantics of first-order logic). It is more convenient to

directly define a set of first-order formulae, denoted as ΣO, to encode the ontology

O. The semantics of each ontological triple of an ontology, t ∈ O, is defined as

a first-order formula ϕt over the predicate triple. Definitions 4 - 13 presents the

first-order formula for ontological triples. Finally, the set ΣO of first-order formulae

encoding the ontology O is define as {ϕt | t ∈ O}.

Definition 4 (Subclass) If a is a subclass of b and x is an instance of a, then x is

an instance of b. The first-order formula is:

ϕ(a,subClass,b) = ∀x (triple(x, rdf:type, a)→ triple(x, rdf:type, b))

Definition 5 (Subproperty) If a is a subproperty of b, then all pairs of resources

(x, y) which are related by a are also related by b. The first-order formula is:

ϕ(a,subProp,b) = ∀x∀y (triple(x, a, y)→ triple(x, b, y))

Definition 6 (Domain) If a has a domain b then any resource x that is related

to a is an instance of b. The first-order formula is:

ϕ(a,dom,b) = ∀x∀y (triple(x, a, y)→ triple(x, rdf:type, b))

Definition 7 (Range) If a has a range b then any resource y that is related to a

is an instance of b. The first-order formula is:

ϕ(a,range,b) = ∀x∀y (triple(x, a, y)→ triple(y, rdf:type, b))

Definition 8 (Equivalent Class) If a has an equivalent class of b and x is an

instance of a, then x is an instance of b. Conversely, if x is an instance of b, then x
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is an instance of a. The first-order formula is:

ϕ(a,equivClass,b) = ∀x (triple(x, rdf:type, a)↔ triple(x, rdf:type, b))

Definition 9 (Equivalent Property) If a has an equivalent property of b, then

all pairs of resources (x, y) which are related by a are also related by b. Conversely,

all pairs of resources (x, y) which are related by b are also related by a. The first-

order formula is:

ϕ(a,equivProp,b) = ∀x∀y (triple(x, a, y)↔ triple(x, b, y))

Definition 10 (Inverse Property) If a has an inverse property of b, then all pairs

of resources (x, y) which are related by a are also related by b by the pair (y,x).

Conversely, all pairs of resources (y, x) which are related by b are also related by a

by the pair (x,y) The first-order formula is:

ϕ(a,inverse,b) = ∀x∀y (triple(x, a, y)↔ triple(y, b, x))

Definition 11 (Symmetric Property) If a is a symmetric property, then all

pairs of resources (x,y) which are related by a are also related as the pair (y,x).

The first-order formula is:

ϕ(a,rdf:type,symProp) = ∀x∀y (triple(x, a, y)→ triple(y, a, x))

Definition 12 (Transitive Property) If a is a transitive property, and for all

pairs of resources (x,y) and (y, z) which are related by a then the pair (x,z) is also

related by a. The first-order formula is:

ϕ(a,rdf:type,transProp) = ∀x∀y∀z (triple(x, a, y) ∧ triple(y, a, z)→ triple(x, a, z))
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Definition 13 (Different From) If a is different from b then a 6= b. The first-

order formula is:

ϕ(a,differentFrom,b) = a 6= b

Given that the semantics of an ontology O has been defined as set of first

order logic formulae ΣO and a RDF graph G using the predicate triple, then

ΣO ∪G is consistent (and inconsistent) in the usual sense of First Order Logic.

Example 3 The following ontology is used as a running example which states that

an Executive and ITEmployee are both Employees. Additionally that the property

hasSuperior is a transitive relationship from an Employee to another Employee.

triple(:Executive, subClass, :Employee)

triple(:Programmer, subClass, :ITEmployee)

triple(:SysAdmin, subClass, :ITEmployee)

triple(:ITEmployee, subClass, :Employee)

triple(:hasSuperior, rdf:type, transProp)

triple(:hasSuperior, dom, :Employee)

triple(:hasSuperior, range, :Employee)

Ontology Profiles

The expressiveness of an ontology language can be specified by profiles. The Se-

mantic Web technology stack specifies four ontology profiles: RDFS, OWL 2 EL,

OWL 2 QL and OWL 2 RL [31, 99].

RDF Schema (RDFS) extends RDF as a schema language for RDF and a

lightweight ontology language [31]. It includes constructs to declare classes, hierar-

chies between classes and properties and relate the domain and range of a property to

a certain class. Ontological triples with subClass, subProp, dom, range, rdf:type,
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equivClass, equivProp are in this profile. The following three profiles, OWL 2 EL,

QL and RL, extend the expressiveness of RDFS.

OWL 2 EL profile is used to represent ontologies that define very large num-

bers of classes and/or properties with transitivity. This language has been tailored to

model large life science ontologies, while still supporting efficient reasoning. OWL 2

EL is based on the EL++ Description Logic [14]. Ontological triples with transProp

are in this profile.

OWL 2 QL provides constructs to express conceptual models such as UML

class diagrams and ER diagrams. This language was designed so that data that is

stored in a standard relational database system can be queried through an ontology

via rewriting mechanisms. OWL 2 QL is based on the DL-Lite family of description

logics [36]. Ontological triples with inverse and symProp are in this profile.

OWL 2 RL provides constructs to represent rules in ontologies. This language

has been tailored for rule-based reasoning engines. OWL 2 RL is based on Descrip-

tion Logic Programs (DLP) [68]. Ontological triples with inverse and symProp are

also in this profile.

The ontology expressivity considered in this dissertation (as defined in Def-

initions 4 - 13) is not specific to a single OWL profile. Thus, we propose a new

ontology profile, OWL-SQL, which expresses the types of ontologies considered in

this dissertation. Figure 2.2 denotes the expressivity of OWL-SQL with respect to

the OWL 2 EL, QL and RL profiles.

The expressivity of OWL-SQL is subsumed by early ontology profile propos-

als known as RDFS-Plus [7], OWL-LD[63] and RDFS 3.0[76].

2.2.3 SPARQL

SPARQL is the standard query language for RDF. SPARQL is a graph pattern

matching query language and has a syntax similar to SQL. A SPARQL query con-
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OWL 2 QL OWL 2 RL 

OWL 2 EL 

OWL 2 DL 

EL# QL# RL#

subClass' X' X' X'

subProp' X' X' X'

domain' X' X' X'

range' X' X' X'

eqClass' X' X' X'

eqProp' X' X' X'

inverseProp' X' X'

symProp' X' X'

transProp' X' X'

OWL SQL 

Figure 2.2: OWL-SQL, proposed OWL profile

tains a set of triple patterns called basic graph patterns. Triple patterns are similar

to RDF triples with the exception that the subject, predicate or object can be vari-

ables (denoted by a leading question mark “?”). The result of a basic graph pattern

query is a list of all variable bindings that cause a query pattern to match a subgraph

of an RDF graph.

Example 4 Consider the RDF triples in Example 2. The following SPARQL query

asks for all names of people.

SELECT ?n

WHERE {

?s rdf:type foaf:Person.

?s foaf:name ?n.

}
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The basic graph pattern consists of two triple patterns. Matching these triple pat-

terns with the RDF triples gives the answer "Juan Sequeda".

The official syntax of SPARQL [108, 73] includes operators OPTIONAL, UNION,

FILTER, SELECT, AS and concatenation via a point symbol (.), to construct graph

pattern expressions. The syntax of the language uses brackets { } to group patterns,

and there are some implicit rules of precedence and association.

In order to avoid ambiguities in parsing, the approach proposed by Perez et

al. [104] is used. The syntax of SPARQL graph patterns is presented in a traditional

algebraic formalism, using operators AND (.), UNION (UNION), OPT (OPTIONAL),

MINUS (MINUS), FILTER (FILTER), SELECT (SELECT) and AS (AS).

More precisely, a SPARQL graph pattern expression is defined recursively as

follows.

1. { } is a graph pattern (the empty graph pattern).

2. A tuple from (I ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a graph pattern (a triple

pattern)3.

3. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),

(P1 UNION P2) and (P1 MINUS P2) are graph patterns.

4. If P is a graph pattern and R is a SPARQL built-in condition, then the

expression (P FILTER R) is a graph pattern.

5. If P is a graph pattern and ?A1, . . ., ?Am, ?B1, . . ., ?Bm, ?C1, . . ., ?Cn is a

sequence of pairwise distinct elements from V (m ≥ 0 and n ≥ 0) such that

none of the variables ?Bi (1 ≤ i ≤ m) are mentioned in P , then

(SELECT {?A1 AS ?B1, . . . , ?Am AS ?Bm, ?C1, . . . , ?Cn} P )

3Recall that V is an infinite set of variables disjoint from I, B and L and that every element in
V starts with the symbol “?”. See Section 2.2.1.
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is a graph pattern.

A SPARQL built-in condition is constructed using elements of the set (I∪V)

and constants, logical connectives (¬, ∧, ∨), inequality symbols (<, ≤, ≥, >), the

equality symbol (=), unary predicates such as bound, isBlank, and isIRI (see [108,

73] for a complete list). A restriction is made to the fragment where the built-in

condition is a Boolean combination of terms constructed by using = and bound, that

is: (1) if ?X, ?Y ∈ V and c ∈ I, then bound(?X), ?X = c and ?X =?Y are built-in

conditions, and (2) if R1 and R2 are built-in conditions, then (¬R1), (R1 ∨R2) and

(R1 ∧R2) are built-in conditions.

The version of SPARQL used in this dissertation includes the following

SPARQL 1.1 features: the operator MINUS, the possibility of nesting the SELECT

operator and the operator AS [73].

The answer of a SPARQL query P over an RDF graph G is a finite set of

mappings, where a mapping µ is a partial function from the set V of variables to

(I ∪ L ∪B).

The semantics of SPARQL is defined as a function J · KG that, given an RDF

graph G, takes a graph pattern expression and returns a set of mappings. The

reader is referred to the Appendix for more detail.
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Chapter 3

Direct Mapping Relational

Databases to RDF and OWL
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1 This chapter presents how a Relational Database can be represented as a

Semantic Web data source. The goal is to define a mapping of a Relational Database,

including both its instances and its schema, to RDF and OWL. This mapping serves

as a default and automatic way of representing a Relational Database as a Semantic

Web data source. This mapping has been coined as the direct mapping. Four

properties are presented as correctness criteria for the direct mapping.

Two properties are fundamental to a direct mapping; information preser-

vation and query preservation. Information preservation speaks to the ability to

reconstruct the original relational database from the result of the direct mapping.

Query preservation means that every query over a relational database can be trans-

lated into an equivalent query over the result of the direct mapping.

In addition two desirable properties are considered; monotonicity and seman-

tics preservation. Monotonicity assures that a re-computation of the mapping is not

needed after any inserts to the database. A direct mapping is semantics preserving

if the satisfaction of a set of integrity constraints (i.e primary keys and foreign keys)

are encoded in the mapping result. However, semantics preservation of a direct

mapping is complex due to different assumptions made by Relational Databases

and the Semantic Web. Relational Databases make the Closed World Assumption

(CWA) which means that a statement is inferred to be false if it is not know to be

true. The Semantic Web makes an Open World Assumption (OWA) which means

that a statement cannot be inferred to be false on the basis of failing to prove it. In

other words, what causes an inconsistency in a Relational Database may result in

inference of new knowledge in the Semantic Web.

Semantics preservation is analyzed from two perspectives. First, a direct

mapping is said to be positive semantics preserving if the result of applying a direct

1Part of this chapter has been published as: Juan F. Sequeda, Marcelo Arenas, and Daniel P.
Miranker. 2012. On directly mapping relational databases to RDF and OWL. In Proceedings of
the 21st International Conference on World Wide Web (WWW ’12). ACM, New York, NY, USA,
649-658. Marcelo Arenas and Daniel P. Miranker were advisors for this work.
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mapping to a database, that satisfies the integrity constraints, results in a consistent

RDF graph2. Second, a direct mapping is negative semantics preserving if the result

of applying a direct mapping to a database, that does not satisfy the integrity

constraints, results in an inconsistent RDF graph. If a direct mapping is both

positive and negative semantics preserving, it is then full semantics preserving.

To the best of our knowledge, this is the first direct mapping from a Rela-

tional Database to RDF and OWL that has been thoroughly studied with respect

to these properties. The proposed direct mapping is monotone, information pre-

serving, query preserving and positive semantics preserving even in the general and

practical scenario where relational databases contain null values. However, given an

inconsistent database, meaning a database that violates an integrity constraint, the

proposed direct mapping generates a consistent RDF graph, when it should return

an inconsistent RDF graph. Therefore, it is not negative semantics preserving, nor

is it full semantics preserving.

Why our direct mapping is not full semantics preserving is analyzed. The

result is that monotonicity is an obstacle. It is first proved that if only primary

keys are considered, it is possible to have a monotone direct mapping that is full se-

mantics preserving. However this result is not sufficient because it dismisses foreign

keys. Unfortunately, it is proven that no monotone direct mapping of a relational

database, with primary keys and foreign keys, to RDF and OWL can be full seman-

tics preserving because of the Relational Database’s CWA and the Semantic Web’s

OWA. This result, that no monotone direct mapping can be full semantics preserving

has an important implication in real world applications; if an inconsistent Relational

Database is migrated to the Semantic Web using a monotone direct mapping, be

prepared to experience consistency when what one would expect inconsistency. Fi-

nally, a non-monotone direct mapping that overcomes the aforementioned limitation

2Recall that consistency (and inconsistency) of an RDF graph is in the usual sense of First Order
Logic (see Preliminaries)

44



is presented.

3.1 Direct Mapping Definition

A direct mapping is a default way to translate Relational Databases into

RDF and OWL (without any input from the user on how the relational data should

be translated). Let the input of a direct mapping, M, be a relational schema R, a

set Σ of PKs and FKs over R and an instance I of R. The output is an RDF graph

and an OWL ontology3.

Assume G is the set of all possible RDF graphs and RC is the set of all

three-tuples of the form (R,Σ, I) such that R is a relational schema, Σ is a set of

PKs and FKs over R and I is an instance of R.

Definition 14 (Direct mapping) A direct mapping M is a total function from

RC to G.

3.2 Fundamental Properties

Two fundamental properties of direct mappings are information preservation and

query preservation. Information preservation is a fundamental property because it

guarantees that the mapping does not lose information. Query preservation is also a

fundamental property because it guarantees that, everything that can be extracted

from the relational database by a relational algebra query, can also be extracted

from the resulting RDF graph by a SPARQL query.

3.2.1 Information Preservation

A direct mapping is information preserving if it does not lose any information about

the relational instance being translated. That is, if there exists a way to recover

3Recall that an OWL ontology is defined as a set of finite ontological RDF triples
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the original database instance from the RDF graph resulting from the translation

process. Assume that I is the set of all possible relational instances.

Definition 15 (Information preservation) A direct mapping M is information

preserving if there exists a computable mapping N : G → I such that for every

relational schema R, set Σ of PKs and FKs over R, and instance I of R satisfying

Σ:

N (M(R,Σ, I)) = I

A mapping N : G → I is computable if there exists an algorithm that, given

G ∈ G, computes N (G).

3.2.2 Query Preservation

A direct mapping is query preserving if every relational algebra query over a rela-

tional database can be translated into an equivalent SPARQL query over the RDF

graph resulting from the mapping. That is, query preservation ensures that every

relational query can be evaluated using the mapped RDF data.

To define query preservation, the focus is on relational queries that can

be expressed in relational algebra [6] and RDF queries that can be expressed in

SPARQL [108, 104]. Given the mismatch in the formats of these query languages,

a function tr is used to convert tuples returned by relational algebra queries into

mappings returned by SPARQL4. Given a relational schema R, a relation name

R ∈ R, an instance I of R and a tuple t ∈ RI , define tr(t) as the mapping µ such

that:

1. the domain of µ is {?A | A ∈ att(R) and t.A 6= NULL}, and

4Recall that the answer of a SPARQL query is a finite set of mappings, where a mapping µ is a
partial function from the set V of variables to (I ∪ L ∪B). See Section 2.2.3 for more details.
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2. µ(?A) = t.A for every A in the domain of µ.

Example 5 Assume that a relational schema contains a relation name STUDENT

and attributes ID, NAME and AGE. Moreover, assume that t is a tuple in this relation

such that t.ID = 1, t.NAME = John and t.AGE = NULL. Then, tr(t) = µ, where the

domain of µ is {?ID, ?NAME}, µ(?ID) = 1 and µ(?NAME) = John.

Definition 16 (Query preservation) A direct mappingM is query preserving if

for every relational schema R, set Σ of PKs and FKs over R and relational algebra

query Q over R, there exists a SPARQL query Q? such that for every instance I of

R satisfying Σ:

tr(JQKI) = JQ?KM(R,Σ,I)

It is important to notice that in the context of this research, information

preservation and query preservation are incomparable properties. If a direct map-

pingM is information preserving, it does not guarantee that every relational algebra

query Q can be rewritten into an equivalent SPARQL query over the translated data,

asM could transform source relational databases in such a way that a more expres-

sive query language is needed to express Q over the generated RDF graphs. On the

other hand, a mapping M can be query preserving and not information preserving

if the information about the schema of the relational database being translated is

not stored. For example, a direct mapping that includes information about these

relational schemas is presented in Section 3.4. It will become clear that if such in-

formation is not stored, then the direct mapping would be query preserving but not

information preserving.
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3.3 Desirable Properties

Two desirable properties of direct mappings are monotonicity and semantic preserva-

tion. Monotonicity permits the mapping to be calculated only over the new inserted

data instead of recalculating the mapping for the entire database after each insert.

Semantic preservation enables us to understand the expressive power of a direct

mapping and, its ability to properly deal with integrity constraints.

3.3.1 Monotonicity

Given two database instances I1 and I2 over a relational schema R, instance I1

is said to be contained in instance I2, denoted by I1 ⊆ I2, if for every R ∈ R,

RI1 ⊆ RI2 . A direct mapping M is monotone if for any such pair of instances,

the result of mapping I2 contains the result of mapping I1. In other words, if new

data is inserted in the database, then the elements of the mapping that are already

computed are unaltered.

Definition 17 (Monotonicity) A direct mapping M is monotone if for every re-

lational schema R, set Σ of PKs and FKs over R, and instances I1, I2 of R such

that I1 ⊆ I2:

M(R,Σ, I1) ⊆ M(R,Σ, I2)

3.3.2 Semantics preservation

A direct mapping is semantics preserving if the satisfaction of a set of PKs and

FKs by a Relational Database is encoded in the translation process. Two forms of

semantics preservation are defined: positive and negative. Given a relational schema

R, a set Σ of PKs and FKs over R and an instance I of R, a positive semantics

preserving mapping should generate from I a consistent RDF graph if I |= Σ. A
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negative semantics preserving mapping should generate from I an inconsistent RDF

graph if I 6|= Σ. In other words, if a database satisfies the integrity constraints, the

result of applying a direct mapping should be a consistent RDF graph. However, if

a database does not satisfy the integrity constraints, the result of applying a direct

mapping should be an inconsistent RDF graph.

Definition 18 (Positive Semantics Preservation) A direct mappingM is pos-

itive semantics preserving if for every relation schema R, set Σ of PKs and FKs

over R and instance I of R:

If I |= Σ then M(R,Σ, I) is consistent under the OWL semantics.

Definition 19 (Negative Semantics Preservation) A direct mappingM is pos-

itive semantics preserving if for every relation schema R, set Σ of PKs and FKs

over R and instance I of R:

If I 6|= Σ then M(R,Σ, I) is inconsistent under the OWL semantics.

If a direct mapping is both positive and negative semantics preserving, it is then

full semantics preserving.

Definition 20 (Full Semantics Preservation) A direct mapping M is seman-

tics preserving if for every relation schema R, set Σ of PKs and FKs over R and

instance I of R:

I |= Σ iff M(R,Σ, I) is consistent under the OWL semantics.

3.4 The Direct Mapping DM

The direct mapping DM proposed in this research integrates and extends the func-

tionalities of the direct mappings presented in our previous work [129]. DM is
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defined as a set of Datalog rules5 comprising the translation of relational schemas

and relational instances.

Section 3.4.1 presents the predicates that are used to store a relational

database and server as the input of DM. Section 3.4.2 presents the predicates

that are used to store an ontology and the Datalog rules used to generate an ontol-

ogy from the relational schema and the set of PKs and FKs. Section 3.4.3 presents

the Datalog rules used to generate the OWL vocabulary from the ontology that was

derived from the relational schema and a set of PKs and FKs. Finally, Section 3.4.4

presents the Datalog rules that generates RDF triples from a relational instance.

3.4.1 Storing relational databases

Given that the direct mapping DM is specified by a set of Datalog rules, its input

(R,Σ, I) has to be encoded as a set of relations. The following predicates are used

to store a relational schema R and a set Σ of PKs and FKs over R.

• Rel(r): Indicates that r is a relation name in R, e.g. Rel("STUDENT") indi-

cates that STUDENT is a relation name.6

• Attr(a, r): Indicates that a is an attribute in the relation r in R, e.g.

Attr("NAME", "STUDENT") holds.

• PKn(a1, . . . , an, r): Indicates that r[a1, . . . , an] is a primary key in Σ, e.g.

PK1("SID", "STUDENT") holds.

• FKn(a1, . . . , an, r, b1, . . . , bn, s): Indicates that r[a1, . . . , an] ⊆FK s[b1, . . . , bn]

is a foreign key in Σ, e.g. FK1("CODE", "COURSE", "DID", "DEPT") holds.

Moreover, the following predicate is used to store the tuples in a relational

instance I of a relational schema R.
5The reader is referred to [6] for the syntax and semantics of Datalog.
6As is customary, double quotes are used to delimit strings.
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• Value(v, a, t, r): Indicates that v is the value of an attribute a in a tuple

with identifier t in a relation r (that belongs to R); e.g. a tuple t1 of table

STUDENT such that t1.SID = "1" and t1.NAME = NULL is stored by using the

facts Value("1", "SID", "id1", "STUDENT") and Value(NULL, "NAME", "id1",

"STUDENT"), assuming that id1 is the identifier of tuple t1.

3.4.2 Storing an ontology

The first step is to synthesize an ontology from the relational schema and the set of

PKs and FKs given as input. We have found that when a relational schema has been

created using standard data engineering methodology with supporting Computer-

Aided Software Engineering (CASE) tools, the synthesized ontology can be quite

good. Since the quality of a databases data modeling is rarely of that high quality,

and the meaning of “good ontology” is subjective, we mitigate the controversy by

calling the result collection of ontology declarations a putative ontology (PO).

Each relation name in the schema is classified as a class or a binary relation

(which is used to represent a many-to-many relationship between entities in an

ER/UML diagram). Foreign keys are represented as object properties and attributes

of relations as data type properties. More specifically, the following predicates are

used to store the extracted ontology:

• Class(c): Indicates that c is a class.

• OPn(p1, . . . , pn, d, r): Indicates that p1, . . . , pn (n ≥ 1) form an object prop-

erty with domain d and range r.

• DTP(p, d): Indicates that p is a data type property with domain d.

The above predicates are defined by the Datalog rules described in the fol-

lowing sections.
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Identifying Binary Relations

Binary relations are a special type of relation because they represent a relationship

between relations. Binary relations are defined by auxiliary predicates in order to

facilitate identifying classes, object properties and data type properties. A relation

R is a binary relation between two relations S and T if

1. both S and T are different from R,

2. R has exactly two attributes A and B, which form a primary key of R,

3. A is the attribute of a foreign key in R that points to S,

4. B is the attribute of a foreign key in R that points to T ,

5. A is not the attribute of two distinct foreign keys in R,

6. B is not the attribute of two distinct foreign keys in R,

7. A and B are not the attributes of a composite foreign key in R, and

8. relation R does not have incoming foreign keys.

The corresponding Datalog rule is:

BinRel(R,A,B, S,C, T,D)←

PK2(A,B,R),¬ThreeAttr(R),

FK1(A,R,C, S), R 6= S,FK1(B,R,D, T ), R 6= T,

¬TwoFK(A,R),¬TwoFK(B,R), (3.1)

¬OneFK(A,B,R),¬FKto(R).

In a Datalog rule, negation is represented with the symbol ¬ and upper case

letters are used to denote variables. Thus, the previous rule states that the relation
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R is a binary relation between two relations S and T if the following conditions are

satisfied. (a) Expression PK2(A,B,R) in (3.1) indicates that attributes A and B

form a primary key of R. (b) Predicate ThreeAttr checks whether a relation has

at least three attributes, and it is defined as follows from the base predicate Attr:

ThreeAttr(R) ← Attr(X,R),Attr(Y,R),

Attr(Z,R), X 6= Y,X 6= Z, Y 6= Z.

Thus, expression ¬ThreeAttr(R) in (3.1) indicates that R has at least

two attributes. Notice that by combining this expression with PK2(A,B,R), it is

concluded that A, B are exactly the attributes of R. (c) Expressions FK1(A,R,C, S)

and FK1(B,R,D, T ) in (3.1) indicate that A is the attribute of a foreign key in R

that points to S and B is the attribute of a foreign key in R that points to T ,

respectively. (d) Expressions R 6= S and R 6= T in (3.1) indicate that both S and

T are different from relation R. (e) Predicate TwoFK checks whether an attribute

of a relation is the attribute of two distinct foreign keys in that relation, and it is

defined as follows from the base predicate FK1:

TwoFK(X,Y ) ← FK1(X,Y, U1, V1),FK1(X,Y, U2, V2), U1 6= U2

TwoFK(X,Y ) ← FK1(X,Y, U1, V1),FK1(X,Y, U2, V2), V1 6= V2

Thus, expressions ¬TwoFK(A,R) and ¬TwoFK(B,R) in (3.1) indicate that at-

tribute A is not the attribute of two distinct foreign keys in R and B is not the

attribute of two distinct foreign keys in R, respectively. (f) Predicate OneFK

checks whether a pair of attributes of a relation are the attributes of a composite
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foreign key in that relation:

OneFK(X,Y, Z) ← FK2(X,Y, Z, U, V,W )

OneFK(X,Y, Z) ← FK2(Y,X,Z, U, V,W )

Thus, expression ¬OneFK(A,B,R) in (3.1) indicates that attributes A, B of R are

not the attributes of a composite foreign key in R. (g) Finally, predicate FKto

checks whether a relation with two attributes has incoming foreign keys:

FKto(X) ← FK1(U1, Y, V,X)

FKto(X) ← FK2(U1, U2, Y, V1, V2, X)

Thus, expression ¬FKto(R) in (3.1) indicates that relation R does not have incom-

ing foreign keys.

For instance, BinRel("ENROLLED", "SID", "CID", "STUDENT", "SID", "COURSE",

"CID") holds in the example because "ENROLLED" is a relation with only two at-

tributes, "SID" and "CID", and "SID" is a foreign key to "STUDENT", and "CID" is

a foreign key to "COURSE". Note that there is no condition in the rule (3.1) that

requires S and T to be different, allowing binary relations that have their domain

equal to their range. Also note that, for simplicity, it is assumed in the rule (3.1)

that a binary relation R consists of only two attributes A and B. However, this rule

can be easily extended to deal with binary relations generated from many-to-many

relationships between entities in an ER/UML diagram that have more than two

attributes.

Identifying Classes

In this context, a class is any relation that is not a binary relation because a binary

relation represents a relationship between different relations. That is, predicate
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Class is defined by the following Datalog rules:

Class(X) ← Rel(X),¬IsBinRel(X)

IsBinRel(X) ← BinRel(X,A,B, S,C, T,D)

In the example, Class("DEPT"), Class("STUDENT") and Class("COURSE") hold.

Identifying Object Properties

For every n ≥ 1, the following rule is used for identifying object properties that are

generated from foreign keys7:

OP2n(X1, . . . , Xn, Y1, . . . , Yn, S, T ) ←

FKn(X1, . . . , Xn, S, Y1, . . . , Yn, T ),¬IsBinRel(S)

This rule states that a foreign key represents an object property from the entity

containing the foreign key (domain) to the referenced entity (range). It should be

noticed that this rule excludes the case of binary relations, as there is a special

rule for this type of relations (see rule (3.1)). In the example, OP2("CODE", "DID",

"COURSE", "DEPT") holds as CODE is a foreign key in the table COURSE that references

attribute DID in the table DEPT.

Identifying Data type Properties

Every attribute in a non-binary relation is mapped to a data type property:

DTP(A,R) ← Attr(A,R),¬IsBinRel(R)

7Notice that although an infinite number of rules is considered in the definition of DM, for every
concrete relational database only a finite number of these rules are needed.
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For instance, DTP("NAME", "STUDENT") holds in the example, while DTP("SID", "ENROLLED")

does not hold as ENROLLED is a binary relation.

3.4.3 Translating a relational schema into an OWL ontology

The following are the rules that translate a relational database schema into an OWL

ontology.

Generating IRIs for Classes, Object Properties and Data type Properties

The following family of rules produce IRIs for classes, binary relations, object prop-

erties and data type properties identified by the mapping (which are stored in

the predicates Class, BinRel, OPn and DTP, respectively). The following as-

sumptions are made. A base IRI base is given for the relational database to be

translated (for example, "http://example.edu/db/"). Additionally a family of

built-in predicates Concatn (n ≥ 2) such that Concatn has n+ 1 arguments and

Concatn(x1, . . . , xn, y) holds if y is the concatenation of the strings x1, . . ., xn.

DM uses the following Datalog rules to produce IRIs for classes and data type

properties:

ClassIRI(R,X)← Class(R),Concat2(base, R,X)

DTP IRI(A,R,X)← DTP(A,R),Concat4(base, R, "#", A,X)

For instance, http://example.edu/db/STUDENT is the IRI for the STUDENT relation

in the example, and http://example.edu/db/STUDENT#NAME is the IRI for attribute

NAME in the STUDENT relation (recall that DTP("NAME", "STUDENT") holds in the

example). Moreover, DM uses the following family of Datalog rules to generate IRIs

for object properties. First, for object properties generated from binary relations,
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the following rule is used:

OP IRI1(R,A,B, S,C, T,D,X)←BinRel(R,A,B, S,C, T,D),

Concat10(base, R, "#", A, ",", B, ",", C, ",", D,X)

Thus, http://example.edu/db/ENROLLED#SID,CID,SID,CID is the IRI for binary re-

lation ENROLLED in the example. Second, for object properties generated from a

foreign key consisting of n attributes (n ≥ 1), the following rule is used:

OP IRI2n(X1, . . . , Xn, Y1, . . . , Yn, S, T,X)←

OP2n(X1, . . . , Xn, Y1, . . . , Yn, S, T ),

Concat4n+4(base, S, ",", T, "#", X1, ",", . . . , Xn−1, ",",

Xn, ",", Y1, ",", . . . , Yn−1, ",", Yn, X)

Thus, given that OP2("CODE", "DID", "COURSE", "DEPT") holds in the example, IRI

http://example.edu/db/COURSE,DEPT#CODE,DID is generated to represent the fact

that CODE is a foreign key in the table COURSE that references attribute DID in the

table DEPT.

Translating Relational Schemas

The following Datalog rules are used to generate the RDF ontological triples. First,

a rule is used to collect all the classes:

Triple(U, "rdf:type", "owl:Class") ← Class(R),ClassIRI(R,U)

The predicate Triple is used to collect all the triples of the RDF graph generated

by the direct mapping DM. Second, the following family of rules is used to collect
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all the object properties (n ≥ 1):

Triple(U, "rdf:type", "owl:ObjectProperty") ←

OPn(X1, . . . , Xn, S, T ),OP IRIn(X1, . . . , Xn, S, T, U)

Third, the following rule is used to collect the domains of the object properties

(n ≥ 1):

Triple(U, "rdfs:domain",W )← OPn(X1, . . . , Xn, S, T ),

OP IRIn(X1, . . . , Xn, S, T, U),ClassIRI(S,W )

Fourth, the following rule is used to collect the ranges of the object properties

(n ≥ 1):

Triple(U, "rdfs:range",W )← OPn(X1, . . . , Xn, S, T ),

OP IRIn(X1, . . . , Xn, S, T, U),ClassIRI(T,W )

Fifth, the following rule is used to collect all the data type properties:

Triple(U, "rdf:type", "owl:DatatypeProperty") ←

DTP(A,R),DTP IRI(A,R,U)

Finally, the following rule is used to collect the domains of the data type properties:

Triple(U, "rdfs:domain",W ) ←

DTP(A,R),DTP IRI(A,R,U),ClassIRI(R,W )
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3.4.4 Translating a database instance into RDF

The Datalog rules that map a relational database instance into RDF assertional

triples consist of two parts. First, a set of rules for generating IRIs. Second, a set

of rules that generate RDF.

Generating IRIs for tuples

A family of predicates are introduced that produce IRIs for the tuples being trans-

lated, where it is assumes that an IRI base is given for the relational database

(for example, "http://example.edu/db/"). First, DM uses the following set of

Datalog rules to produce IRIs for the tuples of the relations having a primary key:

RowIRIn(V1, V2, . . . , Vn, A1, A2, . . . , An, T,R,X) ←

PKn(A1, A2, . . . , An, R),Value(V1, A1, T,R),

Value(V2, A2, T,R), . . . ,Value(Vn, An, T,R),

Concat4n+2(base, R, "#", A1, "=", V1, ",",

A2, "=", V2, ",", . . . , ",", An, "=", Vn, X)

Thus, given that the facts PK1("SID", "STUDENT") and Value("1", "SID", "id1", "STUDENT")

hold in the example, the IRI http://example.edu/db/STUDENT#SID=1 is the iden-

tifier for the tuple in table STUDENT with value 1 in the primary key. Moreover, DM

uses the following rule to generate blank nodes for the tuples of the relations not

having a primary key:

BlankNode(T,R,X) ← Value(V,A, T,R),Concat3(" :", R, T,X)
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Translating Relational Instances

The direct mapping DM generates three types of triples when translating a rela-

tional instance: table triples, reference triples and literal triples. The following are

Datalog rules for each one of these cases.

For table triples, DM produces for each tuple t in a relation R, a triple

indicating that t is of type r. To construct these tuples, DM uses the following

auxiliary rules:

TupleID(T,R,X)←Class(R),PKn(A1, . . . , An, R),

Value(V1, A1, T,R), . . . ,Value(Vn, An, T,R),

RowIRIn(V1, . . . , Vn, A1, . . . , An, T,R,X)

TupleID(T,R,X)←Class(R),¬HasPKn(R),

Value(V,A, T,R),BlankNode(T,R,X)

That is, TupleID(T,R,X) generates the identifier X of a tuple T of a relation R,

which is an IRI if R has a primary key or a blank node otherwise. Notice that in

the preceding rules, predicate HasPKn is used to check whether a table R with n

attributes has a primary key (thus, ¬HasPKn(R) indicates that R does not have a

primary key). Predicate HasPKn is defined by the following n rules:

HasPKn(X) ← PKi(A1, . . . , Ai, X) i ∈ {1, . . . , n}

The following rule generates the table triples:

Triple(U, "rdf:type",W ) ←

Value(V,A, T,R),TupleID(T,R,U),ClassIRI(R,W )

60



For example, the following is a table triple In the example:

Triple("http://example.edu/db/STUDENT#SID=1",

"rdf:type",

"http://example.edu/db/STUDENT")

For reference triples, DM generates triples that store the references generated by

binary relations and foreign keys. More precisely, the following Datalog rule is used

to construct reference triples for object properties that are generated from binary

relations:

Triple(U, V,W )← BinRel(R,A,B, S,C, T,D),

Value(V1, A, T1, R),Value(V1, C, T2, S),

Value(V2, B, T1, R),Value(V2, D, T3, T ),

TupleID(T2, S, U),

OP IRI1(R,A,B, S,C, T,D, V ),

TupleID(T3, T,W )

Moreover, the following Datalog rule is used to construct reference triples for object
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properties that are generated from foreign keys (n ≥ 1):

Triple(U, V,W )←

OP2n(A1, . . . , An, B1, . . . , Bn, S, T ),

Value(V1, A1, T1, S), . . . ,Value(Vn, An, T1, S),

Value(V1, B1, T2, T ), . . . ,Value(Vn, Bn, T2, T ),

TupleID(T1, S, U),TupleID(T2, T,W ),

OP IRI2n(A1, . . . , An, B1, . . . , Bn, S, T, V )

Finally, DM produces for every tuple t in a relation R and for every attribute A of

R, a triple storing the value of t in A, which is called a literal triple. The following

Datalog rule is used to generate such triples:

Triple(U, V,W )← DTP(A,R),Value(W,A, T,R),

W 6= NULL,TupleID(T,R,U),DTP IRI(A,R, V )

Notice that in the above rule, the condition W 6= NULL is used to check that the

value of the attribute A in a tuple T in a relation R is not null. Thus, literal triples

are generated only for non-null values. The following is an example of a literal triple:

Triple("http://example.edu/db/STUDENT#SID=1",

"http://example.edu/db/STUDENT#NAME", "John")

3.5 Properties of DM

The direct mapping DM is now studied with respect to the two fundamental prop-

erties (information preservation and query preservation) and the two desirable prop-

erties (monotonicity and semantics preservation) as defined in Section 3.1.
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3.5.1 Information preservation of DM

First, DM does not lose any information in the relational instance being translated:

Theorem 1 The direct mapping DM is information preserving.

The proof of this theorem is straightforward. It involves providing a computable

mapping N : G → I that satisfies the condition in Definition 15. That is, a com-

putable mapping N that can reconstruct the initial relational instance from the

generated RDF graph. The reader is referred to the Appendix for the full proof.

3.5.2 Query preservation of DM

The way DM maps relational data into RDF allows to translate a relational alge-

bra query over a relational instance it into an equivalent SPARQL query over the

generated RDF graph.

Theorem 2 The direct mapping DM is query preserving.

Angles and Gutierrez proved that SPARQL has the same expressive power as re-

lational algebra [8]. Thus, one may be tempted to think that this result could be

used to prove Theorem 2. However, the version of relational algebra considered in

[8] does not include the NULL value, and hence cannot be used to prove this result.

An outline of the proof of this theorem is presented. The reader is referred to the

Appendix for the details.

Assume that a relational schema R and a set Σ of PKs and FKs over R is

given. The proof follows by showing that for every relational algebra query Q over

R, there exists a SPARQL query Q? such that for every instance I of R (possibly

including null values) satisfying Σ:

tr(JQKI) = JQ?KDM(R,Σ,I). (3.2)
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Interestingly, the proof that the previous condition holds is by induction on the

structure of Q, and thus it provides a constructive bottom-up algorithm for trans-

lating a relational algebra query Q into an equivalent SPARQL query Q?, that is,

a query Q? satisfying condition (3.2). Consider the database used as the running

example and the relational algebra query σName=Juan(STUDENT) ./ ENROLLED, which

is used as a running example and translate it step by step to SPARQL, showing how

the translation algorithm works.

For the sake of readability, the function ν is introduced which retrieves the

IRI for a given relation R, denoted by ν(R), and the IRI for a given attribute A in

a relation R, denoted by ν(A,R). The inductive proof starts by considering the two

base relational algebra queries: the identity query R, where R is a relation name in

the relational schema R, and the query NULLA. These two base queries give rise to

the following three base cases for the inductive proof.

Non-binary relations: Assume that Q is the identity relational algebra query

R, where R ∈ R is a non-binary relation (that is, IsBinRel(R) does not hold).

Moreover, assume that att(R) = {A1, . . . , A`}, with the corresponding IRIs ν(R) =

r, ν(A1, R) = a1, . . . , ν(A`, R) = a`. Then a SPARQL query Q? satisfying (3.2) is

constructed as follows:

SELECT {?A1, . . . , ?A`}
[
· · ·
(((

(?X, "rdf:type", r)

OPT (?X, a1, ?A1)

)
OPT (?X, a2, ?A2)

)
OPT (?X, a3, ?A3)

)
· · · OPT (?X, a`, ?A`)

]
.

Notice that in order to not lose information, the operator OPT is used (in-

stead of AND) because the direct mapping DM does not translate NULL values. In

the example, the relation name STUDENT is a non-binary relation. Therefore the
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following equivalent SPARQL query is generated with input STUDENT:

SELECT {?SID, ?NAME}
[(

(?X, "rdf:type", :STUDENT)

OPT (?X, :STUDENT#SID, ?SID)

)
OPT (?X, :STUDENT#NAME, ?NAME)

]

It should be noticed that in the previous query, the symbol : has to be

replaced by the base IRI used when generating IRIs for relations and attributes in

a relation (see Section 3.4.3)8.

Binary relations: Assume that Q is the identity relational algebra query R, where

R ∈ R is a binary relation (that is, IsBinRel(R) holds). Moreover, assume that

att(R) = {A1, A2}, where A1 is a foreign key referencing the attribute B of a relation

S, and A2 is a foreign key referencing the attribute C of a relation T . Finally, assume

that ν(R) = r, ν(B,S) = b and ν(C, T ) = c, Then a SPARQL query Q? satisfying

(3.2) is defined as follows:

SELECT {?A1, ?A2} ((?T1, r, ?T2) AND (?T1, b, ?A1) AND (?T2, c, ?A2)).

Given that a binary relation is mapped to an object property, the values of a binary

relation can be retrieved by querying the datatype properties of the referenced at-

tributes. In the example, the relational name ENROLLED is a binary relation. There-

8In SPARQL terminology, we have included the following prefix in the query:
@prefix : <http://example.edu/db/>, if the base IRI is <http://example.edu/db/>.
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fore the following equivalent SPARQL query is generated with input ENROLLED:

SELECT {?SID, ?CID}(

(?T1, :ENROLLED#SID,CID,SID,CID, ?T2) AND

(?T1, :STUDENT#SID, ?SID) AND

(?T2, :COURSE#CID, ?CID)).

Empty relation: Assume that Q = NULLA, and define Q? as the empty graph

pattern { }. Then the condition (3.2) holds because of the definition of the function

tr, which does not translate NULL values to mappings.

The inductive step in the proof of Theorem 2 is the following. Assume that

the theorem holds for relational algebra queries Q1 and Q2. That is, there exists

SPARQL queries Q?1 and Q?2 such that:

tr(JQ1KI) = JQ?1KDM(R,Σ,I), (3.3)

tr(JQ2KI) = JQ?2KDM(R,Σ,I). (3.4)

The proof continues by presenting equivalent SPARQL queries for the following

relational algebra operators: selection (σ), projection (π), rename (δ), join (./),

union (∪) and difference (r). It is important to notice that the operators left-

outer join, right-outer join and full-outer join are all expressible with the previous

operators, hence cases for these operators are not presented.

Selection: In order to define query Q? satisfying condition (3.2), four cases are

considered. In all these cases, the established equivalence in (3.3) is used.

1. If Q is σA1=a(Q1), then

Q? = (Q?1 FILTER (?A1 = a)).
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2. If Q is σA1 6=a(Q1), then

Q? = (Q?1 FILTER (¬(?A1 = a) ∧ bound(?A1))).

3. If Q is σIsNull(A1)(Q1), then

Q? = (Q?1 FILTER (¬bound(?A1))).

4. If Q is σIsNotNull(A1)(Q1), then

Q? = (Q?1 FILTER (bound(?A1))).

These equivalences are straightforward. However, it is important to note the use of

bound(·) in the second case; as the semantics of relational algebra states that if Q

is the query σA1 6=a(Q1), then JQKI = {t ∈ JQ1KI | t.A1 6= NULL and t.A1 6= a}, the

variable ?A1 has to be bound because the values in the attribute A1 in the answer to

σA1 6=a(Q1) are different from NULL. Following the example, the following SPARQL

query is generated with input σName=Juan(STUDENT):

(
SELECT {?SID, ?NAME}

[(
(?X, "rdf:type", :STUDENT)

OPT (?X, :STUDENT#SID, ?SID)

)
OPT (?X, :STUDENT#NAME, ?NAME)

])
FILTER (?NAME = Juan)

Projection: Assume that Q = π{A1,...,A`}(Q1). Then query Q? satisfying condition

(3.2) is defined as (SELECT {?A1, . . . , ?A`} Q?1). It is important to notice that the
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nested SELECT queries is used to deal with projection, as well as in two of the base

cases, which is a functionality specific to SPARQL 1.1 [73].

Rename: Assume that Q = δA1→B1(Q1) and att(Q) = {A1, . . ., A`}. Then query

Q? satisfying condition (3.2) is defined as (SELECT {?A1 AS ?B1, ?A2, . . . , ?A`}Q?1).

Notice that this equivalence holds because the rename operator in relational algebra

renames one attribute to another and projects all attributes of Q.

Join: Assume that Q = (Q1 ./ Q2), where (att(Q1) ∩ att(Q2)) = {A1, . . . , A`}.

Then query Q? satisfying condition (3.2) is defined as follows:

[(
Q?1 FILTER (bound(?A1) ∧ · · · ∧ bound(?A`))

)
AND(

Q?2 FILTER (bound(?A1) ∧ · · · ∧ bound(?A`))

)]
.

Note the use of bound(·) which is necessary in the SPARQL query in order to guar-

antee that the variables that are being joined on are not null. Following the example,

Figure 3.1 shows the SPARQL query generated with input σName=Juan(STUDENT) ./

ENROLLED.

Union: Assume that Q = (Q1 ∪ Q2). Then query Q? satisfying condition (3.2) is

simply defined as (Q?1 UNION Q?2). Notice that in this case, the already established

equivalences (3.3) and (3.4) are used.

Difference: Assume that Q = (Q1 rQ2). In this case, it is also possible to define a

SPARQL query Q? satisfying condition (3.2). The reader is referred to the appendix

for the complete description of Q?.

3.5.3 Monotonicity and semantics preservation of DM

Consider the two desirable properties identified in Section 3.3. First, it is straight-

forward to see that DM is monotone, because all the negative atoms in the Datalog

rule defining DM refer to the schema, the PKs and the FKs of the database, and
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[((
SELECT {?SID, ?NAME}

[
(

(?X, "rdf:type", :STUDENT) OPT (?X, :STUDENT#SID, ?SID)

)
OPT

(?X, :STUDENT#NAME, ?NAME)

])
FILTER (?NAME = Juan)

)
FILTER (bound(?SID))

]
AND[(

SELECT {?SID, ?CID}(
(?T1, :ENROLLED#SID,CID,SID,CID, ?T2) AND (?T1, :STUDENT#SID, ?SID) AND

(?T2, :COURSE#CID, ?CID)

))
FILTER (bound(?SID))

]

Figure 3.1: SPARQL translation of the relational algebra query
σName=Juan(STUDENT) ./ ENROLLED.
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these elements are kept fixed when checking monotonicity.

The situation is completely different for the case of semantics preservation.

Each type of semantics preservation, positive and negative, needs to be analyzed

independently. It is straightforward to see that DM is positive semantics preserving

because the ontology derived from the relational database is not able to express

contradictions, hence is always a consistent RDF graph.

Theorem 3 The direct mapping DM is positive semantics preserving.

The proof consists of going through each rule of DM and noting that the rules do

not generate an inconsistency. Hence, the result of applying DM to a database will

always be a consistent RDF graph.

The following example shows that the direct mapping DM is not negative

semantics preserving.

Example 6 Assume that a relational schema contains a relation with name STUDENT

and attributes SID, NAME, and assume that the attribute SID is the primary key.

Moreover, assume that this relation has two tuples, t1 and t2 such that t1.SID = 1,

t1.NAME = John and t2.SID = 1, t2.NAME = Peter. It is clear that the primary key is

violated, therefore the database is inconsistent. The result of applying DM is the

following RDF graph (the base URI is omitted):

Triple("STUDENT", "rdf:type", "owl:Class")

Triple("STUDENT#SID", "rdf:type", "owl:DatatypeProperty")

Triple("STUDENT#NAME", "rdf:type", "owl:DatatypeProperty")

Triple("STUDENT#SID=1", "rdf:type", "STUDENT")

Triple("STUDENT#SID=1", "STUDENT#NAME", "John")

Triple("STUDENT#SID=1", "STUDENT#NAME", "Peter")
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Even though the relational database violates the foreign key constraint, there is

nothing the makes the resulting RDF graph inconsistent.

In fact, the result in Example 6 can be generalized as it is possible to show

that the direct mapping DM always generates a consistent RDF graph, hence, it

cannot be full semantics preserving.

Proposition 1 The direct mapping DM is not full semantics preserving.

Does this mean that the proposed direct mapping DM is incorrect? What

could be done to create a direct mapping that is full semantics preserving? These

problems are studied in the following section.

3.6 Semantics Preservation of Direct Mappings

Generating a full semantics preserving direct mapping poses a specific challenge

due to the different assumptions made by Relational Databases and the Semantic

Web. Extending the direct mapping DM to deal with primary keys is simple (Sec-

tion 3.6.1). Dealing with foreign keys is more difficult. Section 3.6.2 presents the

result that any direct mapping satisfying the condition of being monotone cannot be

full semantics preserving. Finally, two possible ways of overcoming this limitation

are presented.

3.6.1 A full semantics preserving direct mapping for primary keys

Recall that a primary key can be violated if there are repeated values or null val-

ues. At a first glance, one would assume that owl:hasKey and the Unique Name

Assumption (UNA) could be used to create a full semantics preserving direct map-

ping for primary keys. OWL’s owl:hasKey states that each instance of a class is

uniquely identified by a property (or a set of properties) and, if two instances of the
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class coincide on values for each of key properties, then these two instances are the

same. The Unique Name Assumption means that different names always refer to

different entities in the world. OWL does not make the Unique Name Assumption

but does provide the owl:differentFrom constructs to express whether two names

are distinct.

Consider now a database without null values, then a violation of the primary

key would generate an inconsistency with owl:hasKey and owl:differentFrom.

However, if null values are considered, the situation is different. Consider a database

where the primary key has null values. Then the properties of owl:hasKey, which

uniquely identify an instance, does not have any values. Therefore it is not possible

to trigger an inconsistency. A different approach must be considered.

Consider a new direct mapping DMpk that extends DM with the idea of

representing the violation of an integrity constraint as a new set of Datalog rules. A

Datalog rule is used to determine if the value of a primary key attribute is repeated,

and a family of Datalog rules are used to determine if there is a value NULL in a

column corresponding to a primary key. If some of these violations are found, then

an artificial triple is generated that would produce an inconsistency. For example,

the following rules are used to map a primary key with two attributes:
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Triple(a, "owl:differentFrom", a)← PK2(X1, X2, R),

Value(V1, X1, T1, R),Value(V1, X1, T2, R),

Value(V2, X2, T1, R),Value(V2, X2, T2, R), T1 6= T2

Triple(a, "owl:differentFrom", a)← PK2(X1, X2, R),

Value(V,X1, T,R), V = NULL

Triple(a, "owl:differentFrom", a)← PK2(X1, X2, R),

Value(V,X2, T,R), V = NULL

In the previous rules, a is any valid IRI. If DMpk is applied to the database of

Example 6, it is straightforward to see that starting from an inconsistent relational

database, an RDF graph is obtained that is also inconsistent. In fact, the following

holds:

Proposition 2 The direct mapping DMpk is information preserving, query pre-

serving, monotone, and full semantics preserving if only PKs are considered. That

is, for every relational schema R, set Σ of (only) PKs over R and instance I of R:

I |= Σ iff DMpk(R,Σ, I) is consistent under OWL semantics.

Information preservation, query preservation and monotonicity of DMpk are

corollaries of the fact that these properties hold for DM, and of the fact that the

Datalog rules introduced to handle primary keys are monotone.

A natural question at this point is whether DMpk can also deal with foreign

keys. Unfortunately, an easily constructed counter-example shows that this is not

the case.

Example 7 Consider the following inconsistent relational database. A relational

schema that contains a relation with name COURSE and attributes CID, TITLE, CODE
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with attribute CID is the primary key. A relation with name DEPT and attributes

DID, NAME with attribute DID as the primary key. Additionally, there is a foreign key

from the attribute CODE of COURSE to the attribute DID of DEPT. Moreover, assume

that the relation COURSE has a tuples t such that t.ID = 1, t.TITLE = CS101 and

t.CODE = 2. The result of applying DM or DMpk is the following RDF graph (the

base URI is omitted):

Triple("COURSE", "rdf:type", "owl:Class")

Triple("COURSE#CID", "rdf:type", "owl:DatatypeProperty")

Triple("COURSE#TITLE", "rdf:type", "owl:DatatypeProperty")

Triple("COURSE#CODE", "rdf:type", "owl:DatatypeProperty")

Triple("DEPT", "rdf:type", "owl:Class")

Triple("DEPT#DID", "rdf:type", "owl:DatatypeProperty")

Triple("DEPT#NAME", "rdf:type", "owl:DatatypeProperty")

Triple("COURSE,DEPT#CODE,DID", "rdf:type", "owl:ObjectProperty")

Triple("COURSE,DEPT#CODE,DID", "rdfs:domain", "COURSE")

Triple("COURSE,DEPT#CODE,DID", "rdfs:range", "DEPT")

Triple("COURSE#CID=1", "rdf:type", "COURSE")

Triple("COURSE#CID=1", "COURSE#CID", "1")

Triple("COURSE#CID=1", "COURSE#TITLE", "CS101")

Triple("COURSE#CID=1", "COURSE#CODE", "2")

It is not difficult to see that the resulting RDF graph is consistent.

Both DM and DMpk generate a consistent RDF graph, which is not what
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is desired. Does this mean that it is not possible to have a direct mapping that is

full semantics preserving and considers foreign keys?

3.6.2 Semantics preserving direct mappings for primary keys and

foreign keys

The following theorem shows that the desirable condition of being monotone is an

obstacle to obtain a full semantics preserving direct mapping.

Theorem 4 No monotone direct mapping is full semantics preserving.

The proof of this theorem is by contradiction by assuming first that a direct mapping

M is monotone and full semantics preserving. The reader is referred to the Appendix

for the full proof.

It is important to understand the reasons why a full semantics preserving

direct mapping has not been able to be defined up to now. The issue is with two

characteristics of OWL:

1. it adopts the Open World Assumption (OWA), where a statement cannot be

inferred to be false on the basis of failing to prove it, and

2. it does not adopt the Unique Name Assumption (UNA), allowing two different

names can identify the same thing.

On the other hand, a relational database adopts the Closed World Assump-

tion (CWA), where a statement is inferred to be false if it is not known to be true,

which is the opposite of OWA. In other words, what causes an inconsistency in a

relational database, can cause an inference of new knowledge in OWL.

In order to preserve the semantics of the relational database, it needs to be

ensured that whatever causes an inconsistency in a relational database, will also

cause an inconsistency in OWL. Following this idea, consider now the following
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non-monotone direct mapping, DMpk+fk. This direct mapping extends DMpk by

introducing rules for verifying beforehand if there is a violation of a foreign key

constraint. If such a violation exists, then an artificial RDF triple is created which

will generate an inconsistency with respect to the OWL semantics. More precisely,

the following family of Datalog rules are used in DMpk+fk to detect an inconsistency

in a relational database:

Violation(S)←

FKn(X1, . . . , Xn, S, Y1, . . . , Yn, T ),

Valuen(V1, X1, T, S), . . . ,Value(Vn, Xn, T, S),

V1 6= NULL, . . . , Vn 6= NULL,

¬IsValuen(V1, . . . , Vn, Y1, . . . , Yn, T )

In the preceding rule, the predicate IsValuen is used to check whether a tuple in

a relation has values for some given attributes. The predicate IsValuen is defined

by the following rule:

IsValuen(V1, . . . , Vn, B1, . . . , Bn, S) ←

Value(V1, B1, T, S), . . . ,Value(Vn, Bn, T, S)

Finally, the following Datalog rule is used to obtain an inconsistency in the generated

RDF graph:

Triple(a, "owl:differentFrom", a) ← Violation(S)

In the previous rule, a is any valid IRI. It should be noticed that DMpk+fk is non-

monotone because if new data is added to the database, which now satisfies the FK

constraint, then the artificial RDF triple needs to be retracted.
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Theorem 5 The direct mapping DMpk+fk is information preserving, query pre-

serving and full semantics preserving.

Information preservation and query preservation of DMpk+fk are corollaries of the

fact that these properties hold for DM and DMpk.

A direct mapping that satisfies the four properties can be obtained by consid-

ering an alternative semantics of OWL that expresses integrity constraints. Because

OWL is based on Description Logic, a version of DL that supports integrity con-

straints is needed. This is not a new idea. Integrity constraints are epistemic in

nature and are about “what the knowledge base knows” [112]. Extending DL with

the epistemic operator K has been studied [37, 52, 53]. Grimm et al. proposed to

extend the semantics of OWL to support the epistemic operator [67]. Motik et al.

proposed to write integrity constraints as standard OWL axioms but interpreted

with different semantics for data validation purposes [100]. Tao et al. showed that

integrity constraint validation can be reduced to SPARQL query answering [127].

Mehdi et al. introduced a way to answer epistemic queries to restricted OWL ontolo-

gies [96]. Thus, it is possible to extend DMpk to create an information preserving,

query preserving and monotone direct mapping that is also semantics preserving,

but it is based on a non-standard version of OWL including the epistemic operator

K.

3.7 Summary

This chapter presented a direct mapping of Relational Databases to RDF and OWL.

To the best of our knowledge this is the first direct mapping, that has been formal-

ized and studied with respect to these fundamental and desirable properties. The

contributions are:

• A direct mapping Relational Databases to RDF and OWL formalized in non
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recursive Datalog.

• A monotone, information preserving, query preserving and positive semantics

preserving direct mapping which considers databases that have null values.

• A proof that the combination of monotonicity with the OWL semantics is an

obstacle to generating a full semantics preserving direct mapping.

• A non-monotone direct mapping that is full semantics preserving.
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Chapter 4

Ultrawrap: SPARQL Execution

on Relational Data
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1 The previous chapter presented a method which automatically maps a rela-

tional database as a Semantic Web data source, namely RDF and OWL. The natural

next step is to consider the problem of how to execute SPARQL queries against a

relational database, per the direct mapping presented in Chapter 3. The goal is

to define a method to execute SPARQL queries which makes use of optimizations

incorporated in relational databases over the past several decades. Related work

has been ad-hoc and predicated on incorporating optimizing transforms as part of

the SPARQL to SQL translation, and/or executing some of the query outside the

underlying SQL environment [1, 2, 117].

The explored hypothesis is: existing commercial relational databases already

subsume the algorithms and optimizations needed to support effective SPARQL ex-

ecution on existing relationally stored data. This research’s postulate is that by

carefully constructing unmaterialized SQL views to represent the direct mapping,

the existing algorithmic machinery in SQL optimizers is already sufficient to effec-

tively execute SPARQL queries on the relational data.

The experiment is embodied in a system, Ultrawrap, which wraps a relational

database and virtualizes it as a Semantic Web data source. The direct mapping is

encoded using SQL views. SPARQL queries are syntactically translated to SQL

queries in terms of the views. In the course of executing a SPARQL query, the SQL

optimizer uses the SQL views that represent the direct mapping, and optimizes its

execution.

Ultrawrap is evaluated using two benchmark suites for each of the three

major relational database management systems. Empirical analysis reveals two ex-

isting relational query optimizations that, if applied to the SQL produced from a

simple syntactic translations of SPARQL queries (with bound predicate arguments)

1Part of this chapter has been published as: Juan F. Sequeda and Daniel P. Miranker. 2013.
Ultrawrap: SPARQL execution on relational data. Journal of Web Semantics. 22 (October 2013),
19-39. Daniel P. Miranker was an advisor for this work.

80



Data$

Schema$

Tripleview$

Puta3ve$
Ontology$

SQL$on$
Tripleview$

SQL$$
Op3mizer$

Query$Plan$

OWL$ SPARQL$ RDF$

1$

2$

3$

4$

Figure 4.1: Architecture of Ultrawrap

to SQL, consistently yield query execution time that is comparable to that of SQL

queries written directly for the relational representation of the data. The analysis

further reveals the two optimizations are not uniquely required to achieve a success-

ful wrapper system. The evidence suggests effective wrappers will be those that are

designed to complement the optimizer of the target database.

4.1 Overview of Ultrawrap

Ultrawrap is comprised of four primary components as shown in Figure 4.1:

1. The translation of the relational schema to an OWL ontology, per the direct

mapping (Chapter 2): the putative ontology (PO).

2. The creation of an intensional triple table in the database by augmenting the

relational schema with one or more SQL Views: the Tripleview.

3. Translation of SPARQL queries to equivalent SQL queries operating on the

Tripleview.
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4. The native SQL query optimizer, which becomes responsible for rewriting

triple based queries and effecting their execution on extensional relational

data.

These four components can be seen as four different language compilers. As an en-

semble, the first three provide for the logical mapping of schema, data and queries

between the relational and Semantic Web languages. The fourth component, the

SQL optimizer, is responsible for the evaluation of the data mappings and con-

comitant optimization of the query. The components of Ultrawrap may also be

decomposed as a compilation phase and a runtime phase.

4.1.1 Compilation

The goal of the compilation phase is the creation of the Tripleview. The first step

in the compilation phase is the translation of the relational schema to OWL.

Generating the Putative Ontology

To define the mapping of the relational data to RDF, the system first identifies the

putative ontology of the relational schema. The direct mapping of Chapter 3 is

implemented, which includes transformation rules for integrity constraints (foreign

keys and primary keys). As a reminder, the direct mapping consists of the following:

representing tables as ontological classes, foreign key attributes of a table as object

properties and all other attributes as datatype properties. Tables that represent a

many-to-many relationship (a.k.a. a join table) are translated to object properties.

Each property has its respective domain and range. Both datatype and object

properties have classes as domains. Datatype properties have a datatype as a range

while object properties have a class as its range.
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Creating the Tripleview

The putative ontology is the input to a second compilation step that creates a

logical definition of the relational data as RDF and embeds it in a view definition.

Per the Direct Mapping (Section 3), concatenating the table name with the primary

key value or table name with attribute name creates unique identifiers for subject,

predicate and objects. Subsequently, unique identifiers can be appended to a base

URI. A SQL Triplequery is a SELECT-FROM-WHERE (SFW) statements which

outputs triples. The WHERE clause filters attributes with null values (IS NOT

NULL), given that null values are not expressible in RDF. The SQL Tripleview is

comprised of a union of SQL Triplequeries.

Due to its simplicity, the starting point is the triple table approach. Even

though, studies have shown that storing RDF with the triple table approach in

a relational database is easily improved upon [4, 94], this issue is not relevant to

Ultrawrap because the relational data is not being materialized in a triple table.

Instead the relational data is virtually represented as a triple table through unma-

terialized views. Even though the goal is to define a virtual triple table, the physical

characteristics of the database and the capacity of the SQL optimizer to produce

optimal physical plans need to be anticipated. Toward that end, two refinements to

the Tripleview have been identified.

Refinement 1: The initial approach was to create a single Tripleview with 3 at-

tributes: (subject, predicate, object). The subject corresponds to concate-

nating the name of the table and the primary key value. The predicate is a constant

value that corresponds to each attribute name of each table. There can be two types

of object values: a value from the database or a concatenation of the name of a table

with its primary key value. However, joins were slow because the optimizer was not

exploiting the indexes on the primary keys. Therefore, the Tripleview was extended

to consist of 5 attributes: (subject, subject pk, predicate, object, object
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pk). Separating the primary key in the Tripleview allows the query optimizer to

exploit them because the joins are done on these values. If the object is a value,

then a NULL is used as the primary key of the object. The subject and object are

still kept as the concatenation of the table name with the primary key value be-

cause this is used to generate the final URI, which uniquely identifies each tuple in

the database. For simplicity, composite keys were not considered in the Tripleview.

Nevertheless, it is possible to augment the number of attributes in the Tripleview

to include each separate key value.

Refinement 2: Refinement 1 represented the entire database in a single Tripleview.

This meant that all values were cast to the same datatype (namely varchar). Even

though all values were cast to varchar, it is observed throughout the experiments that

the optimizer was still able to apply operators specific for other datatypes (i.e, >, <,

etc). However, the size of the object field of the Tripleview is the size of the largest

varchar which led to poor query performance. Due to this issue, it was beneficial to

create a separate Tripleview for each datatype. For varchar, this includes each length

declared in the schema. For example, datatypes with varchar(50) and varchar(200)

are considered different. Using multiple Tripleviews requires less bookkeeping than

one might anticipate. Each attribute is mapped to its corresponding Tripleview and

stored in a hashtable. Then, given an attribute, the corresponding Tripleview can

be retrieved.

Figure 4.2 shows an example relational database. Pseudo-code for creating

the Tripleviews is shown in Algorithm 1, 2, 3 and 4. The complexity of these

algorithms is linear with respect to the size of the putative ontology (PO). The

logical contents of the Tripleviews are shown in Tables 4.1, 4.2, 4.3, 4.4. Figure 4.3

shows the CREATE VIEW statements for the Tripleviews.
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Product

id label pnum1 pnum2 prodFK

1 ABC 1 2 4

1 XYZ 3 3 5

Producer

id title location

4 Foo TX

5 Bar CA

Figure 4.2: Example of Product and Producer tables of BSBM

PO ←− Transform Schema to OWL;
V ←− ∅;
foreach ontological object x of PO do

if x is a OWL Class then
pk = getPrimaryKey(x) ;
S ←− SELECT concat(x,pk) as s, pk as s id, "rdf:type"

as p, x as o, null as o id FROM x ;
add S to V ;

end

end
return createTripleview("Tripleview type", V )

Algorithm 1: Pseudo-code to create a Tripleview for types

PO ←− Transform Schema to OWL;
V ←− ∅;
foreach ontological object x of PO do

if x is a OWL Datatype Property then
datatype = getDatatype(x);
if datatype == varchar then

domain = getDomain(x) ;
pk = getPrimaryKey(domain) ;
S ←− SELECT concat(domain,pk) as s, pk as s id, "x"

as p, x as o, null as o id FROM domain WHERE x IS

NOT NULL ;
add S to V ;

end

end

end
return createTripleview("Tripleview varchar", V )

Algorithm 2: Pseudo-code to create a Tripleview for Varchar Datatype Prop-
erties
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PO ←− Transform Schema to OWL;
V ←− ∅;
foreach ontological object x of PO do

if x is a OWL Object Property then
domain = getDomain(x);
d pk = getPrimaryKey(domain);
range = getRange(x);
r pk = getForeignKeyAttributeInDomain(range, domain);
S ←− SELECT concat(domain, d pk) as s, d pk as s id,

concat(domain, #,range) as p, concat(range, r pk) as

o, r pk as o id FROM x ;
add S to V ;

end

end
return createTripleview("Tripleview object", V )

Algorithm 3: Pseudo-code to create a Tripleview for Object Properties

input : A name n of the tripleview and a list Q of Triple queries
output: The Tripleview

TripleV iew ←− ‘CREATE VIEW n(s, s id, p, o, o id) AS’ ;
foreach Triple query q in Q do

if q is the last element in Q then TripleV iew ←− q;
else TripleV iew ←− q + UNION ALL;

end
return TripleView

Algorithm 4: Pseudo-code of the createTripleview method

S S ID P O O ID

Product1 1 type Product NULL

Product2 2 type Product NULL

Producer4 4 type Producer NULL

Producer5 5 type Producer NULL

Table 4.1: Logical contents of Tripleview for types
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CREATE VIEW Tripleview_type(s, s_id, p, o, o_id) AS

SELECT Product+id as s, id as s_id, type as p, Product as o, null as o_id

FROM Product

UNION ALL

SELECT Producer+id as s, id as s_id, type as p, Producer as o, null as o_id

FROM Producer;

CREATE VIEW Tripleview_varchar50(s, s_id, p, o, o_id) AS

SELECT Product+id as s, id as s_id, label as p, label as o, null as o_id

FROM Product WHERE label IS NOT NULL

UNION ALL

SELECT Producer+id as s, id as s_id, title as p, title as o, null as o_id

FROM Producer WHERE title IS NOT NULL

UNION ALL

SELECT Producer+id as s, id as s_id, location as p, location as o, null as o_id

FROM Producer WHERE location IS NOT NULL;

CREATE VIEW Tripleview_int(s, s_id, p, o, o_id) AS

SELECT Product+id as s, id as s_id, pNum1 as p, pNum1 as o, null as o_id

FROM Product WHERE pNum1 IS NOT NULL

UNION ALL

SELECT Product+id as s, id as s_id, pNum2 as p, pNum2 as o, null as o_id

FROM Product WHERE pNum2 IS NOT NULL;

CREATE VIEW Tripleview_object(s, s_id, p, o, o_id) AS

SELECT Product+id as s, id as s_id, Product#producer as p,

Producer+prodFk as o, prodFk as o_id

FROM Product

Figure 4.3: CREATE VIEW statements defining the Tripleviews

S S ID P O O ID

Product1 1 Product#label ABC NULL

Product2 1 Product#label XYZ NULL

Producer4 1 Producer#title Foo NULL

Producer4 1 Producer#location TX NULL

Producer5 1 Producer#title Bar NULL

Producer5 1 Producer#location CA NULL

Table 4.2: Logical contents of Tripleview for varchar
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S S ID P O O ID

Product1 1 Product#pNum1 1 NULL

Product1 1 Product#pNum2 2 NULL

Product2 2 Product#pNum1 3 NULL

Product2 2 Product#pNum2 3 NULL

Table 4.3: Logical contents of Tripleview for int

S S ID P O O ID

Product1 1 Product#producer Producer4 4

Product2 2 Product#producer Producer5 5

Table 4.4: Logical contents of Tripleview for object properties

4.1.2 Runtime

Ultrawrap’s runtime phase encompasses the translation of SPARQL queries to SQL

queries on the Tripleviews and the maximal use of the SQL infrastructure to do the

SPARQL query rewriting and execution.

SPARQL to SQL translation

SPARQL is a graph pattern matching query language that has the form:

SELECT ?var1 ? var2 . . .

WHERE {

triple-pattern-1.

triple-pattern-2.

. . .

triple-pattern-n.

}

where each triple-pattern consists of a subject, predicate, object and any of these

can be a variable or a constant URI. Variables can occur in multiple triple-patterns

implying a join. Consider the following SPARQL query as our running example:
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SELECT ?lbl ?pn1

WHERE{

?x :label ?lbl.

?x :pnum1 ?pn1.

}

This SPARQL query binds the predicate of the first triple pattern to the constant

:label and the predicate of the second triple-pattern to the constant :pnum1. The

variable ?x indicates that the results of triple-pattern-1 and triple-pattern-2 are to

be joined and the final result is the projection of the binding to the variable ?lbl

and ?pn1.

The translation of the SPARQL query to a SQL query on the Tripleviews fol-

lows a classic compiler structure. First, a parser converts the SPARQL query string

to an Abstract Syntax Tree (AST). The AST is translated into an SPARQL algebra

expression tree. The SQL translation is accomplished by traversing the expression

tree and replacing each SPARQL operator. Each internal node of the expression

tree represents a SPARQL binary algebra operator while the leaves represent a Ba-

sic Graph Patterns (BGP), which is a set of triple patterns. A SPARQL BGP is a

set of triple patterns where each one maps to a Tripleview. A SPARQL Join maps to

a SQL Inner Join, a SPARQL Union maps to the SQL Union, a SPARQL Optional

maps to SQL Left-Outer Join. In the previous example, there is only one BGP with

two triple patterns and a Join between the triple patterns. The resulting SQL query

is:

SELECT t1.o AS lbl, t2.o AS pn1

FROM tripleview_varchar50 t1, tripleview_int t2

WHERE t1.p = ‘label’ AND t2.p = ‘pnum1’ AND t1.s_id = t2.s_id

Hereafter, this is called the Ultrawrap query. Note that the mapping mentioned

in Refinement 2 was used in order to know which Tripleview to use. At the initial
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setup of the runtime, a hash table with the contents of the mapping is created.

Therefore given a property such as :label (key), the mapped Tripleview, in this

case tripleview varchar50 (value) can be retrieved.

SQL engine is the Query Rewriter

Given the Ultrawrap query to be executed on the Tripleviews, the query is executed

and it is observed how the SQL engine operates. These results are described in the

following section. A main concern is if the SQL query can actually be parsed and

executed on the Tripleviews, given the view is a very large union of a large amount

of Triplequeries (SFW statements). In the evaluation, BSBM consisted of 10 tables

with a total of 78 attributes and Barton consisted of 20 tables with a total of 61

attributes.

4.2 Two Important Optimizations

Upon succeeding in ultrawrapping different RDBMSs and reviewing query plans, two

relational optimizations emerged as important for effective execution of SPARQL

queries: 1) detection of unsatisfiable conditions and 2) self-join elimination. Perhaps,

not by coincidence, these two optimizations are among semantic query optimization

(SQO) methods introduced in the 1980s [39, 41, 121]. In SQO, the objective is to

leverage the semantics, represented in integrity constraints, for query optimization.

The basic idea is to use integrity constraints to rewrite a query into a semantically

equivalent one. These techniques were initially designed for deductive databases

and then integrated in commercial relational databases [41].

Figure 4.4 shows the logical query plan of the Ultrawrap SQL query from the

running example. This section describes how the query plan evolves through these

optimizations. Describing a general-purpose implementation of these optimizations

is not in the scope of this paper. The interested reader may see [39, 41]. In this
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Product(

σ"label"IS"NOT"NULL"""

π`Product’+id"as"S,"`label’"as"P,"label"as"O"

Producer(

σ"<tle"IS"NOT"NULL"""

π`Producer’+id"as"S,"`<tle’"as"P,"<tle"as"O"

Product(

σ"pnum1"IS"NOT"NULL"""

π`Product’+id"as"S,"`pnum1’"as"P,"pnum1"as"O"

Product(

σ"pnum2"IS"NOT"NULL"""

π`Product’+id"as"S,"`pnum2’"as"P,"pnum2"as"O"

Tripleview_varchar50(t1(
Tripleview_int(t2(

U( U(

σ"p"="`label’"" σ"p"="`pnum1’""

πt1.o"as"lbl,t2.o"as"pn1"

Figure 4.4: Initial query plan of the running example

query plan, for each of the triple patterns in the query, the Tripleview is accessed,

which consists of a union of all the Triplequeries.

4.2.1 Detection of Unsatisfiable Conditions

The idea of this optimization is to determine that a query result is empty by de-

termining, without executing the query. This happens, for example, when a pair

of predicate constants are inconsistent [39]. The application of the following trans-

formations eliminates columns from the plan that are not needed to evaluate the

SPARQL query.

Elimination by Contradiction: Consider a query

SELECT * FROM R WHERE A = x AND A = y

such that x 6= y. Then the result of that query is empty. For example, it is clear

that the query
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SELECT * FROM Product WHERE ProductID = 1 AND ProductID = 2

will never return results.

Unnecessary Union Sub-tree Pruning: Given a query that includes the UNION

operator and where it has been determined that an argument of the UNION is

empty; then the corresponding argument can be eliminated. For example:

UNION ALL ({}, S, T) = UNION ALL (S, T)

UNION ALL ({}, T) = T

In Ultrawrap’s Tripleview, the constant value in the predicate position acts as the

integrity constraint. Consider the following Tripleview:

CREATE VIEW Tripleview_varchar50(s,s_id,p,o,o_id) AS

SELECT "Producer"+id as s, id as s_id, "title" as p, title as o, null as o_id

FROM Producer WHERE title IS NOT NULL

UNION ALL

SELECT "Product"+id as s, id as s_id, "label" as p, label as o, null as o_id

FROM Product WHERE label IS NOT NULL

Now consider the following Ultrawrap query return all labels:

SELECT o FROM Tripleview_varchar50 WHERE p = "label"

The first Triplequery from Tripleview varchar50 contains "title" as p which

defines p = "title". The query contains p = "label". Both predicates cannot

be satisfied simultaneously. Given the contradiction, the Triplequery containing

"title" as p of Tripleview varchar50 can be replaced with the empty set. Since

the Tripleview’s definition includes all possible columns, any specific SPARQL query

will only need a subset of the statements defined in the view. Application of elimi-

nation by contradiction enables removing, the unnecessary UNION ALL conditions.

Thus the combination of the two transformations reduces the Tripleview to precisely
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Product(

σ"label"IS"NOT"NULL"""

π`Product’+id"as"S,"`label’"as"P,"label"as"O"

Product(

σ"pnum1"IS"NOT"NULL"""

π`Product’+id"as"S,"`pnum1’"as"P,"pnum1"as"O"

πt1.o"as"lbl,t2.o"as"pn1"

Figure 4.5: Query plan after application of Detection of Unsatisfiable Conditions
optimization

the subset of referenced columns. The differences in the query plans in Figures 4.4

and 4.5 illustrate the impact of these optimizations.

Augmenting Ultrawrap

The Ultrawrap architecture is readily extended to include the detection of unsatisfi-

able conditions optimization. By creating such a version, Augmented Ultrawrap, the

following controlled experiment was conducted. Instead of creating a mapping be-

tween each attribute in the database and its corresponding Tripleview, a mapping is

created for each attribute to its corresponding Triplequery. For example, the prop-

erty :label is mapped to the Triplequery: SELECT "Product"+id as s, id as

s id, "label" as p, label as o, null as o id FROM Product WHERE label IS

NOT NULL. At the initial setup of the runtime, a hash table with the contents of this

mapping is generated. Therefore given a property such as :label (key), the mapped

Triplequery (value) can be retrieved. The view definition nested in the SQL querys

FROM clause is replaced with the Triplequery.

93



4.2.2 Self-join Elimination

Join elimination is one of the several SQO techniques, where integrity constraints

are used to eliminate a literal clause in the query. This implies that a join could also

be eliminated if the table that is being dropped does not contribute any attributes

in the results [39]. The type of join elimination that is desired is the self-join

elimination, where a join occurs between the same tables. Two different cases are

observed: self-join elimination of projection and self-join elimination of selections.

Self-join elimination of projection: This occurs when attributes from the same

table are projected individually and then joined together. For example, the following

unoptimized query projects the attributes label and pnum1 from the table product

where id = 1. However each attribute projection is done separately and then joined:

SELECT p1.label, p2.pnum1

FROM product p1, product p2

WHERE p1.id = 1 and p1.id = p2.id

Given a self-join elimination optimization, the previous query may be rewritten as:

SELECT label, pnum1 FROM product WHERE id = 1

Self-join elimination of selection: This occurs when a selection on attributes

from the same table are done individually and then joined together. For example, the

following unoptimized query selects on pnum1 > 100 and pnum2 < 500 separately

and then joined:

SELECT p1.id

FROM product p1, product p2

WHERE p1.pnum1 >100 and p2.pnum2 < 500 and p1.id = p2.id

Given a self-join elimination optimization, the previous query may be rewrit-

ten as:
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Product(

σ"label"IS"NOT"NULL"AND"pnum1"IS"NOT"NULL"""

π"label,"pnum1"

Figure 4.6: Query plan after self-join elimination optimization

SELECT id FROM product WHERE pnum1 > 100 and pnum2 < 500

Figure 4.6 shows the final query plan after the self-joins are removed.

4.3 Evaluation

The evaluation requires workloads where the SPARQL queries anticipated that the

RDF data was derived from a relational database. Two existing benchmarks fulfill

this requirement. The Berlin SPARQL Benchmark (BSBM) [23] imitates the query

load of an e-commerce website. The Barton Benchmark [5] replicates faceted search

of bibliographic data. For Barton, the readily available RDF data was derived from

a dump of MITs Barton library catalog. The original relational data is not available.

Similarly the only queries that are available are queries written in SQL against a

triple table schema. A version of Barton on par with BSBM was created. This new

version of Barton was packaged so the community may reuse it. In lieu of MITs

library catalog a relational form of DBLP was used. The SPARQL queries and SQL

queries that operate directly on the relational version of DBLP were deduced from

the english specification of the queries. Details of the relational schemas and queries

for the BSBM and Barton benchmark can be found in the Appendix.

The objective of this evaluation is to observe the behavior of commercial

relational databases. Therefore the evaluation compares execution time, queries

plans, and the optimizing transforms used between the Ultrawrap SQL queries and
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the benchmark-provided SQL queries on the respective RDBMS. Other possible ex-

periments include comparing Ultrawrap with other Wrapper systems (i.e. D2RQ).

However this is not in the scope of this work. Nevertheless, as shown in the re-

sults, Ultrawrap query execution time is comparable with the execution time of

benchmark-provided SQL queries. Such results have not been accomplished by any

other Wrapper system [23, 66].

4.3.1 Platform

Ultrawrap was installed on Microsoft SQL Server 2008 R2 Developer Edition, IBM

DB2 9.2 Express Edition and Oracle 11g Release 2 Enterprise Edition. Experiments

were conducted on a Sun Fire X4150 with a four core Intel Xeon X7460 2.66 GHz

processor and 16 GB of RAM running Microsoft Windows Server 2008 R2 Standard

on top of VMWare ESX 4.0. SQL Server and Oracle had access to all cores and

memory, while DB2 had only access to one core and 2 GB of RAM.

4.3.2 Workload

The BSBM dataset is equivalent to approximately 100 million RDF triples and

requires approximately 11 GB of storage. For Barton, the DBLP dataset is equiv-

alent to approximately 45 million RDF triples and requires approximately 4 GB

of storage. Indexes were built on every foreign key and on attributes that were

being selected on in the benchmark queries. The execution time was calculated by

using the elapsed time returned from SQL Server’s SET STATISTICS ON, DB2’s

db2batch and Oracle’s SET TIMING ON option.

Note that the DB2 Express Edition limits itself to 2 GB of RAM. Otherwise,

the available RAM is larger than the benchmark databases. To control for this,

both cold and warm start experiments were run. Warm start experiments were

done by loading the data, restarting the databases and executing variants of each
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Selectivity Inner Joins Left-Outer Join Predicate Variable

Low BSBM 1, 3, 10, Barton 5, 7 - BSBM 9, 11
High BSBM 4, 5, 6, 12 BSBM 2, 7, 8 Barton 1, 2, 3, 4, 6

Table 4.5: Query characteristics of the BSBM and Barton queries

query twenty times. Cold start experiments were done by restarting the database

after each execution of a query. The results of the cold start experiments are not

qualitatively different than the warm start results and thus are omitted.

The benchmark queries consist of a wide variety of operators and charac-

teristics: Basic Graph Patterns, UNION, FILTER, OPTIONAL, ORDER BY and

unbounded predicates with high and low selectivity. Details about the queries for

both BSBM and Barton benchmark can be found in the Appendix. Characteristics

of the queries are shown in Table 4.5.

The initial assessment suggests observations be organized as four cases:

Case 1) Detection of Unsatisfiable Conditions and Self-join Elimination

If both optimizations are applied then the UNION ALLs of the Tripleviews should

not appear in the query plans and redundant self-joins should be eliminated. The

execution time and query plans of Ultrawrap queries should be comparable to the

corresponding benchmark-provided SQL queries. This should be the case for all

queries except the special-case of predicate variable queries, which form Case 4.

Case 2) Detection of Unsatisfiable Conditions without Self-join Elimina-

tion

If only the first optimization is applied, then the UNION ALLs of the Tripleviews do

not appear in the query plans and the number of subqueries is equal to the number

of triple patterns in the original SPARQL query. When the selectivity is high, the

execution time of Ultrawrap queries should be comparable to benchmark-provided
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SQL queries because the number of tuples that are self-joined is small. On the other

hand, when selectivity is low the number of tuples joined is larger and the overhead

is more evident. Note that the self-join elimination optimization can only be applied

after the UNIONs have been eliminated; hence the complementary case does not

occur.

Case 3) No optimizations

If no optimizations are applied then the UNION ALLs of the Tripleviews are not

eliminated. In other words, the physical query plan is equal to the initial logical

query plan (e.g. Figure 8). The Ultrawrap query execution time should not be

comparable to the benchmark-provided SQL queries because every Triplequery in

the Tripleviews must be executed.

Case 4) Predicate variable queries

Predicate variable queries are queries that have a variable in the predicate position of

a triple pattern. Given a direct mapping, the predicate variable in a SPARQL query

is a one-to-many mapping that ranges over all attributes in the database. These

types of queries cannot use the mapping between the attributes and its corresponding

Tripleview because the attribute is unknown. Further, because the attribute is

unknown, detection of unsatisfiable conditions cannot be applied. For these queries,

the Tripleview described in Refinement 1 is used.

In a paper on the use of views in data integration, Krishnamurthy et. al.

[87] show that queries with variables ranging over attributes and table names are of

higher order logic. Relational algebra languages, such as SQL, do not support higher

order logic [87, 89]. Similarly, a SPARQL query with a predicate variable does not

have a concise, semantically equivalent SQL query. By concise it is meant that the

SQL query itself will avoid a union of queries over different tables or columns.
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For the SPARQL predicate variable queries, when writing the benchmark

SQL queries, a SQL developer has visibility on the SQL schema and has related

domain knowledge. In most cases that developer will understand that only a

few columns are of interest, and write a smaller SQL query than the correspond-

ing SPARQL query. In other words, the SQL query will access certain individ-

ual columns, but the SPARQL query will expand to access all columns in the

database. This occurs for all such queries for both benchmarks. Thus, it is arguable

whether the tests comparing SPARQL queries that contain predicate variables, with

the benchmark-provided SQL queries provides a semantically equivalent, apples-to-

apples test. Nevertheless, the queries are executed and the data is included.

4.3.3 Results

Results of two experiments are reported. The first experiment, Ultrawrap Exper-

iment, evaluates Ultrawrap implemented as presented. The second experiment,

Augmented Ultrawrap Experiment, evaluates a version of Ultrawrap augmented

with the detection of unsatisfiable conditions optimization.

DB2 implements both optimizations. SQL Server implements the detection

of unsatisfiable conditions optimization. Oracle implements the self-join elimination

optimization, but it fails to apply it if the detection of unsatisfiable conditions opti-

mization is not applied. Neither optimization is applied on the predicate variables

queries by any RDBMS. Table 4.6 summarizes the optimizations implemented by

each RDBMS. The results of both experiments are presented in Figures 11-13. The

Ultrawrap execution time is normalized w.r.t the benchmark-provided SQL query

execution time for each respective RDBMS, i.e. benchmark-provided SQL query

execution time is 1.
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RDBMS Detection of Unsatisfiable Conditions Self-join Elimination

DB2 Yes Yes

SQL Server Yes No

Oracle No Yes

Table 4.6: Optimizations implemented by existing RDBMS

4.3.4 Ultrawrap Experiment

DB2 implements both optimizations. Therefore it is expected that it will execute

Ultrawrap queries comparable to native SQL queries (Case 1). This is the case for

7 of the 12 SPARQL queries with bound predicates (BSBM 2, 5, 6, 8, 10, 12 and

Barton 7). For the exceptions, BSBM 1, 3, 4 and Barton 5, the optimizer generated

a query plan typical of the benchmark-provided SQL queries, but with a different

join order. BSBM 7 has nested left-outer joins. For that query, the DB2 optimizer

did not push the respective join predicates into the nested queries and corresponding

index-based access paths are not exploited.

SQL Server implements the detection of unsatisfiable conditions optimiza-

tions but not self-join elimination. Thus, one would still expect that the high se-

lectivity queries would perform comparable or better than the benchmark-provided

SQL queries (Case 2). This is the case for all 7 such queries. For BSBM 4, the

optimizer produced a different join order for the two versions of the query, but this

time, the Ultrawrap query was better. For the low selectivity queries, review of the

query plans reveals the discrepancy in performance is due precisely to the absence

of the self-join elimination.

Although Oracle implements self-join elimination it does not apply it in this

experiment, and thus does not apply either distinguished optimizations (Case 3).

Nevertheless, on 7 of the 12 queries with bound predicates, the Ultrawrap execution

is comparable or better than the benchmark-provided SQL query execution. Review

of the query plans yields a third valuable optimization: join predicate push-down
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Figure 4.7: Ultrawrap Experiment results on BSBM

into each of the Triplequeries in the UNION ALL of the Tripleviews. Even though

each Triplequery is executed, most do not contribute to the final result. By virtue

of the additional predicate push-down the execution overhead is minimal.

It is expected that neither optimization be applied for predicate variable

queries. This is the case for all three RDBMSs (Case 4). Nevertheless, there are

some unanticipated results. The benchmark-provided SQL queries and Ultrawrap

queries for Barton 1 and 6 have similar query plans hence the execution times are

comparable. SQL Server outperforms the other systems on BSBM queries 9 and 11

while Oracle outperforms the other systems on Barton 3 and 4. For these cases, the

optimizer pushed selects down.

4.3.5 Augmented Ultrawrap Experiment

Augmented Ultrawrap greedily applies the detection of unsatisfiable conditions op-

timization to the Ultrawrap SQL queries prior to passing the query to the RDBMS

for evaluation. Note, that this optimization is not applicable to triple patterns with

predicate variables. This should not, and did not impact the behavior of queries

with predicate variables. For clarity and space, the corresponding data is omitted.

Figure 4.9 contains the results for the Augmented Ultrawrap experiment.
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B1	   B2	   B3	   B4	   B6	   B5	   B7	  
Unbounded	  Predicate	   Low	  Selec;vity	  

Benchmark	  SQL	   1	   1	   1	   1	   1	   1	   1	  

UW	  DB2	   1.75	   31.18	   7.61	   162.85	   0.27	   13.56	   2.17	  

UW	  SQL	  Server	   1.02	   48.44	   50.64	   43.08	   1.07	   2.13	   1.29	  

UW	  Oracle	   1.43	   116.64	   1.21	   3.12	   1.04	   6.67	   0.92	  
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Figure 4.8: Ultrawrap Experiment results on Barton

In this experiment Cases 2 and 3 are eliminated. Of the three RDBMS

only Oracle does not implement detection of unsatisfiable conditions. Thus, de-

spite experimenting with closed proprietary systems, this experiment constitutes a

controlled test of the value of this optimization.

Observe that Oracle now performs comparable or better on all bound predi-

cate Ultrawrap queries than the comparable benchmark-provided SQL queries. In-

spection of the plans reveals that the Oracle optimizer applies the self-join elimi-

nation optimization where it did not in the first experiment. Thus, in the second

experiment, Oracle’s plans include both distinguished optimizations (Case 1). For

BSBM 1, 3, 4 and Barton 7, the Ultrawrap execution is better than the benchmark-

provided SQL query execution because the optimizer produced an optimal join order

for the Ultrawrap queries. To the best of our knowledge, the benchmark-provided

SQL queries were tuned for better performance. Due to lack of Oracle DBA skills,

benchmark-provided SQL queries BSBM 1, 3, 4 and Barton 7 were not tuned to the

best performance possible.

SQL Server results are largely unchanged.

The only unanticipated results were changes for DB2 for the unsuccessful
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Barton	  5	   Barton	  7	   BSBM	  1	   BSBM	  3	   BSBM	  10	   BSBM	  4	   BSBM	  5	   BSBM	  6	   BSBM	  12	   BSBM	  2	   BSBM	  7	   BSBM	  8	  

Low	  Selec8vity	  	   High	  Selec8vity	  	   Le?	  Outer	  Join	  w/	  High	  
Selec8vity	  	  

Benchmark	  SQL	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	  

UW	  DB2	   12.33	   2.08	   1.02	   8.58	   1	   4.03	   1.02	   1	   1.28	   1.04	   303.07	   1.29	  

UW	  SQL	  Server	   1.62	   1.32	   2.19	   2.69	   3.69	   0.99	   1.36	   1.1	   1	   1.24	   0.94	   1.27	  

UW	  Oracle	   2.72	   0.92	   0.62	   0.17	   1.19	   0.75	   1.39	   0.99	   1	   1.57	   1.57	   1.27	  
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Figure 4.9: Augmented Ultrawrap Experiment results on BSBM and Barton
bounded predicate queries.

bounded predicate queries from the Ultrawrap Experiment (BSBM 1, 3, 4, 7 and

Barton 5). In all cases, performance improved. This was the result of changes in the

join order, and choosing additional index-based access paths. But in only 1 of the 5

queries, BSBM 1, does the optimizer choose the same join-order as the benchmark-

provided SQL query. A number of options were investigated to get better join orders

and concomitant theories as to the search behavior of the DB2 optimizer. None of

these options resolved the issues..

4.4 Discussion

The following points deserve elaboration:

Self-join elimination: The number of self-joins and their elimination is not, by

itself, an indicator of poor performance. The impact of the self-join elimination

optimization is a function of the selectivity and the number of properties in the

SPARQL query that are co-located in a single table. The value of optimization is

less as selectivity increases. Qualitatively, the result is predictable. The conclusion

on quantitative results follows by comparing performance of low selectivity vs. high

selectivity queries on SQL Server as shown in Figure 4.7 and 13. The number of
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self-joins in the plan corresponds to the number of properties co-located in a table.

The phenomenon is reminiscent of the debate concerning the use of row-stores vs.

column stores started by Abadi et al [3, 4, 33, 122, 132]. Consideration of row-

stores vs. column-stores is outside the scope of this dissertation. Nevertheless,

these measurements may help ground that debate.

Join predicate push-down: The experiments with Oracle revealed that pushing

join predicates can be as effective as the detection of unsatisfiable conditions opti-

mization. For the case of BSBM 7 on Oracle, the optimizer did not push the join

predicates down; hence the poor query execution time.

Left-Outer Joins: The experiments revealed that no commercial optimizer elim-

inates self left-outer joins and OPTIONALs appear in many of the queries where

suboptimal join orders are determined. The experimental results are supportive of

hearsay in the Semantic Web community that the endemic use of OPTIONAL in

SPARQL queries, which compiles to a left-outer join, is outside the experience of the

database community. The speculation is that these types of queries are not common

in a relational setting, hence the lack of support in commercial systems.

Join Ordering: Join order is a major factor for poor query execution time, both

on Ultrawrap and benchmark-provided SQL queries. Even though DB2 eliminated

self-joins in the original Ultrawrap experiment, the optimizer often generated sub-

optimal join order for the Ultrawrap queries but did so less often for the Augmented

Ultrawrap queries. A possible explanation is simply the size of the search space. For

Ultrawrap queries the optimizer has to evaluate each query within the large union

in the definition of the Tripleviews. The Augmented Ultrawrap eliminates unneeded

UNION ALL elements, reducing the search space.

Counting NULLs: Each Triplequery in the Tripleview filters null values. Such

a filter could produce an overhead, however a hypothesis is that the optimizer has

statistics of null values and avoids the overhead.
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4.5 Related Work

Per the taxonomy in Figure 1, systems that involve relational databases are RDBMS-

backed Triplestores and Wrapper systems.

RDBMS-backed Triplestores store RDF in different database schemas. Many

RDBMS-backed Triplestores use the triple table schema: a table with three at-

tributes, containing one row for each triple [44]. Another approach is the property

table: a table comprising of one column containing the subject plus one or more

columns for predicates that are defined for the subject [133]. Abadi et al. intro-

duced the vertical partitioned table: a table for every unique predicate in the data

[4]. Three published research efforts concerning RDBMS-backed triplestores are

described [4, 40, 55].

Abadi et al argue for the use of column-store based relational systems as the

basis of RDBMS-backed triplestores, as compared to more common row-stores. The

paper does not address SPARQL to SQL translation. With respect to translation,

the papers core contribution is the mapping of RDF to a relational schema com-

prising one table for each predicate value. The resulting tables each contain two

columns, the subject and object. The organization is well suited for join processing

on a column-store database.

Chebotko et al. present a translation of SPARQL to SQL, where the RDF

is modeled as a triple table. They argue that their translation may be composed

with additional mappings, enabling their translation to be applied to any relational

model of RDF. They reported empirical results for a synthetic RDF test set of 1

million triples. The generated SQL resembles the relational algebra rules used to

define the semantics of SPARQL, resulting in multiple coalesce functions in one

projection, null-accepting predicates, and outer union implementations [40]. The

translation is proven to be semantics preserving.

Elliot et al. improve upon Chebotko. Chebotko et al.’s methods exploit
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nested SQL queries. Central to Ellliot et al.’s contribution are algorithms that

produce flat SQL queries. Their evaluation was also on a triple table schema with

datasets between 2-5 million RDF triples [55].

Related studies have compared native triplestores with Wrapper systems and

native triplestores with relational database. In 2007, Svihla and Jelinek determined

that Wrapper systems are faster than the Jena and Sesame triplestores [126]. In

2009, Schmidt et al compared Sesame triplestore with the triple table, vertical par-

titioned storage scheme and the native relational scheme on MonetDB, a column-

store relational database. This study concluded that none of the RDF schemes was

competitive to the native relational scheme [116]. In 2010, MahmoudiNasab and

Sakr also compared the triple table, property table and vertical partitioned storage

scheme with the native relational scheme on IBM DB2. They also concluded that

none of the storage schemes compete with the native relational scheme [94]. In con-

clusion, benchmark-provided SQL queries on relationally stored data outperform

any other approach.

4.6 Concluding Remarks

To date, wrapper systems have suffered problems in performance and scalability [23,

66]. Yet, enterprise class relational database systems do not suffer so. Ultrawrap,

and the experiments in this paper move the focus to the relational systems. The

primary result being that the application of two known semantic query optimizations

may yield a query plan typical of a relational query plan.

The research commenced with a hypothesis that not only were such opti-

mizing transforms already known, but they are already implemented in commercial

software. To support the hypothesis, it is not necessary to demonstrate that a single

system is universally good. Nor does the hypothesis stipulate that the optimizer will

do the right thing every time. However, where and how a system failed to attain
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an excellent query plan is as critical to the analysis as success. Although in some

cases, as the target RDBMSs are proprietary systems we can only speculate to root

causes.

For SPARQL queries with bound predicate arguments the experimental re-

sults support the hypothesis. Two key optimizing transformations do appear in

commercial RDBMSs, and when applied render a SPARQL query plan comparable

to the plan generated for benchmark provided SQL queries. These optimizations

are not unique. Experiments reveal a third optimization, join predicate push-down,

which pushes join predicates into a view containing unions, enables useful perfor-

mance improvements across the workload, but does not rewrite the plan into one

more typical of a comparable SQL query.

Although we stipulated that tuned SQL query plans for the benchmark pro-

vided SQL queries forms a good baseline, the existence of optimizations, perhaps

not yet known in the literature, may provide further improvement. The third opti-

mization, join predicate push-down underscores the problem is not closed.

Even if one is satisfied with this research’s existence proposition, the em-

pirical results still demonstrate there is work to be done. Analysis of incongruous

performance between benchmark SQL queries and SPARQL queries revealed that

relational optimizers do not always determine optimal join orders. This is not news,

and even one of the benchmark SQL queries was not optimized correctly. However,

this issue manifest more often for the SPARQL queries. It is not possible to exam-

ine the internals of these systems to determine if the complexity of the Ultrawrap

queries is challenging the optimizers cost function, the search strategy or both. Re-

call Ultrawrap transforms a SPARQL query to a SQL query by naively substituting

SPARQL operators in the SPARQL query plan with relational operators. Indepen-

dent of the reason for the optimizers failing to determine optimal join orders, the

mere fact that they are failing suggests there is opportunity for improvement by
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means of less naive translations.

Even though Ultrawrap was not compared to other Wrapper systems, the

results of the experiments show that SPARQL queries with bound predicates on

Ultrawrap execute at nearly the same speed as semantically equivalent benchmark-

provided SQL queries. These results have not been accomplished by any other

Wrapper systems [23, 66].

The only point of controversy may be the distinction of SPARQL queries with

predicate variables. In these queries, a mapping stipulates that the variable may be

bound to the name of any column in the database. With these semantics, none of

the commercial RDBMSs are able to eliminate any elements of the Tripleview union.

However, developers familiar with the SQL schema of the RDBMS application are

able to choose particular columns from specific tables.

Queries with predicate variables should not be dismissed as a special case.

Queries of this form are intrinsic to faceted search, an increasingly common use

case. Even so, two arguments that maintain support for our hypothesis include;

one, per Krishnamurthy et al [87], predicate variables are a syntactic construct of

higher-order logic, therefore the simple SQL queries expressed in the benchmark

as equivalent to the SPARQL queries, produce the same answers on the test data,

(they are operationally equivalent), but their formal semantics is not the same, and

thus should not be used as a basis of comparison. The formally equivalent queries

will contain a union [21] and bear comparable performance penalty. A second, more

constructive argument is before writing the benchmark-provided SQL query, the

SQL developers determined, a priori, which attributes were relevant to the query

and which were inconsistent, and they themselves detected unsatisfiable conditions

and simply did not code them. In any case, queries with unbound predicate variables

remain an open problem.
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4.7 Summary

To summarize, our findings include:

• A mapping of relational data to a Tripleview comprising three columns does

not instigate the SQL optimizers to use indexes. The view was refined to

reflect physical schema properties.

• Two known query optimizations, detection of unsatisfiable conditions and self-

join elimination [39], when applied, not only result in comparable execution

times between SPARQL and the benchmark-provided SQL queries with bound

predicates, the optimizers will often produce identical query plans.

• In some cases, a third optimizing transform, join predicate push down, can be

as effective as the detection of unsatisfiable conditions.

• SPARQL queries containing variables that bind to the predicate position re-

main troublesome. This problem is related to an already described problem

concerning the use of views in the implementation of data integration systems.

• The impact of the self-join elimination optimization is a function of the selec-

tivity and the number of properties in the SPARQL query that are co-located

in a single table.

• No system, including those that eliminated self equi-joins, eliminated the self

left outer joins. The SPARQL optional operator is, by definition, a left outer

join.

By starting with a simple wrapper system and evaluating it with sophisti-

cated SQL query optimizers we are able to identify existing, well understood op-

timization methods that enable wrappers. The results provide a foundation for

identifying minimal requirements for effective wrapper systems.
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Chapter 5

Ontology Based Data Access
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1 The Direct Mapping (Chapter 3) and Ultrawrap (Chapter 4) address the

problem of automatically virtualizing a relational database as a Semantic Web data

source. The focus of this chapter is to consider OWL ontologies that have been

created independent of the relational database, as the target. The ontologies being

considered have richer expressive features including subclass and transitivity. The

problem is now the following: given a source relational database, a target OWL

ontology with subclass and transitivity, and a mapping from the source database to

the target ontology, how can SPARQL queries over the target ontology be answered

by the relational database through use of the mappings? This paradigm is called

Ontology-Based Data Access (OBDA).

Commonly, researchers have taken one of two approaches to developing

OBDA systems: a materialization-based approach (forward chaining) or a rewriting-

based approach (backward chaining). In the materialization-based approach, the

input relational database D, target ontology O and mapping M (from D to O)

are used to derive new triples that are stored in an RDF database Do, which is

considered to be the materialization of the data in D given M and O. The answer

to a SPARQL query Q over the target ontology is computed by directly posing Q

over Do [12]. See Figure 1.8.

In the rewriting-based approach, three steps are executed. First, a SPARQL

query Q over the ontology O is given. A new SPARQL query Qo is generated from

Q and O. The query Qo contains the knowledge of the ontology O and is called

the rewriting of Q w.r.t to O. The majority of the OBDA literature focuses on this

step [103]. Second, the mapping, M, is used to translate the SPARQL query Qo to

a SQL query Qsql over D [106, 107]. Finally, Qsql is evaluated on the database D,

which gives us the answer to the initial query Q. See Figure 1.7.

1Part of this chapter has been published as: Juan F. Sequeda, Marcelo Arenas, and Daniel P.
Miranker. 2014. OBDA: Query Rewriting or Materialization? In Practice, Both!. In Proceedings
of the 13th International Semantic Web Conference (ISWC ’14), Springer-Verlag New York, Inc.,
New York, NY, USA, 535-551. Marcelo Arenas and Daniel P. Miranker were advisors for this work.
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This chapter presents UltrawrapOBDA, an extension to Ultrawrap (Chap-

ter 4), which is an OBDA system comprising bidirectional evaluation. That is, a

hybridization of query rewriting (backward chaining) and materialization (forward

chaining).

The objective is to effect optimizations by pushing processing into the Re-

lational Databases Management Systems (RDBMS) and closer to the stored data.

Thus, maintaining a theme of making maximal use of existing SQL infrastructure.

It is observed that by compiling the ontological entailments as mappings, imple-

menting the mappings as SQL views and materializing a subset of the views, the

underlying SQL optimizer is able to reduce the execution time of a SPARQL query

by rewriting the query in terms of the views specified by the mappings. To the

best of our knowledge, this is the first OBDA system supporting ontologies with

transitivity by using SQL recursion.

5.1 Overview of UltrawrapOBDA

Similar to Ultrawrap (Chapter 4), two phases are distinguished: a compile phase and

a runtime phase. In the compile phase, the following is given as input: a relational

database D, an ontology O and a mappingM from D to O. Consider the following

relational database instance from the running example:

{EMP(1, Alice, CTO, NULL),

EMP(2, Bob, JavaProgrammer, 1),

EMP(3, John, SysAdmin, 1)}

and the following ontology:
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triple(: Programmer, subClass, : ITEmployee)

triple(: SysAdmin, subClass, : ITEmployee)

The following is a mapping M, from the relational database to the ontology. Sec-

tion 5.2.1 describes the mapping in detail:

EMP(s, x1, Java, x3) ∧ p = rdf:type ∧ o = :Programmer→ triple(s, p, o)

EMP(s, x1, SysAd, x3) ∧ p = rdf:type ∧ o = :SysAdmin→ triple(s, p, o)

The first step of this phase is to embed the ontological entailments of O in

the mapping M , which gives rise to a new mapping M?. This new mapping, M?,

is called the saturation of M w.r.t. O. The saturated mapping M? now includes

the following, as described in Section 5.2.2 and 5.2.3 :

EMP(s, x1, Java, x3) ∧ p = rdf:type ∧ o = :ITEmployee→ triple(s, p, o)

EMP(s, x1, SysAd, x3) ∧ p = rdf:type ∧ o = :ITEmployee→ triple(s, p, o)

Subsequently, mappingM? is implemented using SQL views, following the approach

of Ultrawrap (Chapter 4) and as further described in Section 5.2.4 .

CREATE VIEW ProgrammerView(S, P, O) AS

SELECT SID as S, "rdf:type" as P, ":Programmer" as O

FROM EMP WHERE JOB = "Java"

CREATE VIEW SysAdminView(S, P, O) AS

SELECT SID as S, "rdf:type" as P, ":SysAdmin" as O
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FROM EMP WHERE JOB = "SysAdmin"

CREATE VIEW ITEmployeeView(S, P, O) AS

SELECT SID as S, "rdf:type" as P, ":ITEmployee" as O

FROM EMP WHERE JOB = "Java"

UNION ALL

SELECT SID as S, "rdf:type" as P, ":ITEmployee" as O

FROM EMP WHERE JOB = "SysAdmin"

In order to improve query performance, an important issue is to decide which

views should be materialized using the data in D, as discussed in Section 5.3. The

hypothesis is that if a RDBMS rewrites queries in terms of materialized views, then

optimal query performance is achieved by only materializing the views representing

mappings to the leaf classes. In this case, the only views that need to be materialized

are ProgrammerView and SysAdminView. This is the last step of the compilation

phase.

In the runtime phase, the input is a query Q over the target ontology O,

which is written in SPARQL. The problem is to answer this query by rewriting it

into a SQL query over the views. Consider the following SPARQL query which

asks for all the IT Employees: SELECT ?x WHERE {?x rdf:type :ITEmployee}. The

syntactic translation of the previous SPARQL query to a SQL query in terms of the

views is: SELECT t1.s AS x FROM ITEmployee t1.

A key observation at this point is that existing SQL optimizers are able to

perform rewritings in order to execute queries against materialized views. This

means that the SQL optimizer is able to rewrite the original query, which is in

terms of the ITEmployee un-materialized view into a new query in terms of the

ProgrammerView and SysAdminView materialized views. Figure 5.1 illustrates the

architecture of UltrawrapOBDA.
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Figure 5.1: UltrawrapOBDAArchitecture

5.2 Mapping Relational Databases to RDF for OBDA

Mappings from relational databases to RDF are called RDB2RDF mappings. This

section defines the notion of saturation of an RDB2RDF mapping w.r.t. an on-

tology, which plays a fundamental role in this approach. An efficient algorithm

is defined to compute saturated mappings for ontologies not containing transitive

predicates. The results are then extended to include transitive predicates. Finally,

the implementation of RDB2RDF mappings as views in UltrawrapOBDAis presented.

5.2.1 Relational databases to RDF mappings

Recall from the Preliminaries (Chapter 2) that D is a countably infinite domain of

constants including the contents of a database. I is the infinite set of IRIs. L is the

infinite set of literals. O is a set of reserved keywords used to define an ontology.

In an OBDA system, relational databases are mapped into RDF graphs,

where every constant from D is transformed into either a IRI or a literal. This

process is usually carried over by using some built-in transformation functions [13,
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118]. For the sake of simplicity, assume that D = (IrO)∪L, which allows the use

of the constants in a relational database directly as IRIs or literals in an RDF graph.

Recall that triple is a ternary predicate that stores RDF graphs2. Notice that the

keywords in O are not allowed in D, as these are reserved for the specification of

ontologies.

A mapping from a relation database to RDF is denoted as an RDB2RDF

mapping. There are two related standards [13, 49]. Herein, an alternative approach

is adopted which has been widely used in the data exchange [12] and data integration

areas [90], and which is based on the use of first-order logic and its semantics to

define mappings. Two types of first-order logic rules are relational database to RDF

mappings are considered: for classes and predicates.

Definition 21 (Class RDB2RDF rule) Given a relational schema R such that

triple 6∈ R, a class RDB2RDF-rule ρ over R is a first-order formula of the form:

∀s∀p∀o∀x̄ α(s, x̄) ∧ p = rdf:type ∧ o = c→ triple(s, p, o), (5.1)

where α(s, x̄) is a first-order formula over R and c ∈ D.

Definition 22 (Predicate RDB2RDF rule) Given a relational schema R such

that triple 6∈ R, a predicate RDB2RDF-rule ρ over R is a first-order formula of

the form:

∀s∀p∀o∀x̄ β(s, o, x̄) ∧ p = c→ triple(s, p, o), (5.2)

where β(s, o, x̄) is a first-order formula over R and c ∈ D.

Finally, an RDB2RDF-rule over R is either a class or a predicate RDB2RDF-

rule over R. In what follows, the universal quantifiers ∀s∀p∀o∀x̄ are omitted from

2See Section 2.2.1 for more details.
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RDB2RDF rules. It is implicitly assumed that these variables are universally quan-

tified.

Example 8 Consider the relation EMP(EID,NAME,TYPE,MAN), the ontology class

:CTO and the ontology property foaf:name. The following class RDB2RDF rule

maps all the instances of the EMP table where TYPE = "CTO" as instances of the

:Executive class:

EMP(s, x1, CTO, x3) ∧ p = rdf:type ∧ o = :Executive→ triple(s, p, o) (5.3)

The following predicate RDB2RDF rule maps all the instances of the EMP table and

the corresponding value of the NAME attribute to the foaf:name property:

EMP(s, o, x2, x3) ∧ p = foaf:name→ triple(s, p, o) (5.4)

Let R be a relational schema. An RDB2RDF mappingM over R is a finite

set of RDB2RDF rules over R. Given an RDB2RDF mapping M and an instance

I over R, the result of applying M over I, denoted by JMKI , is an instance over

the schema {triple} that is defined as the result of the following process. For

every RDB2RDF rule of the form (5.1) and value c1 ∈ D, if there exists a tuple of

values d̄ from D such that I |= α(c1, d̄), then triple(c1, rdf:type, c) is included as

a fact of JMKI , and likewise for every RDB2RDF rule of the form (5.2). Notice that

JMKI represents an RDF graph and, thus, mappingM is a mapping from relational

databases into RDF graphs.

Example 9 Consider the relational database from the running example, and letM

be an RDB2RDF mapping consisting of the rules (5.3) and (5.4) from Example 8.
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Assume the following instance of the example schema:

I = {EMP(1, Alice, CTO, NULL),

EMP(2, Bob, JavaProgrammer, 1),

EMP(3, John, SysAdmin, 1)}

then JMKI consists of the following RDF triples:

triple(1, rdf:type, :Executive)

triple(1, foaf:name, "Alice")

triple(2, foaf:name, "Bob")

triple(3, foaf:name, "John")

5.2.2 Saturation of RDB2RDF mappings

Extending an RDB2RDF mapping to embed a given ontology is a fundamental step

in this approach. This process is formalized by the notion of a saturated mapping3.

The intuition is the following.

Consider an instance I of a relational schema R, and ontology O and a

mapping M. M? is considered the saturated mapping of M if the ontology O is

embedded inM?. This means that if the saturated mappingM? is applied over the

relational instance I, denoted as JM?KI , then the resulting RDF graph would be

the same as if the mappingM is applied over I, denoted as JMKI and then deriving

new RDF triples using the ontology O in a forward chaining approach. The formal

definition of saturated mapping is the following.

Definition 23 (Saturated mapping) Let M and M? be RDB2RDF mappings

over a relational schema R and O an ontology and where ΣO is a set of first-order

3The term “saturated” is inspired by the saturation step of the RQR algorithm from Perez-
Urbina et. al [105].
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formulae which encodes O. Then M? is a saturation of M w.r.t. O if for every

instance I over R and assertional RDF-triple (a, b, c):

JMKI ∪ ΣO |= triple(a, b, c) iff triple(a, b, c) ∈ JM?KI .

This section studies the problem of computing a saturated mapping from a given

mapping and ontology. In particular, the focus is on non-transitive ontologies, i.e.

ontologies not mentioning any triple of the form (a, rdf:type, transProp). In Sec-

tion 5.2.3, these results are extended to the case of ontologies with transitivity.

In order to generate a saturated mapping, the idea is to create inference rules

that generate new RDB2RDF rules from the existing ones in the input mapping

and the input ontology. Table 5.1 presents inference rules for eight ontological con-

structs: subclass (subClass), subproperty (subProp), domain (dom), range (range),

equivalent class (equivClass), equivalent property (equivProp), inverse property

(inverse) and symettric property (symProp). The saturation step is performed by

exhaustively applying the inference rules in Table 5.1.

Given an inference rule t:ρ1ρ2 from Table 5.1, where t is a triple and ρ1, ρ2

are RDB2RDF rules, and given an RDB2RDF mappingM and an ontology O, the

following needs to be done to apply t:ρ1ρ2 over M and O. First, replace the letters

A and B in t with actual URIs, say a ∈ I and b ∈ I, respectively.4 Second, check

whether the triple obtained from t by replacing A by a and B by b belongs to O, and

whether the RDB2RDF rule obtained from ρ1 by replacing A by a belongs to M.

If both conditions hold, then the inference rule can be applied, and the result is an

RDB2RDF mappingM′ consisting of the rules inM and the rule obtained from ρ2

by replacing A by a and B by b.

Example 10 Consider the RDB2RDF rule (5.3) from Example 8 which maps all

4If t = (A, rdf:type, symProp), then only replace A by a.
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(A, subClass, B) :
α(s, x̄) ∧ p = rdf:type ∧ o = A→ triple(s, p, o)

α(s, x̄) ∧ p = rdf:type ∧ o = B→ triple(s, p, o)

(A, subProp, B) :
β(s, o, x̄) ∧ p = A→ triple(s, p, o)

β(s, o, x̄) ∧ p = B→ triple(s, p, o)

(A, dom, B) :
β(s, o, x̄) ∧ p = A→ triple(s, p, o)

β(s, y, x̄) ∧ p = rdf:type ∧ o = B→ triple(s, p, o)

(A, range, B) :
β(s, o, x̄) ∧ p = A→ triple(s, p, o)

β(y, s, x̄) ∧ p = rdf:type ∧ o = B→ triple(s, p, o)

(A, equivClass, B)
or (B, equivClass, A)

:
α(s, x̄) ∧ p = rdf:type ∧ o = A→ triple(s, p, o)

α(s, x̄) ∧ p = rdf:type ∧ o = B→ triple(s, p, o)

(A, equivProp, B)
or (B, equivProp, A)

:
β(s, o, x̄) ∧ p = A→ triple(s, p, o)

β(s, o, x̄) ∧ p = B→ triple(s, p, o)

(A, inverse, B)
or (B, inverse, A)

:
β(s, o, x̄) ∧ p = A→ triple(s, p, o)

β(o, s, x̄) ∧ p = B→ triple(s, p, o)

(A, rdf:type, symProp) :
β(s, o, x̄) ∧ p = A→ triple(s, p, o)

β(o, s, x̄) ∧ p = A→ triple(s, p, o)

Table 5.1: Inference rules to compute saturated mappings.

the instances of the EMP table where TYPE = "CTO" as instances of the :Executive

class:

EMP(s, x1, CTO, x3) ∧ p = rdf:type ∧ o = :Executive→ triple(s, p, o)

and assume the following ontology that states that all Executives are also Employees:

O = {triple(:Executive, subClass, :Employee)}

Then by applying the first inference rule in Table 5.1:

(:Executive, subClass, :Employee) :
EMP(s, x1, CTO, x3) ∧ p = rdf:type ∧ o = :Executive→ triple(s, p, o)

EMP(s, x1, CTO, x3) ∧ p = rdf:type ∧ o = :Employee→ triple(s, p, o)
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the following RDB2RDF rule is inferred:

EMP(s, x1, CTO, x3) ∧ p = rdf:type ∧ o = :Employee→ triple(s, p, o)

which maps all the instances of the EMP table where TYPE = "CTO" as instances of

the :Employee class.

Given an RDB2RDF mappingM and an ontologyO, Sat(M,O) denotes the

RDB2RDF mapping obtained fromM and O by successively applying the inference

rules in Table 5.1 until the mapping does not change. The following theorem shows

that Sat(M,O) is a saturation ofM w.r.t. O, which justifies its use in our system.

Theorem 6 For every RDB2RDF mapping M and ontology O in RDFS, it holds

that Sat(M,O) is a saturation of M w.r.t. O.

Theorem 6 is a corollary of the fact that the first six rules in Table 5.1 encode

the rules to infer assertional triples from an inference system for RDFS given by

Munoz et. al. [101]. A natural question at this point is whether Sat(M,O) can be

computed efficiently. In this setting, the approach based on exhaustively applying

the inference rules in Table 5.1 can be easily transformed into a polynomial time

algorithm for this problem. However, if this transformation is done näıvely, then

the resulting algorithm is not efficient. For this reason, an algorithm is presented to

compute Sat(M,O) that is linear in the size of the input RDB2RDF mapping M

and ontology O, which are denoted by ‖M‖ and ‖O‖, respectively.

Theorem 7 There exists an algorithm that, given an RDB2RDF mapping M and

a non-transitive ontology O, computes Sat(M,O) in time O(‖M‖ · ‖O‖).

The following are the main ingredients of the algorithm in Theorem 7. Fix

a mapping M and an ontology O. In the first part, the algorithm transforms O

into an instance IO over the relational schema {triple}, which satisfies that for
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every (a, b, c) ∈ O: (1) if b ∈ {subClass, subProp, dom, range, rdf:type}, then

triple(a, b, c) ∈ IO; (2) if b = equivClass, then triple(a, subClass, c) ∈ IO

and triple(c, subClass, a) ∈ IO; (3) if b = equivProp, then triple(a, subProp,

c) ∈ IO and triple(c, subProp, a) ∈ IO; and (4) if b = inverse, then triple(a,

inverse, c) ∈ IO and triple(c, inverse, a) ∈ IO. Obviously, IO can be computed

in time O(‖O‖).

In the second part, the algorithm transforms M as follows: into an instance

IM over a relational schema consisting of binary predicates Fclass Fpred, Ch, Rs and

Ro. First, for every class RDB2RDF-rule in M of the form (5.1), a fresh natural

number m is assigned as an identifier of formula α(s, x̄), and then fact Fclass(m, c)

is included in IM (thus, Fclass is used to store the class RDB2RDF-rules in M).

Second, for every predicate RDB2RDF-rule in M of the form (5.2), a fresh natural

number n is assigned as an identifier of formula β(s, o, x̄), and then fact Fpred(n, c)

is included in IM (thus, Fpred is used to store the predicate RDB2RDF-rules inM).

Moreover, in this case fresh natural numbers k1, k2 and k3 are assigned as iden-

tifiers of formulae β(o, s, x̄), β(s, y, x̄) and β(y, s, x̄) (where y is a fresh variable),

respectively, and then the facts Ch(n, k1), Ch(k1, n), Rs(n, k2) and Ro(n, k3) are in-

cluded in IM (thus, these predicates are used to store some syntactic modifications

of formulae that are needed in the inference rules in Table 5.1). Finally, in this case

fresh natural numbers `1 are `2 are assigned as identifiers of formulae β(o, z, x̄) and

β(z, o, x̄) (where z is a fresh variable), respectively, and then the facts Rs(k1, `1) and

Ro(k1, `2) are included in IM. It is easy to see that IM can be computed in time

O(‖M‖).

With all the previous terminology, the problem of computing Sat(M,O) can

be reduced to the problem of computing the minimal model of a Datalog program

ΠM,O, which consists of the facts in (IO ∪ IM) together with the following set ∆ of
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rules representing the inference rules in Table 5.1:

triple(X, subClass, Y ), Fclass(U,X) → Fclass(U, Y )

triple(X, subProp, Y ), Fpred(U,X) → Fpred(U, Y )

triple(X, dom, Y ), Fpred(U,X), Rs(U, V ) → Fclass(V, Y )

triple(X, range, Y ), Fpred(U,X), Ro(U, V ) → Fclass(V, Y )

triple(X, inverse, Y ), Fpred(U,X), Ch(U, V ) → Fpred(V, Y )

triple(X, rdf:type, symProp), Fpred(U,X), Ch(U, V ) → Fpred(V,X),

where X, Y , U and V are variables. Notice that ∆ is a fixed set of rules (it depends

neither on M nor on O), and also that ∆ does not include rules for the keywords

equivClass and equivProp, as these are represented in IO by using the keywords

subClass and subProp, respectively.

In order to compute the minimal model of ΠM,O, the variables in the above

rules are instantiated to generate a ground Datalog program Π′M,O having the same

minimal model as ΠM,O. The key observation here is that Π′M,O can be computed in

time O(‖M‖·‖O‖), which proves Theorem 7 as the minimal model of a ground Dat-

alog program can be computed in linear time [48] and the time needed to compute

(IO∪IM) is O(‖M‖+‖O‖). More precisely, Π′M,O is defined as (IO∪IM)∪∆′, where

∆′ is generated from ∆ as follows. For every fact triple(a, b, c) ∈ IO, look for the

only rule in ∆ where this fact can be applied, and replace this rule by a new one where

X is replaced by a and Y is replaced by c (or just X is replaced by a if b = rdf:type

and c = symProp). For example, consider a triple triple(a, subClass, c), then gen-

erate the rule triple(a, subClass, b), Fclass(U, a) → Fclass(U, b). Let ∆1 be the

result of this process. Given that the set of rules ∆ is fixed, then ∆1 can be com-

puted in time O(‖O‖). Now for every rule ρ in ∆1, the following is done to transform

ρ into a ground rule. First replace the variable U in ρ by a value n in IM. If ρ
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(A, rdf:type, transProp) :
{βi(s, o, x̄i) ∧ p = A→ triple(s, p, o)}ki=1

Tc[
∨k

i=1 ∃x̄iβi]
(s, o) ∧ p = A→ triple(s, p, o)

.

Table 5.2: Inference rule to compute saturated mappings for transitivity

also contains a variable V , then notice that there exists at most one value m in IM

for which the antecedent of the rule could hold, as there exists at most one value

m such that Rs(n,m) holds, and likewise for predicates Ro and Ch. Thus, in this

case replace variable V in ρ for such a value m to generate a ground Datalog rule.

We conclude that the resulting set ∆′ of ground Datalog rules is computed in time

O(‖M‖ · ‖O‖) (given that the size of ∆1 is O(‖O‖)). This concludes the sketch of

the proof of Theorem 7.

5.2.3 Dealing with transitive predicates

This section presents how the approach presented in the previous section can be

extended with recursive predicates. This functionality is of particular interest as

the current work on OBDA does not consider transitivity, mainly because the query

language considered in that work is SQL without recursion [35]. From now on, given

a first-order formula ϕ(x, y), Tcϕ(x, y) is used to denote the transitive closure of

ϕ(x, y). This formula can be written in many different formalisms. For example, if

ϕ(x, y) is a conjunction of relational atoms, then Tcϕ(x, y) can be written as follows

in Datalog:

ϕ(x, y) → Tcϕ(x, y), ϕ(x, z),Tcϕ(z, y) → Tcϕ(x, y).

In UltrawrapOBDA, Tcϕ(x, y) is written as an SQL query with recursion. Then to

deal with an ontology O containing transitive predicates, the set of inference rules

in Table 5.1 is extended with the inference rule presented in Table 5.2.
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The rule in Table 5.2 states that given a transitive predicate A, any number k

of RDB2RDF rules of the form βi(s, o, x̄i)∧p = A→ triple(s, p, o) can be considered

for this predicate. Subsequently, a new RDB2RDF rule can be generated for A by

putting together the conditions βi(s, o, x̄i) in a formula γ(s, o) =
∨
i ∃x̄iβi(s, o, x̄i),

and then using the transitive closure Tcγ(s, o) of γ in an RDB2RDF rule Tcγ(s, o)∧

p = A→ triple(s, p, o). In order for this approach to work, notice that the syntax

of RDB2RDF rules (5.1) and (5.2) needs to be extended, so that formulae α and β

in them can be arbitrary formulae in a more expressive formalism such as (recursive)

Datalog.

Example 11 Consider the following RDB2RDF rule:

EMP(s, x1, x2, o) ∧ p = :hasSuperior→ triple(s, p, o)

and assume the following ontology:

O = {triple(:hasSuperior, rdf:type, transProp)}

Then by applying the transitivity inference rule in Table 5.2

(:hasSuperior, rdf:type, transProp) :
EMP(s, x1, x2, o) ∧ p = :hasSuperior→ triple(s, p, o)

TcEMP(s, x1, x2, o) ∧ p = :hasSuperior→ triple(s, p, o)

the following RDB2RDF rule is inferred:

TcEMP(s, x1, x2, o) ∧ p = :hasSuperior→ triple(s, p, o) (5.5)
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5.2.4 Implementing RDB2RDF mappings as views

Inspired by our previous work on Ultrawrap (Chapter 4), RDB2RDF mappings are

represented as SQL views. A first step is to represent each RDB2RDF rule as a SQL

query, called the Triplequery. Finally, a Tripleview is the union of Triplequeries.

Definition 24 (Triplequery) Given a RDB2RDF-rule ρ, a Triplequery imple-

ments ρ as a SQL query which outputs triples.

Example 12 Consider the following RDB2RDF rules:

EMP(s, x1, CTO, x3) ∧ p = rdf:type ∧ o = :Employee → triple(s, p, o)

EMP(s, x1, SysAdmin, x3) ∧ p = rdf:type ∧ o = :Employee → triple(s, p, o)

The corresponding Triplequeries are the following:

SELECT SID as S, "rdf:type" as P, ":Employee" as O

FROM EMP WHERE JOB = "CTO"

SELECT SID as S, "rdf:type" as P, ":Employee" as O

FROM EMP WHERE JOB = "SysAdmin"

Example 13 Consider the RDB2RDF rule (5.5) of Example 11:

TcEMP(s, x1, x2, o) ∧ p = :hasSuperior→ triple(s, p, o)

The corresponding Triplequery using SQL recursion is the following:

SELECT X as S, ":hasSuperior" as P, Y as O FROM

(WITH TCEMP(X, Y) AS (

SELECT EID, MAN FROM EMP

UNION ALL
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SELECT EMP.EID, TCEMP.Y FROM EMP, TCEMP WHERE EMP.MAN = TCEMP.X)

SELECT X, Y FROM TCEMP)

In practice, the Triplequeries include additional projections in order to sup-

port indexes, URI templates, datatypes and languages. However, for readability,

this simple version of these queries is considered (the reader is referred to Chapter

4 for specific details).

To implement an RDB2RDF mapping, all the class (resp. predicate) RDB2RDF-

rules for the same class (resp. predicate) are grouped together to generate a SQL

view called the Tripleview.

Definition 25 (Tripleview) A Tripleview is a SQL view comprising the union of

the Triplequeries for the same class (resp. predicate).

Example 14 The Tripleview for the class :Employee using the Triplequeries of

Example 12 is the following:

CREATE VIEW EmployeeView(S, P, O) AS

SELECT SID as S, "rdf:type" as P, ":Employee" as O

FROM EMP WHERE JOB = "CTO"

UNION ALL

SELECT SID as S, "rdf:type" as P, ":Employee" as O

FROM EMP WHERE JOB = "SysAdmin"

Example 15 The Tripleview for the transitive predicate :hasSuperior using the

Triplequery of Example 13 is the following:

CREATE VIEW HasSuperiorView(S, P, O) AS

SELECT X as S, ":hasSuperior" as P, Y as O FROM

(WITH TCEMP(X, Y) AS (
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SELECT EID, MAN FROM EMP

UNION ALL

SELECT EMP.EID, TCEMP.Y FROM EMP, TCEMP WHERE EMP.MAN = TCEMP.X)

SELECT X, Y FROM TCEMP)

5.3 Executing SPARQL Queries

This section describes how SPARQL queries are executed and optimized over the

RDBMS through a cost model that determines which views should be materialized.

5.3.1 SPARQL rewriting

The runtime phase executes SPARQL queries on the RDBMS. Ultrawrap’s approach

is reused. SPARQL queries are translated to SQL queries in terms of the views

defined for every class and property, which are denoted as Tripleviews (see Section

5.2.4).

Continuing with the example in Section 5.2.4, consider now a SPARQL query

which asks for all the Employees: SELECT ?x WHERE {?x rdf:type :Employee}. It

is clear that this query needs to be rewritten to ask for the CTO and SysAdmin.

The EmployeeView Tripleview in Section 5.2.4 implements the mappings to the

Employee class which consists of two Triplequeries, one each for CTO and SysAdmin.

Therefore, it is sufficient to generate a SQL query in terms of the EmployeeView.

Given that a Tripleview models a table with three columns, a SPARQL query is

syntactically translated to a SQL query in terms of the Tripleview. The resulting

SQL query is SELECT t1.s AS x FROM EmployeeView t1.

A natural question at this point is whether every SPARQL query has an

equivalent SQL query in this context, where RDB2RDF mappings play a funda-

mental role. In what follows a positive answer is given to this question.
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First some terminology is presented. Recall that JP KG denotes the answer

to a SPARQL query P over an RDF graph G, which consists of a set of solution

mappings, that is, a set of functions that assign a value to each selected variable in

P . For example, if P is the SPARQL query SELECT ?x WHERE {?x rdf:type ?y},

and G is an RDF graph consisting of the triples (1, rdf:type, :Employee) and

(2, rdf:type, :Employee), then JP KG = {µ1, µ2}, where µ1 and µ2 are functions

with domain {?x} such that µ1(?x) = 1 and µ2(?x) = 2. Moreover, given a SQL

query Q (that may use recursion) over a relational schema R and an instance I of

R, the notation JQKI is used to represent the answer of Q over I, which consists

of a set of tuples in this case. Finally, to compare the answer of a SQL query with

the answer of a SPARQL query, the function tr is used to transform a tuple into a

solution mapping (this function is defined in Section 3.2.2).

Given an RDB2RDF mappingM over a relational schema R and a SPARQL

query P , an SQL query Q over R is said to be a SQL-rewriting of P underM if for

every instance I of R, it holds that JP KJMKI = tr(JQKI). Moreover, P is said to be

SQL-rewritable under M if there exists a rewriting of P under M.

Theorem 8 Given an RDB2RDF mapping M, every SPARQL query is SQL-

rewritable under M.

The proof that the previous condition holds is by induction on the struc-

ture of a SPARQL query P and, thus, presents a (näıve) bottom-up algorithm for

translating P into an equivalent SQL query Q (given the mapping M). The base

case is a single a triple pattern t = {s p o}, where each one of its component is

either a IRI or a literal or a variable. This triple pattern is first translated into a

SPARQL query Pt, where each position in t storing a IRI or a literal is replaced by

a fresh variable. Then a filter condition is added to ensure that these fresh vari-

ables are assigned the corresponding IRIs or literals. Finally, a SELECT clause is

added to ensure that the output variables of t and Pt are the same. For example, if
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t = {?x rdf:type Employee}, then Pt is the following SPARQL query:

SELECT ?x WHERE {?x ?y ?z} FILTER (?y = rdf:type && ?z = :Employee).

Then a SQL-rewriting of Pt underM is computed just by replacing a triple pattern

of the form {?s ?p ?o} by a union of all the Triplequeries representing the RDB2RDF

rules inM, and also replacing the SPARQL filter condition in Pt by a filter condition

in SQL.

In the inductive step, assume that the theorem holds for two SPARQL queries

P1 and P2. The proof then continues by presenting rewritings for the SPARQL

queries constructed by combining P1 and P2 through the operators SELECT, AND

(or ‘.’ operator), OPTIONAL, FILTER and UNION, which is done by using existing

approaches to translate SPARQL to SQL [9, 40].

5.3.2 Cost Model for View Materialization

A common approach for query optimization is to use materialized views [70]. Given

that RDB2RDF mappings are implemented as views, it is a natural to pursue this

option. There are three implementation alternatives:

1. Materialize all the views: This approach gives the best query response

time. However, it consumes the most space.

2. Materialize nothing: In this approach, every query needs to read the base

tables. However, no extra space is needed.

3. Materialize a subset of the views: Try to find a trade-off between the

best query response time and the amount of space required.

This section presents a cost model for evaluating these three models5. First

some terminology. The ontologies being considered consist of a hierarchy of classes

5Addressing updates to the database is future work.
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which form a tree. A root class of an ontology is a class that has no superclasses. A

leaf class of an ontology is a class that has no subclasses. The depth of a class is the

number of subclass relationships from the class to the root class (notice that there

is a unique path from a class to the root class). Moreover, the maximum depth of

an ontology is maximum depth of all class present in the ontology.

First, assume that the cost of answering a query Q is equal to the number of

rows present in the relation used to construct Q. For example, if a relation R has 100

rows, then the cost of the query SELECT ∗ FROM R is 100. Second, assume a single

relation R and that mappings are from a query on the relation R with a selection

on an attribute A, to a class in the ontology. In Example 9, the relation R is EMP,

the attribute A is JOB and the mapping is to the class Executive. Finally, consider

a query workload of queries asking for the instances of a class in the ontology,

i.e. SELECT ?x WHERE {?x rdf:type A}, which can be translated into the Tripleview

implementing the mapping to the class A. We will build up to the cost model through

a set of scenarios and observations.

Scenario 1: Consider a relation R with 100 rows and an attribute X which has

two possible distinct values: A′ or B′. The ontology consists of (A, subClass, C)

and (B, subClass, C). Assuming uniformity, 50 rows of R are A and the other 50

rows are B. The Tripleviews are the following:

CREATE VIEW Aview SELECT id as S, "rdf:type" as P, "A" as O

FROM R WHERE X = ‘A’

CREATE VIEW Bview SELECT id as S, "rdf:type" as P, "B" as O

FROM R WHERE X = ‘B’

Consider the query Q = SELECT ?x WHERE {?x rdf:type A}. If the views are not

materialized and there is no index on attribute X, then the cost of Q is equivalent to

131



scanning the entire relation R, which is 100 (recall that R has 100 rows). However,

if the Tripleview is materialized, then the Tripleview will have 50 rows, hence the

cost of Q is 50. The same for the Tripleview representing the mapping to the class

B. The A and B class are the minimal classes in the ontology, i.e. these classes do

not have children. Therefore the sum of all the rows in the Aview and Bview is 100,

which is the same number of rows in the original R relation.

Observation 1: Given a set of Tripleviews, representing mappings from a relation

to each minimal class of an ontology, the sum of all the rows in the set of Tripleviews

is equivalent to the number of rows in the relation.

Scenario 2: Consider a relation R with 100 rows and an attribute X which has

four possible distinct values: A′, B′, C ′ and D′. The ontology consists of (A,

subClass, E), (B, subClass, E), (C, subClass, F), (D, subClass, F), (E, subClass,

G), (F, subClass, G) (G is the root). Assuming uniformity, 25 rows of R are A, 25

rows are B, and so on. The Tripleviews representing the mappings to classes A, B,

C and D are equivalent to the Tripleview in Scenario 1. The additional Tripleviews

are:

CREATE VIEW Eview

SELECT id as S, "rdf:type" as P, "E" as O FROM R WHERE X = "A"

UNION ALL

SELECT id as S, "rdf:type" as P, "E" as O FROM R WHERE X = "B"

CREATE VIEW Fview

SELECT id as S, "rdf:type" as P, "F" as O FROM R WHERE X = "C"

UNION ALL

SELECT id as S, "rdf:type" as P, "F" as O FROM R WHERE X = "D"
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It is observed that for each depth of the ontology, the sum of all the rows

of each node in that depth is equal to the number of rows in the relation. In other

words, classes E and F are in depth 1. Eview consists of a union of a the rows where

X is A′ or B′, for a total of 50 rows (25 rows in A′ and 25 rows in B′). Fview

consists of a union of the rows where X is C ′ or D′, for another total of 50. The

grand total is 100, the same number of rows of R.

Observation 2: The sum of all the rows of each Tripleview representing the map-

ping to classes in depth d of an ontology, is equivalent to the number of rows of the

relation.

Scenario 3: Consider the Tripleview Eview which consists of a union of two Triple-

queries. Each of these Triplequeries represents the mapping rule for the child classes

of E, namely the mappings to the classes A and B. Additionally, Eview could be

rewritten in terms of the child Tripleviews:

CREATE VIEW Eview

SELECT s, p, o FROM Aview UNION ALL

SELECT s, p, o FROM Bview

Observation 3: A Tripleview representing a mapping to a class, can be rewritten

into the union of Tripleviews representing the mapping to the child classes.

Scenario 4: Consider the Tripleview representing the mapping for the class G:

CREATE VIEW GView

SELECT s, p, o FROM EView UNION ALL

SELECT s, p, o FROM Fview

Observe that EView and Fview can also be rewritten in terms of their chil-

dren, hence:
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CREATE VIEW GView

SELECT s, p, o FROM Aview UNION ALL

SELECT s, p, o FROM Bview UNION ALL

SELECT s, p, o FROM Cview UNION ALL

SELECT s, p, o FROM Dview

Observation 4 A Tripleview representing the mapping to any class in the ontol-

ogy can be rewritten into a union of Tripleviews representing the mappings to the

minimal classes of an ontology

Scenario 5: Consider the case when there is no materialization and a query Q

asking for the instances of a class C in an ontology. The query Q is equivalent to the

Tripleview representing the mapping to the class C. Per Observation 4, Q can be

rewritten into a union of the Tripleviews representing the mappings to the minimal

classes underneath C. Each view must scan all the rows in R. Hence the cost of

Q = n∗NR where n is the number of minimal classes underneath C. However, what

happens when the view representing the mapping of C is materialized? How many

rows are going to be in that view? In Scenario 2, the attribute X had 4 distinct

values: A′, B′, C ′ and D′. Assuming uniformity, the selectivity is 25%. That means

that each Tripleview for A, B, C and D has 25% of the total number of rows of R.

Consider now the case when all the views are materialized: The cost of executing

a query Q is equivalent to the number of rows in the Tripleview which is equal to

the sum of all the rows for all leaf nodes that are underneath Q. Therefore the cost

of Q = n ∗NR ∗ S(A,R) where S(A,R) denotes the selectivity of the attribute A in

the relation R.

134



The Cost Model

The cost model is the following: If all the views implementing mappings are mate-

rialized, the query cost is n × NR × S(A,R) where n is the number of leaf classes

underneath the class that is being queried for, NR is the number of tuples of the

relation R in the mapping, and S(A,R) is the selectivity of the attribute A of the

relation R in the mapping. The space cost is NR+(NR×d) where d is the maximum

depth of the ontology. The reason for this cost is the number of rows in a material-

ized view depends on the selectivity of the attribute and the number of leaf classes.

Additionally, the sum of all the rows of each Tripleview representing the mapping

to classes in a particular depth d of an ontology, is equivalent to the number of rows

of the relation at most. If no views are materialized, then the query cost is n×NR,

assuming there are no indices. The space cost is simply NR. The reason for this

cost is because to answer a query, the entire relation needs to be accessed n times

because there are no indices6.

The question now is: Can we achieve the query cost of materializing all the

views while keeping space to a minimum? The hypothesis is the following: If a

RDBMS rewrites queries in terms of materialized views, then by only materializing

the views representing mappings to the leaf classes, the query cost is n × NR ×

S(A,R), the same as if all the views were materialized, and the space cost would only

be 2×NR. The rationale is the following: A Tripleview representing a mapping to a

class, can be rewritten into the union of Tripleviews representing the mapping to the

child classes. Subsequently, a Tripleview representing the mapping to any class in the

ontology can be rewritten into a union of Tripleviews representing the mappings to

leaf classes of an ontology. Finally, given a set of Tripleviews representing mappings

from a relation to each leaf class of an ontology, the sum of all the rows in the set

of Tripleviews is equivalent to the number of rows in the relation.

6In the evaluation, we consider the case when indices are present.
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Given the extensive research of answering queries using views [71] and the

fact that Oracle implements query rewriting on materialized views7, we strongly

suspect that our hypothesis will hold. The following evaluation section supports

our hypothesis.

5.4 Evaluation

5.4.1 Benchmarks

The evaluation requires benchmarks consisting of a relational database schema and

data, ontologies, mappings from the database to ontologies and a query workload.

Thus, we created a synthetic benchmark, the Texas Benchmark, inspired by the

Wisconsin Benchmark [51]. Additionally, the Berlin SPARQL Benchmark (BSBM)

[23] was extended.

Texas Benchmark

The Texas Benchmark is composed of a single relation with 1 million rows, reminis-

cent of the Wisconsin Benchmark[51] and ontologies with subclasses. The relation

has a first attribute which serves as a primary key, a set of additional filler attributes

in order to take up space and then a set of six different integer-valued attributes

which are non-unique. The main purpose of these attributes is to provide a sys-

tematic way to model a wide range of selectivity factors. Each attribute is named

after the range of values the attribute assumes: TWO, FIVE, TEN, TWENTY, FIFTHY

and HUNDRED. For example, the attribute FIVE assumes a range of values from 1 to

5. Thus, the selection FIVE = 1 will have a 20% selectivity. In addition to the data,

we created five different ontologies, consisting of a maximum depth between 2-5.

The branching factor is uniform and the number of leaves is 100 for each ontology.

7http://docs.oracle.com/cd/B28359 01/server.111/b28313/qrbasic.htm
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The query workload consists of asking for an instance of a class at each depth of the

ontology.

Extension of BSBM

BSBM replicates the query workload of an e-commerce website. Products have a

type that is part of a ProductType hierarchy. In the original benchmark, the Pro-

ductType hierarchy is implicit in the data through a parent-child relationship. The

extension of BSBM adds a transitive property to the ontology which is mapped to

the ProductType’s parent-child relationship. Additionally, the ProductType hierar-

chy was made explicit as an ontology with subclasses. Every product is mapped to

one leaf class of the ProductType ontology. In the experiments, a dataset consisting

of 1 million products was created with the benchmark driver, hence the product ta-

ble has 1 million rows. The resulting ProductType ontology has a maximum depth

of 4 and consists of 3949 classes from which 3072 are leaf-level classes. The selectiv-

ity of the attribute in the mappings to ProductTypes is approximately 0.1%. To be

consistent with the results of the Texas Benchmark, the query workload also con-

sists of asking for an instances of a class at each depth of the ontology. The query

workload for the transitivity part consists of asking for Products of a particular

ProductType including the label and a numeric property of the Products, therefore

including joins. More details about the benchmarks can be found in the Appendix.

5.4.2 Measurements and Scenarios

The objective of the experiments is to observe the behavior of a commercial relational

databases, namely Oracle, and its capabilities of supporting subclass and transitiv-

ity reasoning under the proposed approach. Therefore, the evaluation compares

execution time and queries plans of SPARQL queries. With the Texas Benchmark,

a comparison was made w.r.t. two dimensions: depth of an ontology and selectivity
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ontop
or&

index
or&

leaves
union&
index

union&
leaves all&mat

D6_100 7.31 7.37 7.44 5.28 5.42 4.80
D6_50 7.44 7.55 7.54 5.14 5.76 4.92
D6_20 9.76 9.88 9.88 6.28 5.71 5.26
D6_10 10.51 10.74 10.43 7.20 6.90 6.37
D6_5 17.24 17.26 10.97 19.75 13.42 9.09
D6_2 22.54 22.88 20.36 23.21 21.17 20.18
D5_100 5.38 5.39 5.42 4.97 4.38 3.85
D5_50 5.56 5.84 5.61 4.92 4.52 4.02
D5_20 9.01 8.52 8.41 6.16 5.47 5.05
D5_10 9.86 9.30 9.04 7.20 6.52 6.13
D5_5 17.32 17.80 9.71 20.24 10.98 9.32
D5_2 21.80 25.28 19.33 23.27 19.67 20.13
D4_100 5.63 5.88 5.81 4.92 4.59 3.96
D4_50 5.83 6.08 6.25 5.10 4.82 4.18
D4_20 6.28 6.56 6.46 5.51 5.34 5.00
D4_10 7.43 7.76 7.52 6.47 6.10 5.80
D4_5 17.54 17.60 10.84 20.96 11.89 9.74
D4_2 22.33 23.30 20.25 23.40 19.96 19.88
D3_100 6.21 7.36 6.48 3.80 3.92 3.53
D3_50 6.40 6.64 10.15 4.09 3.76 3.54
D3_20 6.93 7.15 6.94 4.41 4.25 3.90
D3_10 8.30 8.47 8.08 5.91 5.38 5.14
D3_5 16.55 16.93 7.85 16.80 7.61 7.58
D3_2 23.61 23.43 19.91 22.78 20.09 19.98
D2_100 1.13 1.28 1.24 1.23 1.10 1.05
D2_50 1.41 1.50 1.48 1.45 1.28 1.30
D2_20 2.23 2.40 2.20 2.23 1.99 1.99
D2_10 4.22 4.42 3.99 4.26 3.91 3.81
D2_5 16.39 16.98 10.47 16.77 7.67 8.14
D2_2 23.43 23.19 20.24 22.66 19.59 20.18
Average 10.85 11.16 9.34 10.21 8.11 7.59

Figure 5.2: Results of Texas Benchmark (sec)
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of the attribute that is being mapped. In BSBM, given the fixed 1 million product

dataset, the depth of the hierarchy and selectivity is also fixed. Six scenarios were

considered in the evaluation:

• all-mat: all the views are materialized

• union-leaves: only views representing mappings to the leaf classes are mate-

rialized, implemented with UNION

• or-leaves: same as in the previous scenario but with the views implemented

with OR instead of UNION

• union-index: none of the views, implemented with UNION, are materialized,

instead an index on the respective attributes have been added

• or-index: same as in the previous scenario but with the views implemented

with OR

• ontop: a comparison against Ontop, a state of the art OBDA system [114].

The only competing system was Ontop because to the best of our knowledge,

this is the only OBDA system that supports RDB2RDF mappings and SPARQL.

The experiments were conducted on Oracle 11g R2 EE installed on a Sun

Fire X4150 with a four core Intel Xeon X7460 2.66 GHz processor and 16 GB of

RAM, running Microsoft Windows Server 2008 R2 Standard on top of VMWare

ESX 4.0.

5.4.3 Results

An initial assessment supports the following four expected observations:

1. The fastest execution time is all-mat
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2. The hypothesis holds, meaning that the execution time of union-leaves should

be comparable, if not equal, to the execution time of all-mat;

3. Given that the Ontop system generates SQL queries with OR instead of

UNION [114], the execution time of ontop and or-index should be comparable

if not equal

4. With transitivity, the fastest execution time is when the views are materialized.

Figure 5.2 shows the results of the Texas Benchmark in a form of a heat

map, which evaluates subclass reasoning. The darker colors corresponds to the

fastest query execution time. The x-axis consists of the six scenarios. In the y-axis,

D6 100 means Depth 6 on Selectivity of 100. The values are the average execution

time of the query workload. Notice that the expected observations (1), (2) and (3)

hold. The fastest execution time corresponds to all-mat. The execution time of

union-leaves is comparable, if not equal, to the execution time of all-mat, because

Oracle was able to rewrite queries in terms of the materialized views as shown in

physical query plan in Figure 5.5. The number of rows examined is equivalent to

the number of rows in the views where everything was materialized. This result

provides evidence supporting the hypothesis and validates the proposed cost model.

Finally the execution time of ontop and or-index are comparable.

Figure 5.3 shows the results of the BSBM Benchmark for subclass reasoning.

The expected observations also hold in this case. Note that results are not reported

for Ontop because the setup of the SPARQL endpoint timed-out after 2 hours8.

Given that the selectivity is much lower compared to the selectivities in the Texas

Benchmark, it is observed that for queries asking for instances of classes that are

in depth 1 (child of the root Class), the or-index outperforms union-leaves. A

hypothesis is that there is a slight overhead when rewriting queries over a large

8The issue was reported to the Ontop developers.
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Figure 5.3: Results of Subclass reasoning on BSBM

number of views. However, for the rest of the queries, the overhead diminishes. It

is observed that the execution time of or-leaves is the worst because the database

is not able to rewrite the query into the materialized views when the views are

implemented with OR. Finally, throughout both benchmarks, it is observed that

or-index is competitive w.r.t union-leaves.

Figure 5.4 shows the results of the transitivity experiments on the BSBM

Benchmark. Notice that the expected observations (4) holds. Given that Ontop

does not support transitivity, it is not possible to compare with them. Therefore the

only comparison is between materialized and non-materialized views. The Simple

query requests all the ancestors of the given ProductType. The Join query requests

all ancestors of the given ProductType and its corresponding Products. Therefore

there is a join between ProductType and Product. The More Join query is similar

to Join query, however it requests the name and a numeric property of the products,

hence there are more joins. It is clear that materializing the view outperforms the

non-materialized view for the following reasons: when the view is materialized, the

size of the view is known beforehand and the optimizer is able to do a range scan

with the index, as shown in the physical query plan in Figure 5.6. However, when

the view is not materialized, the size is not known therefore the optimizer does a
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Figure 5.5: Oracle Query Plan for Rewriting using Materialized Views

full scan of the table, as shown in the physical query plan in Figure 5.7.

5.5 Related Work

This research builds upon the work of Rodriguez-Muro et. al. [113, 114] and our pre-

vious work on Ultrawrap (Chapter 4). Rodriguez-Muro et. al. introduced the idea

of compiling ontological entailments as mappings, which they named T -Mappings.

There are three key differences between Rodriguez-Muro et. al. and our work in

this paper:

1. extension of the work of Rodriguez-Muro et. al. to support more than hierar-

chy of classes and properties, including transitivity;

2. introduction of an efficient algorithm that generates saturated mappings while
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Figure 5.6: Oracle Query Plan for recursion with materialized view

Figure 5.7: Oracle Query Plan for recursion with a non-materialized view
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Rodriguez-Muro et. al. has not presented an algorithm before; and

3. representing the mappings as SQL views and study when the views should be

materialized.

Ultrawrap is a system that encodes a fixed mapping, the direct mapping

[13, 118], of the database as RDF. These mappings are implemented using unma-

terialized SQL views. The approach presented in this paper extends Ultrawrap in

three important aspects:

1. supports a customized mapping language

2. supports reasoning through saturated mappings

3. considers materializing views for query optimization

Another related work is the combined approach [92], which materializes en-

tailments as data, without considering mappings, and uses a limited form of query

rewriting. The main objective of this approach is to deal with the case of infinite

materialization which occurs when the ontology expresses cycles and has existential

quantifiers in the head. In this research such ontologies are not considered.

5.6 Summary

This chapter presented UltrawrapOBDA, which to the best of our knowledge, is the

first OBDA system supporting ontologies with transitivity by using SQL recursion.

UltrawrapOBDA is able to push processing into the RDBMS by implementing map-

pings using materialized views and taking advantage of existing query rewriting

techniques. The contributions are:

• A linear algorithm to compile ontological entailments as mappings.
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• A proof that every SPARQL query can be rewritten into a SQL query in

the context of mappings. It is important to mention that such a result is a

minimal requirement for a query-rewriting OBDA system relying on relational

database technology.

• A cost model to determine which views to materialize to attain the fastest

execution time.

• An empirical evaluation comparing with a state-of-the-art OBDA system,

which validates the cost model and demonstrates favorable execution times

Per related work, existing OBDA approaches only exploit the relational al-

gebra capabilities of RDBMS [35]. The experimental results provide evidence that

existing advanced capabilities implemented in RDBMS, such as recursion and query

rewriting using materialized views, can be utilized for OBDA. This does not mean

that OBDA systems should rely exclusively on RDBMS technology to do the heavy

lifting. Systems such as MySQL lack these advanced optimizations. However, these

results suggest that the OBDA community should exploit more of the advanced

optimizations in existing RDBMS.
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Chapter 6

Conclusions
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In this thesis, an answer to the general question was presented: How and to

what extent can Relational Databases be integrated with the Semantic Web?. The

answer comes in three parts:

• Relational Databases can be directly mapped to RDF and OWL:

Relational Databases can be automatically mapped to the Semantic Web. An

OWL ontology can be generated from the relational schema and the relational

data can be represented as an RDF graph. This mapping does not loose

information, preserves queries, is monotone and is positive semantics preserv-

ing. Additionally, it is not possible to have a monotone and full semantics

preserving direct mapping.

• Relational Databases can evaluate and optimize SPARQL queries:

Relational Databases are able to efficiently evaluate SPARQL queries. By

implementing the direct mapping using SQL views, relational optimizer ex-

ploit two important semantic query optimizations: detection of unsatisfiable

conditions and self join elimination.

• Relational Databases can act as reasoners: Given a Relational Database,

an OWL ontology with inheritance and transitivity (in the OWL-SQL profile),

and a mapping between the two, Relational Databases are able to act reasoner.

This is possible by implementing the mappings as SQL views and including

SQL recursion, materializing a subset of the views based on a cost model, and

exploiting existing optimizations such as query rewriting using materialized

views.

The results of this research is embodied in a system called Ultrawrap.

6.1 Summary of Results

In this dissertation, answers to two specific research questions were provided:
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1. Given a Relational Database, how can the Relational Database be automati-

cally virtualized as a Semantic Web data source?

2. Given a Relational Database, an OWL ontology with inheritance and transi-

tivity, and a mapping between the two, how can a Relational Database act as

a reasoner?

The answer to these questions comes as three contributions.

6.1.1 Contribution 1: Direct Mapping

• A monotone, information preserving, query preserving and positive seman-

tics preserving direct mapping which generates an OWL ontology from the

relational schema, coined by us as the putative ontology and RDF from the

relational data. Databases that have null values are considered.

• The semantics of this direct mapping is defined using Datalog.

• A proof that the combination of monotonicity with the OWL semantics is an

obstacle to generating a full semantics preserving direct mapping.

• A non-monotone direct mapping that is full semantics preserving.

To the best of our knowledge this is the first direct mapping, that has been

formalized and studied with respect to these fundamental (information and query

preserving) and desirable (monotone and semantics preserving) properties. Subse-

quently, it served as the foundation of a W3C standard [13].

6.1.2 Contribution 2: Ultrawrap

• A method capable of evaluating SPARQL queries against the Relational Database,

per the direct mapping.
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• A system, Ultrawrap, which is organized as a set of four compilers that 1)

extracts a putative ontology from the relational schema, 2) encodes a logical

representation of the database w.r.t the ontology using SQL views, 3) syntac-

tically translates SPARQL queries to SQL queries in terms of the views and

4) delegates optimizations to the SQL engine.

• Identification of two known query optimizations, detection of unsatisfiable con-

ditions and self-join elimination, used for the evaluation of SPARQL queries.

• An empirical analysis which consistently yields that the performance of SPARQL

query execution on Ultrawrap is comparable to the performance of SQL queries

written directly for the relational representation of the data. Such empirical

results have not been achieved elsewhere in the literature.

To the best of our knowledge, this is the first system that reuses existing

relational database optimizations to evaluate SPARQL.

6.1.3 Contribution 3: Ontology-Based Data Access

• A method for Relational Databases to support inheritance and transitivity by

1) compiling the ontology as mappings, 2) implementing the mappings as SQL

views and 3) optimizing by virtue of materializing a subset of the views.

• A linear algorithm to compile ontological entailments as mappings.

• A proof that every SPARQL query can be rewritten into a SQL query in the

context of mappings.

• A cost model to determine which views to materialize to attain the fastest

execution time.

• An empirical analysis which validates the cost model and demonstrates favor-

able execution times. The analysis reveals that by materializing a subset of
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views and exploiting the capabilities beyond relational algebra, such as query

rewriting using materialized views and SQL recursion, relational database are

able to effectively act as reasoners.

To the best of our knowledge, this is the first OBDA system supporting

ontologies with transitivity by using SQL recursion and reusing existing relational

database optimizations in order to act as a reasoner.

6.2 Lessons Learned

The Semantic Web is a relatively new technology, which promises integration and

reuse of data by intelligent agents at a web-scale through use of a graph data model,

a graph query language and ontologies. However, this vision is not unique to the

Semantic Web. The vision of combining logic and data in order to create intelligent

agents has been a holy grail of Computer Science. Therefore, it is important to

understand the relationship between new technologies, such as the Semantic Web,

with past and existing work.

To the best of our knowledge, this dissertation is the first to present a method-

ological study on the relationships between enterprise class Relational Databases and

Semantic Web. However, what other past and existing work can and should be stud-

ied w.r.t the Semantic Web, in order to not repeat history and reinvent the wheel?

Two research areas come to mind: Deductive Databases and Objected Oriented

Databases.

Deductive databases are database systems that can make deductions; con-

clude additional facts from a set of given rules and facts stored in the database.

Datalog is the typical language to specify the rules, facts and queries. Integrating

Relational Databases with the Semantic Web effectively makes a deductive database.

In other words, UltrawrapOBDAis a deductive database. However, what approaches
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to implement deductive databases have been researched in the past that we should

learn from and reuse, in order to not repeat and reinvent the wheel? The survey

book “Logic Programming and Databases” by Ceri, Gottlob and Tanca [38] pro-

vides a systematic overview of research combining logic programming and relational

databases, up to 1990.

Object Oriented Databases (OODB) are database systems where information

is represented in forms as objects per object-oriented programming [84]. There

seems to be an auspicious relationship between OODB and Semantic Web. For

example, in OODB, any real world entity is modeled as an object, which belongs to

a class, and is associated with a unique identifier. In the Semantic Web, real world

entities are instances of an ontological class and also have unique identifiers: URIs.

Additionally, subclass is a property shared in both technologies. It seems that our

layer cake methodology can be applied to understand the relationship between these

two technologies.

6.3 Future Work

Semantic Web technology provides the following features. OWL Ontologies enable

reasoning (reasoning). SPARQL queries with variables in the predicate position

reveal metadata. This is useful because it enables exploration of the data in case

the schema is not known beforehand. Additionally, queries of this form are intrinsic

to faceted search (variable predicate). Given the graph model of RDF, the lat-

est version of SPARQL, SPARQL 1.1, increased the expressivity and now provides

constructs to navigate the graph (graph traversal). Another virtue of dealing

with graphs is that insertion of data is reduced to adding an edge with a node to

the graph. There are no physical requirements to conform to a schema (dynamic

schema). Finally, data can be easily integrated be simply adding edges between

nodes of different graphs (data integration).
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A goal of this dissertation is to understand up to what extent can Relational

Databases be integrated with the Semantic Web. The extent of this dissertation has

focused on mappings and reasoning. A remaining question is: can that extent be

expanded? And up to where? We call this the Tipping Point problem.

Assume the starting point are legacy relational databases and we want to take

advantage of these five features of the Semantic Web (reasoning, variable predicate,

graph traversal, dynamic schema, data integration)? How much can be subsumed

by Relational Database technology before the balance is tipped over and we end up

using native Semantic Web technology? What is the tipping point (or points)?

• Reasoning: This dissertation proposed to represent ontological entailments

as mappings and implement them as views. Subsequently, a subset of these

views are materialized. Open questions remain. What is the state of the art

of other RDBMS’s optimizers in order to support this approach? How does

this approach respond to complex query workloads? The model assumed a

read-only database, therefore, what is the cost of maintaining views when the

underlying data is updated? Evidence is provided that Relational Databases

can act as reasoners for the OWL-SQL profile. Can the expressivity of OWL-

SQL be increased while maintaining efficient computation by the RDBMS

optimizer? What is the trade-off between reasoning over relational databases

with mappings and using native RDF databases which supports reasoning?

• Variable Predicate: For queries with variables in the predicate position, the

mapping stipulates that the variable may be bound to the name of any column

in the database. These queries are a syntactic construct of higher order logic.

Ultrawrap translates these queries into a SQL query consisting of a union for

each attribute in the database. This query ends up reading the entire database

and suffers a performance penalty. What optimizations can be implemented

in order to overcome this issue? What hints can be provided in a query?
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• Graph Traversal: Regular Path Queries and SPARQL 1.1 property path

queries enable pattern-based reachability queries. These types of queries en-

able the traversal and navigation of the graph. A natural question is how

much of SQL recursion can be used to implement these types of queries?

• Dynamic schema: Relational Databases have a fixed schema. Insertion of

data needs to adhere to the schema. A schema needs to be altered in case

new data is inserted which does not adhere to the schema. Can a Relational

Database become hybrid graph/relational database? What effect does the

sparsity of data have? What is the best storage manager (column vs row

store)?

• Data Integration: When it comes to integrate disparate databases, one

approach is to extract the relational data, transform it physically to RDF

and then load it into a RDF database (ETL). Another approach is to feder-

ate queries. In other words, legacy data continues to reside in the relational

databases and queries are sent to each source (Federation). Which approach

is practical? Depending on what? Can hybrid system be efficient?

An overarching theme is the need to create systematic and real-world bench-

marks in order to evaluate different solutions for these features.

These open questions provide a roadmap to further expand the extent that

Relational Databases can be integrated with the Semantic Web.

153



Chapter 7

Appendix

154



7.1 Additional Operators in Relational algebra

It is important to notice that the operators left-outer join, right-outer join and

full-outer join are all expressible with the previous operators. For example, assume

that R and S are relation names such that att(R) ∩ att(S) = {A1, A2, . . . , Ak} and

att(S) r att(R) = {B1, B2, . . . , B`}, then the left-outer join for R and S is defined

by the following expression:

[
R ./ S

]
∪
[
σIsNull(A1)(R) ∪ σIsNull(A2)(R) ∪ · · · ∪ σIsNull(Ak)(R) ∪

R ./

(
σIsNotNull(A1)(σIsNotNull(A2)(· · ·σIsNotNull(Ak)(π{A1,A2,...,Ak}(R)) · · · ))

r π{A1,A2,...,Ak}(S)

)]
./

[
NULLB1

./ NULLB2
./ · · · ./ NULLB`

]
.

Similar expressions can be used to express the right-outer join and the full-outer

join.

7.2 Semantics of SPARQL

Let P be a SPARQL graph pattern. In the rest of the paper, we use var(P ) to

denote the set of variables occurring in P . In particular, if t is a triple pattern, then

var(t) denotes the set of variables occurring in the components of t. Similarly, for a

built-in condition R, we use var(R) to denote the set of variables occurring in R.

In what follows, we present the semantics of graph patterns for a fragment of

SPARQL for which the semantics of nested SELECT queries is well understood [73,

10, 11]. More specifically, in what follows we focus on the class of graph patterns P

satisfying the following condition: P is said to be non-parametric if for every sub-

pattern P1 = (SELECT {?A1 AS ?B1, . . . , ?Am AS ?Bm, ?C1, . . . , ?Cn} P2) of P and

every variable ?X occurring in P , if ?X ∈ (var(P2)r{?A1, . . . , ?Am, ?C1, . . . , ?Cn}),

then ?X does not occur in P outside P1.

To define the semantics of SPARQL graph pattern expressions, we need to
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introduce some terminology. A mapping µ is a partial function µ : V → (I ∪ L).

Abusing notation, for a triple pattern t we denote by µ(t) the triple obtained by

replacing the variables in t according to µ. The domain of µ, denoted by dom(µ), is

the subset of V where µ is defined. Two mappings µ1 and µ2 are compatible, denoted

by µ1 ∼ µ2, when for all x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x),

i.e. when µ1 ∪ µ2 is also a mapping. The mapping with empty domain is denoted

by µ∅ (notice that this mapping is compatible with any other mapping). Given a

mapping µ and a set of variables W , the restriction of µ to W , denoted by µ|W , is a

mapping such that dom(µ|W ) = dom(µ)∩W and µ|W (?X) = µ(?X) for every ?X ∈

dom(µ) ∩W . Finally, given a mapping µ and a sequence ?A1, . . ., ?Am, ?B1, . . .,

?Bm of pairwise distinct elements from V such that dom(µ) ∩ {?B1, . . . , ?Bm} = ∅,

define ρ{?A1→?B1,...,?Am→?Bm}(µ) as a mapping such that:

dom(ρ{?A1→?B1,...,?Am→?Bm}(µ)) = (dom(µ) r {?A1, . . . , ?Am})∪

{?Bi | i ∈ {1, . . . ,m} and ?Ai ∈ dom(µ)},

and for every x ∈ dom(ρ{?A1→?B1,...,?Am→?Bm}(µ)):

ρ{?A1→?B1,...,?Am→?Bm}(µ)(x) =


µ(?Ai) x =?Bi for some i ∈ {1, . . . ,m}

µ(x) otherwise

We have all the necessary ingredients to define the semantics of graph pattern ex-

pressions. As in [104], we define this semantics as a function J · KG that takes a graph

pattern expression and returns a set of mappings. For the sake of readability, the

semantics of filter expressions is presented separately.

The evaluation of a graph pattern P over an RDF graph G, denoted by JP KG,

is defined recursively as follows.

1. If P is { } and G is nonempty, then JP KG = {µ∅}. If P is { } and G = ∅, then
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JP KG = ∅.

2. If P is a triple pattern t, then JP KG = {µ | dom(µ) = var(t) and µ(t) ∈ G}.

3. If P is (P1 AND P2), then JP KG = {µ1 ∪ µ2 | µ1 ∈ JP1KG, µ2 ∈ JP2KG and

µ1 ∼ µ2}.

4. If P is (P1 OPT P2), then JP KG = {µ1 ∪ µ2 | µ1 ∈ JP1KG, µ2 ∈ JP2KG and

µ1 ∼ µ2} ∪ {µ ∈ JP1KG | for every µ′ ∈ JP2KG : µ 6∼ µ′}.

5. If P is (P1 UNION P2), then JP KG = {µ | µ ∈ JP1KG or µ ∈ JP2KG}.

6. If P is (P1 MINUS P2), then JP KG = {µ ∈ JP1KG | for every µ′ ∈ JP2KG : µ 6∼

µ′ or dom(µ) ∩ dom(µ′) = ∅}.

7. If P is (SELECT {?A1 AS ?B1, . . . , ?Am AS ?Bm, ?C1, . . . , ?Cn} P1), then:

JP KG = {ρ{?A1→?B1,...,?Am→?Bm}(µ|{?A1,...,?Am,?C1,...,?Cn}) | µ ∈ JP1KG}.

The semantics of filter expressions goes as follows. Given a mapping µ and a built-in

condition R, we say that µ satisfies R, denoted by µ |= R, if:

1. R is bound(?X) and ?X ∈ dom(µ);

2. R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c;

3. R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y );

4. R is (¬R1), R1 is a built-in condition, and it is not the case that µ |= R1;

5. R is (R1 ∨R2), R1 and R2 are built-in conditions, and µ |= R1 or µ |= R2;

6. R is (R1 ∧R2), R1 and R2 are built-in conditions, µ |= R1 and µ |= R2.

Then given an RDF graph G and a filter expression (P FILTER R):

J(P FILTER R)KG = {µ ∈ JP KG | µ |= R}.

157



7.3 Proofs

7.3.1 Proof of Theorem 1

We show that DM is information preserving by providing a computable mapping

N : G → I that satisfies the condition in Definition 15. More precisely, given a

relational schema R, a set Σ of PKs and FKs and an instance I of R satisfying Σ,

next we should how N (G) is defined for DM(R,Σ, I) = G.

• Step 1: Identify all the ontological class triples (i.e Triple(r, "rdf:type",

"owl:Class")). The IRI r identifies an ontological class R′. For every R′ that

was retrieved from G, map it to a relation name R.

• Step 2: Identify all the datatype triples of a given class (i.e Triple(a,

"rdf:type", "owl:DatatypeProperty"), Triple(a, "rdfs:domain", ri)).

The IRI a identifies the datatype property A′ and the IRI r identifies the

ontological class R′ that is the domain of A′. Every datatype property A′

with domain R′ is mapped to an attribute A of relation name R.

• Step 3: For each class R′ and the datatype properties A′1 . . . A
′
n that have do-

main R′, we can recover the instances of relation R with the following SPARQL

query:

Q1 = SELECT {?A1, . . . , ?An}
[
· · ·
(((

(?X, "rdf:type", ri)

OPT (?X, a1, ?A1)

)
OPT (?X, a2, ?A2)

)
OPT (?X, a3, ?A3)

)
· · · OPT (?X,an, ?An)

]
.
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• Step 4: Identify all the object property triples (i.e. Triple(r, "rdf:type",

"owl:ObjectProperty")). The IRI r that only has one element left of the

# sign means that r identifies the object property R′ in the ontology that

was originally mapped from a binary relation. This object property R′ is

mapped back to a binary relation name R. The two elements following the

# sign identify the attributes of the relation R. From the triples Triple(r,

"rdfs:domain", s) and Triple(r, "rdfs:range", t), the IRI s identifies the

ontological class S′ which is mapped to the relation S and the IRI t identifies

the ontological class T ′ which is mapped to the relation T . Additionally, the

elements in the third and fourth position after the # identify the attributes

which are being referenced from relations S and T respectively. For sake of

simplicity, assume that the relation R references the attribute B of relation

S which is mapped to a datatype property B′ with domain S′ and IRI b.

Additionally, the relation R references the attribute C of relation T , which is

mapped to a datatype property C ′ with domain T ′ and IRI c.

We can now recover the instances of the relation R with the following SPARQL

query:

Q? = (SELECT {?A1, ?A2}

((?T1, r, ?T2) AND (?T1, b, ?A1) AND (?T2, c, ?A2))).

• Step 5: Given that the result of a SPARQL query is a set Ω of solution

mapping µ, we need to translate each solution mapping µ ∈ Ω into a tuple

t. We define a function tr−1 as the inverse of function tr, that is, for each

solution mapping µ and variable ?A in the domain of µ, tr−1 assigns the value

of µ(?A) to t.A. Then the mapping function N over G is defined as the

following relational instance. For every non-binary relation name identified in
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Steps 1, 2, 3, define RN (G) as tr−1(JQ1KG), and for every binary relation R

identified in Step 4, define RN (G) as tr−1(JQ2KG).

It is straightforward to prove that for every relational schema R, set Σ of PKs and

FKs and an instance I of R satisfying Σ, it holds that N (M(R,Σ, I)) = I. This

concludes the proof of the theorem.

7.3.2 Proof of Theorem 2

We need to prove that for every relational schema R, set Σ of PKs and FKs over R

and relational algebra query Q over R, there exists a SPARQL query Q? such that

for every instance I of R including null values:

tr(JQKI) = JQ?KDM(R,Σ,I).

In what follows, assume that R is a relational schema, Σ is a set of PKs and FKs

over R, and I is an instance of R satisfying Σ. The following lemma is used in the

proof of the theorem.

Lemma 1 Let Q1 be a relational algebra query over R such that att(Q1) = {A1, . . . , A`},

and assume that Q?1 is a SPARQL graph pattern such that:

tr(JQ1KI) = JQ?1KDM(R,Σ,I).

Then we have that:

tr(JQ1KI) = J(SELECT {?A1, . . . , ?A`} Q?1)KDM(R,Σ,I).

First, we prove that tr(JQ1KI) ⊆ J(SELECT {?A1, . . . , ?A`} Q?1)KDM(R,Σ,I).

Assume that µ ∈ tr(JQ1KI). Then there exists a tuple t ∈ JQ1KI such that

tr(t) = µ. Thus, given that att(Q1) = {A1, . . . , A`}, we conclude that dom(µ) ⊆
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{?A1, . . . , ?A`}. Given that tr(JQ1KI) = JQ?1KDM(R,Σ,I), we have that µ ∈

JQ?1KDM(R,Σ,I). Hence, from the fact that dom(µ) ⊆ {?A1, . . . , ?A`}, we conclude

that µ ∈ J(SELECT {?A1, . . . , ?A`} Q?1)KDM(R,Σ,I).

Second, we prove that J(SELECT {?A1, . . . , ?A`}Q?1)KDM(R,Σ,I) ⊆ tr(JQ1KI).

Assume that µ ∈ J(SELECT {?A1, . . . , ?A`} Q?1)KDM(R,Σ,I). Then there exists

a mapping µ′ ∈ JQ?1KDM(R,Σ,I) such that µ = µ′|{?A1,...,?A`}
. From the fact that

tr(JQ1KI) = JQ?1KDM(R,Σ,I), we conclude that µ′ ∈ tr(JQ1KI). Thus, there exists a

tuple t ∈ JQ1KI such that tr(t) = µ′. But then given that att(Q1) = {A1, . . . , A`}, we

conclude by definition of tr that dom(µ′) ⊆ {?A1, . . . , ?A`}. Therefore, given that

µ = µ′|{?A1,...,?A`}
, we have that µ = µ′ and, hence, µ ∈ tr(JQ1KI) since µ′ ∈ tr(JQ1KI).

We now prove the theorem by induction on the structure of relational algebra query

Q.

Base Case: For the sake of readability, we introduce a function ν that retrieves

the IRI for a given relation R, denoted by ν(R), and the IRI for a given attribute A

in a relation R, denoted by ν(A,R). In this part of the proof, we need to consider

three cases.

• Non-binary relations: Assume that Q is the identity relational algebra

query R, where R is a non-binary relation according to the definition given

in Section 3.4.2. Moreover, assume that att(R) = {A1, . . . , A`}, with the

corresponding IRIs ν(R) = r, ν(A1, R) = a1, . . . , ν(A`, R) = a`. Finally, let

Q? be the following SPARQL query:

Q? = SELECT {?A1, . . . , ?A`}
[
· · ·(((

(?X, "rdf:type", r) OPT (?X, a1, ?A1)

)
OPT (?X, a2, ?A2)

)
OPT (?X, a3, ?A3)

)
· · · OPT (?X, a`, ?A`)

]
.
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Next we prove that tr(JQKI) = JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ and, hence, t ∈ RI .

Without loss of generality, assume that there exists k ∈ {0, . . . , `} such that

(1) t.Ai 6= NULL for every i ∈ {1, . . . k}, and (2) t.Aj = NULL for every j ∈

{k + 1, . . . , `}. By definition of tr, we have that t.Ai = µ(?Ai) for every i ∈

{1, . . . , k}, and that dom(µ) = {?A1, . . . , ?Ak}. Given the definition of DM,

we have that the following holds: Class(R) and DTP(Ai, R) for every i ∈

{1, . . . , `}. Hence, given that R is not a binary relation (that is, IsBinRel(R)

does not hold), we have that the following triples are included in DM(R,Σ, I):

– (rid , "rdf:type", r), where rid is the tuple id for the tuple t, and

– (rid , ai, vi), where i ∈ {1, . . . , k} and vi is the value of attribute Ai in the

tuple t, that is, t.Ai = vi.

Thus, given that no triple of the form (rid , aj , vj) is included in DM(R,Σ, I),

for j ∈ {k+ 1, . . . , `}, we conclude that µ ∈ JQ?KDM(R,Σ,I) by definition of Q?

and the fact that µ = tr(t).

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈ JQ?KDM(R,Σ,I).

Without loss of generality, assume that dom(µ) = {?A1, . . . , ?Ak}, where

0 ≤ k ≤ `. Then by definition of Q?, we have that there exists an IRI rid such

that DM(R,Σ, I) contains triples (rid , "rdf:type", r) and (rid , ai, µ(?Ai)),

for every i ∈ {1, . . . , k}, and it does not contain a triple of the form (rid , aj , vj),

for every j ∈ {k+ 1, . . . , `}. Given the definition of DM(R,Σ, I) and the fact

that IsBinRel(R) does not hold, we conclude that there exists a tuple t ∈ RI

such that: (1) the IRI assigned by DM to t is rid , (2) t.Ai = µ(?Ai) for

every i ∈ {1, . . . , k}, and (3) t.Aj = NULL for every j ∈ {k + 1, . . . , `}. Thus,

given that tr(t) = µ and t ∈ RI , we conclude that µ ∈ tr(JQKI) (recall that
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JQKI = RI).

• Binary relation: Assume that Q is the identity relational algebra query

R, where R is a binary relation according to the definition given in Section

3.4.2. Moreover, assume that att(R) = {A1, A2}, where A1 is a foreign key

referencing the attribute B of a relation S, and A2 is a foreign key referencing

the attribute C of a relation T . Finally, assume that ν(R) = r, ν(B,S) = b

and ν(C, T ) = c, and define Q? as the following SPARQL 1.1 query:

Q? = (SELECT {?A1, ?A2}

((?T1, r, ?T2) AND (?T1, b, ?A1) AND (?T2, c, ?A2))).

Next we prove that tr(JQKI) = JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ and, hence, t ∈ RI .

Given the definition of mapping DM, we have that all the following hold:

BinRel(R,A1, A2, S,B, T, C), PK(A1, A2, R), FK1(A1, R,B, S), FK1(A2, R, C, T ),

Class(S), DTP(B,S), Class(T ), DTP(C, T ), Rel(S), Attr(B,S), Rel(T )

and Attr(C, T ). From this, we conclude that there exist tuples t1 ∈ SI ,

t2 ∈ T I such that t.A1 = t1.B 6= NULL and t.A2 = t2.C 6= NULL, and we also

conclude that the following triples are included in DM(R,Σ, I):

– (sid , r, tid ) where sid is the tuple id for tuple t1 and tid is the tuple id for

tuple t2,

– (sid , b, v1), where v1 is the value of attribute B in the tuple t1, that is,

t1.B = v1,

– (tid , c, v2), where v2 is the value of attribute C in the tuple t2, that is,

t2.C = v2.
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Given that t.A1 = t1.B = v1, t.A2 = t2.C = v2 and tr(t) = µ, we conclude by

definition of Q? that µ ∈ JQ?KDM(R,Σ,I).

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈ JQ?KDM(R,Σ,I),

which implies that dom(µ) = {?A1, ?A2}. By definition of Q?, we have that

there exist IRIs sid , tid such that the following triples are in DM(R,Σ, I):

(sid , r, tid ), (sid , b, µ(?A1)) and (tid , c, µ(?A2)). Hence, by definition of DM,

we have that there exist tuples t1 ∈ SI , t2 ∈ T I such that: (1) sid is

the IRI assigned to t1 by DM, (2) t1.B = µ(?A1), (3) tid is the IRI as-

signed to t2 by DM, and (4) t2.C = µ(?A2). Moreover, we also have by

definition of DM that the following holds: BinRel(R,A1, A2, S,B, T, C),

FK1(A1, R,B, S) and FK1(A2, R, C, T ). Hence, there exists tuple t ∈ RI such

that t.A1 = t1.B = µ(?A1) and t.A2 = t2.C = µ(?A2). Therefore, given that

µ = tr(t) (since att(R) = {A1, A2} and dom(µ) = {?A1, ?A2}) and t ∈ JQKI

(since JQKI = RI), we conclude that µ ∈ tr(JQKI).

• Third, assume that Q = NULLA, and let Q? be the SPARQL query { }.

We have that JQKI = {t}, where t is a tuple with domain {A} such that

t.A = NULL. Moreover, we have that JQ?KDM(R,Σ,I) = {µ∅} since DM(R,Σ, I)

is a nonempty RDF graph. Thus, given that tr(t) = µ∅, we conclude that

tr(JQKI) = JQ?KDM(R,Σ,I).

Inductive Step: Assume that the theorem holds for relational algebra queries Q1

and Q2. That is, there exists SPARQL queries Q?1 and Q?2 such that:

tr(JQ1KI) = JQ?1KDM(R,Σ,I),

tr(JQ2KI) = JQ?2KDM(R,Σ,I).

To continue with the proof, we need to consider the following operators: selection

(σ), projection (π), rename (δ), join (./), union (∪) and difference (r).
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• Selection: We need to consider four cases.

– Case 1. Assume that Q = σA1=a(Q1), and Q? = (Q?1 FILTER (?A1 =

a)). Next we prove that tr(JQKI) = JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ. Thus, we have that

t ∈ JQ1KI and t.A1 = a. By definition of tr, we know that t.A1 = µ(?A1),

from which we conclude that µ(?A1) = a given that t.A1 = a. Therefore,

µ |= (?A1 = a), from which we conclude that µ ∈ JQ?KDM(R,Σ,I) since

µ = tr(t) and tr(t) ∈ JQ?1KDM(R,Σ,I) by induction hypothesis.

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈

JQ?KDM(R,Σ,I). Then µ ∈ JQ?1KDM(R,Σ,I) and µ |= (?A1 = a), that is,

µ(?A1) = a. By induction hypothesis, we have that µ ∈ tr(JQ1KI), and,

hence, there exists a tuple t ∈ JQ1KI such that tr(t) = µ. By definition of

tr, we know that t.A1 = µ(?A1), from which we conclude that t.A1 = a

given that µ(?A1) = a. Given that t ∈ JQ1KI and t.A1 = a, we have that

t ∈ JQKI . Therefore, we conclude that µ ∈ tr(JQKI) since tr(t) = µ.

– Case 2. Assume that Q = σA1 6=a(Q1), and Q? = (Q?1 FILTER (¬(?A1 =

a) ∧ bound(?A1))). Next we prove that tr(JQKI) = JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ. Given that

t ∈ JQKI , we have by the definition of the semantics of relational algebra

that t ∈ JQ1KI , t.A1 6= a and t.A1 6= NULL. Thus, by definition of tr

we have that t.A1 = µ(?A1) and µ(?A1) 6= a. Hence, we have that

µ |= (¬(?A1 = a) ∧ bound(?A1)), from which we conclude that µ ∈

JQ?KDM(R,Σ,I) since µ = tr(t) and tr(t) ∈ JQ?1KDM(R,Σ,I) by induction

hypothesis.

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈
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JQ?KDM(R,Σ,I). Then µ ∈ JQ?1KDM(R,Σ,I) and µ |= (¬(?A1 = a) ∧

bound(?A1)), that is, ?A1 ∈ dom(µ) and µ(?A1) 6= a. By induction

hypothesis we have that µ ∈ tr(JQ1KI) and, hence, there exists a tuple

t ∈ JQ1KI such that tr(t) = µ. Given that ?A1 ∈ dom(µ) and µ(?A1) 6= a,

it holds that t.A1 6= NULL and t.A1 6= a. Thus, we have that t ∈ JQKI ,

from which we conclude that µ ∈ tr(JQKI) since µ = tr(t).

– Case 3. Assume that Q = σIsNull(A1)(Q1), and

Q? = (Q?1 FILTER (¬bound(?A1))). Next we prove that tr(JQKI) =

JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ. Given that

t ∈ JQKI , we have that t ∈ JQ1KI and t.A1 = NULL. Thus, we conclude

by definition of tr that ?A1 6∈ dom(µ) and, hence, µ |= ¬bound(?A1).

Therefore, we have that µ ∈ JQ?KDM(R,Σ,I) given that µ = tr(t) and

tr(t) ∈ JQ?1KDM(R,Σ,I) by induction hypothesis.

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈

JQ?KDM(R,Σ,I). Then µ ∈ JQ?1KDM(R,Σ,I) and µ |= (¬bound(?A1)), that

is, ?A1 6∈ dom(µ). By induction hypothesis we have that µ ∈ tr(JQ1KI),

from which we conclude that there exists a tuple t ∈ JQ1KI such that

tr(t) = µ. By definition of tr and given that ?A1 6∈ dom(µ), we have

that t.A1 = NULL and, hence, t ∈ JQKI . Therefore, we conclude that

µ ∈ tr(JQKI) since µ = tr(t).

– Case 4. Assume that Q = σIsNotNull(A1)(Q1), and

Q? = (Q?1 FILTER (bound(?A1))). Next we prove that tr(JQKI) =

JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ. Given that
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t ∈ JQKI , we have that t ∈ JQ1KI and t.A1 6= NULL. Thus, by definition

of tr we have that ?A1 ∈ dom(µ) and µ(?A1) = t.A1 and, hence, µ |=

bound(?A1). Therefore, we conclude that µ ∈ JQ?KDM(R,Σ,I) given that

µ = tr(t) and tr(t) ∈ JQ?1KDM(R,Σ,I).

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈

JQ?KDM(R,Σ,I). Then µ ∈ JQ?1KDM(R,Σ,I) and µ |= bound(?A1), that

is, ?A1 ∈ dom(µ). By induction hypothesis we have that there exists a

tuple t ∈ JQ1KI such that tr(t) = µ. Thus, by definition of tr we have

that t.A1 = µ(?A1), which implies that t.A1 6= NULL. Therefore, we have

that t ∈ JQKI and, hence, µ ∈ tr(JQKI) since µ = tr(t).

• Projection: Assume that Q = π{A1,...,A`}(Q1), and

Q? = (SELECT {?A1, . . . , ?A`}Q?1). Next we prove that tr(JQKI) = JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ. Given that t ∈ JQKI ,

there exists a tuple t′ ∈ JQ1KI such that for every A ∈ att(Q) : t.A = t′.A.

Without loss of generality, assume that: (1) att(Q) = {A1, . . . , Ak, Ak+1, . . . , A`},

(2) t.Ai 6= NULL for every i ∈ {1, . . . , k}, and (3) t.Aj = NULL for every

j ∈ {k + 1, . . . , `}. By definition of tr, we have that t.Ai = µ(?Ai) for every

i ∈ {1, . . . , k}, and that dom(µ) = {?A1, . . . , ?Ak}. Given that t′ ∈ JQ1KI ,

we have for µ′ = tr(t′) that: (1) µ′ ∈ tr(JQ1KI), (2) dom(µ) ⊆ dom(µ′), (3)

dom(µ) = ({?A1, . . . , ?A`}∩dom(µ′)), and (4) t.Ai = t′.Ai = µ(?Ai) = µ′(?Ai)

for every i ∈ {1, . . . , k}. Thus, we have in particular that:

µ = µ′|{?A1,...,?A`}
. (†)

By induction hypothesis we have that µ′ ∈ JQ?1KDM(R,Σ,I), from which we

conclude that µ′|{?A1,...,?A`}
∈ JQ?KDM(R,Σ,I). Thus, we conclude from (†) that
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µ ∈ JQ?KDM(R,Σ,I).

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈ JQ?KDM(R,Σ,I).

Then there exists a mapping µ′ ∈ JQ?1KDM(R,Σ,I) such that µ = µ′|{?A1,...,?A`}
.

By induction hypothesis, we have that µ′ ∈ tr(JQ1KI), from we conclude that

there exists a tuple t′ ∈ JQ1KI such that tr(t′) = µ′. Let t be a tuple with

domain {A1, . . . , A`} such that t.Ai = t′.Ai for every i ∈ {1, . . . , `}. Then,

given that t′ ∈ JQ1KI , we have that t ∈ JQKI , and given that µ′ = tr(t′)

and µ = µ′|{?A1,...,?A`}
, we have that µ = tr(t). Therefore, we conclude that

µ ∈ tr(JQKI).

• Rename: Assume that att(Q) = {A1, . . . , A`} and Q = δA1→B1(Q1), and

let Q? = (SELECT {?A1 AS ?B1, ?A2, . . . , ?A`} Q?1). Next we prove that

tr(JQKI) = JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ. Given that t ∈ JQKI ,

there exists a tuple t′ ∈ JQ1KI such that t.B1 = t′.A1 and t.Ai = t′.Ai for

every i ∈ {2, . . . , `}. Without loss of generality, assume that there exists

k ∈ {1, . . . , `} such that: (1) t.Ai 6= NULL for every i ∈ {2, . . . , k}, and (2)

t.Aj = NULL for every j ∈ {k + 1, . . . , `}. To finish the proof, we consider two

cases.

– Assume that t.B1 6= NULL. Then it follows from conditions (1), (2) and

definition of tr that µ(?A1) = t.B1 = t′.A1, µ(?Ai) = t.Ai = t′.Ai for

every i ∈ {2, . . . , k} and dom(µ) = {?A1, ?A2, . . . , ?Ak}. Let µ′ = tr(t′).

Then by definition of tr, we have that ρ{?A1→?B1}(µ
′) = µ. Moreover,

given that µ′ = tr(t′) and t′ ∈ JQ1KI , we conclude that µ′ ∈ tr(JQ1KI)

and, hence, µ′ ∈ JQ?1KDM(R,Σ,I) by induction hypothesis. Thus, we have

that ρ{?A1→?B1}(µ
′
|{?A1,...,?A`}

) ∈ JQ?KDM(R,Σ,I), from which we conclude
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that µ ∈ JQ?KDM(R,Σ,I) since µ′|{A1,...,A`}
= µ′ and ρ{?A1→?B1}(µ

′) = µ.

– Assume that t.B1 = NULL. Then it follows from conditions (1), (2) and

definition of tr that µ(?Ai) = t.Ai = t′.Ai for every i ∈ {2, . . . , k}

and dom(µ) = {?A2, ?A2, . . . , ?Ak}. Let µ′ = tr(t′). Then by defi-

nition of tr, we have that ρ{?A1→?B1}(µ
′) = µ. Moreover, given that

µ′ = tr(t′) and t′ ∈ JQ1KI , we conclude that µ′ ∈ tr(JQ1KI) and, hence,

µ′ ∈ JQ?1KDM(R,Σ,I) by induction hypothesis. Thus, we have that

ρ{?A1→?B1}(µ
′
|{?A1,...,?A`}

) ∈ JQ?KDM(R,Σ,I), from which we conclude that

µ ∈ JQ?KDM(R,Σ,I) since µ′|{A1,...,A`}
= µ′ and ρ{?A1→?B1}(µ

′) = µ.

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈ JQ?KDM(R,Σ,I).

Then there exists a mapping µ′ ∈ JQ?1KDM(R,Σ,I) such that

µ = ρ{?A1→?B1}(µ
′
|{?A1,...,?A`}

). By induction hypothesis, we have that µ′ ∈

tr(JQ1KI), from which we conclude that there exists a tuple t′ ∈ JQ1KI such

that tr(t′) = µ′. Let t be a tuple with domain {B1, A2, . . . , A`} such that

t.B1 = t′.A1 and t.Ai = t′.Ai for every i ∈ {2, . . . , `}. Then we have that

t ∈ JQKI . Given that µ′ = tr(t′) and µ = ρ{?A1→?B1}(µ
′
|{?A1,...,?A`}

), we have

that µ = tr(t). Therefore, we conclude that µ ∈ tr(JQKI).

• Join: Assume that Q = (Q1 ./ Q2), where (att(Q1)∩att(Q2)) = {A1, . . . , A`},

and let

Q? =

((
Q?1 FILTER (bound(?A1) ∧ · · · ∧ bound(?A`))

)
AND(

Q?2 FILTER (bound(?A1) ∧ · · · ∧ bound(?A`))

))
.

Next we prove that tr(JQKI) = JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t such that µ = tr(t) and t ∈ JQKI . Thus, we have
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that there exist tuples t1 ∈ JQ1KI and t2 ∈ JQ2KI such that: (1) t.Ai = t1.Ai =

t2.Ai 6= NULL for every i ∈ {1, . . . , `}, (2) t.A = t1.A for every A ∈ (att(Q1) r

att(Q2)), and (3) t.A = t2.A for every A ∈ (att(Q2)ratt(Q1)). Let µ1 = tr(t1)

and µ2 = tr(t2). By induction hypothesis and given that µ1 ∈ tr(JQ1KI) and

µ2 ∈ tr(JQ2KI), we have that µ1 ∈ JQ?1KDM(R,Σ,I) and µ2 ∈ JQ?2KDM(R,Σ,I).

Hence, from condition (1) and definition of tr, we conclude that:

µ1 ∈ J(Q?1 FILTER (bound(?A1) ∧ · · · ∧ bound(?A`)))KDM(R,Σ,I),

µ2 ∈ J(Q?2 FILTER (bound(?A1) ∧ · · · ∧ bound(?A`)))KDM(R,Σ,I).

Thus, given that µ = µ1 ∪ µ2 by conditions (1), (2), (3) and definition of tr,

we conclude that µ ∈ JQ?KDM(R,Σ,I).

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈

JQ?KDM(R,Σ,I). Then there exist mappings µ1, µ2 such that: (1) µ = µ1 ∪ µ2,

(2) µ1 ∈ J(Q?1 FILTER (bound(?A1) ∧ · · · · · · ∧ bound(?A`)))KDM(R,Σ,I),

and (3) µ2 ∈ J(Q?2 FILTER (bound(?A1) ∧ · · · ∧ bound(?A`)))KDM(R,Σ,I).

By induction hypothesis, we have that µ1 ∈ tr(JQ1KI) and µ2 ∈ tr(JQ2KI).

Thus, there exist tuples t1 ∈ JQ1KI , t2 ∈ JQ2KI such that µ1 = tr(t1) and

µ2 = tr(t2). From conditions (1), (2), (3) and definition of tr, we have

that t1.Ai = t2.Ai = µ(?Ai) 6= NULL for every i ∈ {1, . . . , `}. Thus, given

that (att(Q1) ∩ att(Q2)) = {A1, . . . , A`}, we have that t ∈ JQKI , where

t : (att(Q1) ∪ att(Q2)) → (D ∪ {NULL}) such that: (4) t.Ai = t1.Ai = t2.Ai

for every i ∈ {1, . . . , `}, (5) t.A = t1.A for every A ∈ (att(Q1) r att(Q2)),

and (6) t.A = t2.A for every A ∈ (att(Q2) r att(Q1)). Hence, we conclude

that µ ∈ tr(JQKI), given that µ = tr(t) by definition of t, definition of tr and

conditions (1), (2) and (3).

• Union: Assume that Q = (Q1 ∪ Q2) and Q? = (Q?1 UNION Q?2). Next we
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prove that tr(JQKI) = JQ?KDM(R,Σ,I).

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ. Thus, we have that

t ∈ JQ1KI or t ∈ JQ2KI . Without loss of generality, assume that t ∈ JQ1KI .

Then we have that tr(t) ∈ tr(JQ1KI) and, hence, tr(t) ∈ JQ?1KDM(R,Σ,I) by

induction hypothesis. Therefore, µ ∈ JQ?1KDM(R,Σ,I) since tr(t) = µ, from

which we conclude that µ ∈ JQ?KDM(R,Σ,I).

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈ JQ?KDM(R,Σ,I).

Then µ ∈ JQ?1KDM(R,Σ,I) or µ ∈ JQ?2KDM(R,Σ,I). Without loss of generality,

assume that µ ∈ JQ?1KDM(R,Σ,I). Then, by induction hypothesis, we have that

µ ∈ tr(JQ1KI), and, hence, there exists a tuple t ∈ JQ1KI such that tr(t) = µ.

Therefore, we conclude that t ∈ J(Q1 ∪ Q2)KI , from which we deduce that

µ ∈ tr(JQKI).

• Difference: Assume that Q = (Q1 r Q2), and that att(Q1) = att(Q2) =

{A1, . . . , A`}. Then for every (not necessarily nonempty) set X = {i1, i2, . . . , ip}

such that 1 ≤ i1 < i2 < . . . < ip ≤ `, define RX as the following filter condi-

tion:

(
bound(?Ai1) ∧ bound(?Ai2) ∧ · · · ∧ bound(?Aip) ∧

¬bound(?Aj1) ∧ ¬ bound(?Aj2) ∧ · · · ∧ ¬bound(?Ajq)

)
,

where 1 ≤ j1 < j2 < · · · < jq ≤ ` and {j1, j2, · · · , jq} = ({1, . . . , `} r

{i1, i2, . . . , ip}). That is, condition RX indicates that every variables ?Ai with

i ∈ X is bound, while every variable ?Aj with j ∈ ({1, . . . , `}rX ) is not bound.

Moreover, for every X 6= ∅ define SPARQL graph pattern PX as follows:

PX = ((Q?1 FILTER RX ) MINUS (Q?2 FILTER RX )).
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Notice that there are 2` − 1 possible graph patterns PX with X 6= ∅. Let P1,

P2, . . ., P2`−1 be an enumeration of these graph patterns. Moreover, assuming

that ?X, ?Y , ?Z are fresh variables, let P∅ be the following query:

[[(
Q?1 FILTER R∅

)
OPT

((
Q?2 FILTER R∅

)
AND (?X, ?Y, ?Z)

)]
FILTER (¬bound(?X))

]
.

Then graph pattern Q? is defined as follows:

Q? = (P1 UNION P2 UNION · · · UNION P2`−1 UNION P∅).

Next we show that tr(JQKI) = JQ?KDM(R,Σ,I). In this proof, we assume, by

considering Lemma 1, that for every mapping µ such that µ ∈ JQ?1KDM(R,Σ,I)

or µ ∈ JQ?2KDM(R,Σ,I), it holds that dom(µ) ⊆ {?A1, . . . , ?A`}.

First, we show that tr(JQKI) ⊆ JQ?KDM(R,Σ,I). Assume that µ ∈ tr(JQKI).

Then there exists a tuple t ∈ JQKI such that tr(t) = µ. Thus, we have that

t ∈ JQ1KI and t 6∈ JQ2KI , from which we conclude by considering the induction

hypothesis that µ ∈ JQ?1KDM(R,Σ,I) and µ 6∈ JQ?2KDM(R,Σ,I). We consider two

cases to show that this implies that µ ∈ JQ?KDM(R,Σ,I).

– Assume that dom(µ) 6= ∅, and let X = {i ∈ {1, . . . , `} |?Ai ∈ dom(µ)}.

Given that µ ∈ JQ?1KDM(R,Σ,I), we have that dom(µ) ⊆ {?A1, . . . , ?A`}

and, hence, X 6= ∅. Furthermore, we have that µ |= RX and, hence,

µ ∈ J(Q?1 FILTER RX )KDM(R,Σ,I). From this and the fact that µ 6∈

JQ?2KDM(R,Σ,I), we conclude that:

µ ∈ J((Q?1 FILTER RX ) MINUS (Q?2 FILTER RX ))KDM(R,Σ,I). (‡)

To see why this is the case, assume that (‡) does not hold. Then
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given that µ ∈ J(Q?1 FILTER RX )KDM(R,Σ,I), we conclude by def-

inition of the operator MINUS that there exists a mapping µ′ ∈

J(Q?2 FILTER RX )KDM(R,Σ,I) such that µ ∼ µ′ and (dom(µ) ∩

dom(µ′)) 6= ∅. Given that µ′ ∈ JQ?2KDM(R,Σ,I), we have that dom(µ′) ⊆

{?A1, . . . , ?A`}. Thus, given that µ′ |= RX and dom(µ) ⊆ {?A1, . . . , ?A`},

we conclude that dom(µ) = dom(µ′). Therefore, given that µ ∼ µ′, we

have that µ = µ′, from which we conclude that µ ∈ JQ?2KDM(R,Σ,I), lead-

ing to a contradiction.

From (‡) and definition of Q?, we conclude that µ ∈ JQ?KDM(R,Σ,I)

since ((Q?1 FILTER RX ) MINUS (Q?2 FILTER RX )) = Pi for some

i ∈ {1, . . . , 2` − 1} (recall that X 6= ∅).

– Assume that dom(µ) = ∅. Then we have that µ |= R∅ and, hence,

µ ∈ J(Q?1 FILTER R∅)KDM(R,Σ,I). From this and the fact that µ 6∈

JQ?2KDM(R,Σ,I), we conclude that:

µ ∈ J
[[(

Q?1 FILTER R∅

)
OPT((

Q?2 FILTER R∅

)
AND (?X, ?Y, ?Z)

)]
(∗)

FILTER (¬bound(?X))

]
KDM(R,Σ,I). (7.1)

To see why this is the case, assume that (∗) does not

hold. Then given that µ ∈ J(Q?1 FILTER R∅)KDM(R,Σ,I)

and dom(µ) = ∅, we have that there exists a mapping

µ′ ∈ J((Q?2 FILTER R∅) AND (?X, ?Y, ?Z))KDM(R,Σ,I) such that ?X ∈

dom(µ′). Thus, there exist mappings µ1 ∈ J(Q?2 FILTER R∅)KDM(R,Σ,I)

and µ2 ∈ J(?X, ?Y, ?Z)KDM(R,Σ,I) such that µ′ = µ1 ∪ µ2. Given that

µ1 ∈ J(Q?2 FILTER R∅)KDM(R,Σ,I), we have that µ1 ∈ JQ?2KDM(R,Σ,I)

and µ1 |= R∅. Thus, we have that dom(µ1) ⊆ {?A1, . . . , ?A`}, from
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which we conclude that dom(µ1) = ∅ (since µ1 |= R∅). Therefore, we

have that µ = µ1, which implies that µ ∈ JQ?2KDM(R,Σ,I) and leads to a

contradiction.

From (∗) and definition of Q?, we conclude that µ ∈ JQ?KDM(R,Σ,I).

Second, we show that JQ?KDM(R,Σ,I) ⊆ tr(JQKI). Assume that µ ∈ JQ?KDM(R,Σ,I).

Then we consider two cases to prove that µ ∈ tr(JQKI).

– Assume that there exists i ∈ {1, . . . , `} such that µ ∈ JPiKDM(R,Σ,I).

Then there exists X 6= ∅ such that

µ ∈ J((Q?1 FILTER RX ) MINUS (Q?2 FILTER RX ))KDM(R,Σ,I). Thus,

we have that µ ∈ JQ1KDM(R,Σ,I) and µ |= RX , from which we conclude

that ∅ ( dom(µ) ⊆ {?A1, . . . , ?A`}. From this fact and definition of the

MINUS operator, we obtain that µ 6∈ JQ?2KDM(R,Σ,I). Hence, by induction

hypothesis, we conclude that µ ∈ tr(JQ1KI) and µ 6∈ tr(JQ2KI). That is,

there exists a tuple t such that tr(t) = µ, t ∈ JQ1KI and t 6∈ JQ2KI , from

which we conclude that µ ∈ tr(JQKI).

– Assume that (∗) holds. First we show that

J(Q?2 FILTER R∅)KDM(R,Σ,I) = ∅. For the sake of contradiction,

assume that there exists a mapping µ′ ∈ J(Q?2 FILTER R∅)KDM(R,Σ,I).

Then given that µ′ ∈ JQ?2KDM(R,Σ,I) and µ |= R∅, we conclude

that dom(µ′) = ∅. Given that DM(R,Σ, I) is a nonempty

RDF graph and dom(µ′) = ∅, we conclude that there exists a

mapping µ′′ ∈ J((Q?2 FILTER R∅) AND (?X, ?Y, ?Z))KDM(R,Σ,I)

such that dom(µ′′) = {?X, ?Y, ?Z}. Thus, given that vari-

ables ?X, ?Y , ?Z are not mentioned in (Q?1 FILTER R∅),

we conclude that µ′′ is compatible with every mapping in

J(Q?1 FILTER R∅)KDM(R,Σ,I). Thus, by definition of the OPT op-

erator, we conclude that ?X belongs to the domain of every mapping in
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J((Q?1 FILTERR∅) OPT ((Q?2 FILTERR∅) AND (?X, ?Y, ?Z)))KDM(R,Σ,I),

which implies that

J(((Q?1 FILTER R∅) OPT ((Q?2 FILTER R∅) AND (?X, ?Y, ?Z)))

FILTER (¬bound(?X)))KDM(R,Σ,I) = ∅. But this leads to a contradic-

tion, as we assume that (∗) holds.

Given that (∗) holds and J(Q?2 FILTER R∅)KDM(R,Σ,I) = ∅,

we conclude that µ ∈ J(Q?1 FILTER R∅)KDM(R,Σ,I) and µ 6∈

J(Q?2 FILTER R∅)KDM(R,Σ,I). Hence, we have that µ ∈ JQ?1KDM(R,Σ,I)

and µ 6∈ JQ?2KDM(R,Σ,I) and, therefore, we conclude by induction hypoth-

esis that µ ∈ tr(JQ1KI) and µ 6∈ tr(JQ2KI). That is, there exists a tuple

t such that tr(t) = µ, t ∈ JQ1KI and t 6∈ JQ2KI , from which we conclude

that µ ∈ tr(JQKI).

7.3.3 Proof of Proposition 1

Assume that we have a relational schema containing a relation with name STUDENT

and attributes SID, NAME, and assume that the attribute SID is the primary key.

Moreover, assume that this relation has two tuples, t1 and t2 such that t1.SID = 1,

t1.NAME = John and t2.SID = 1, t2.NAME = Peter. It is clear that the primary key

is violated, therefore the database is inconsistent. If DM would be semantics pre-

serving, then the resulting RDF graph would be inconsistent under OWL semantics.

However, the result of applying DM, returns the following consistent RDF graph

(assuming given a base IRI "http://example.edu/db/" for the mapping):
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Triple("http://example.edu/db/STUDENT", "rdf:type", "owl:Class")

Triple("http://example.edu/db/STUDENT#NAME", "rdf:type", "owl:DatatypeProperty")

Triple("http://example.edu/db/STUDENT#NAME", "rdfs:domain",

"http://example.edu/db/STUDENT")

Triple("http://example.edu/db/STUDENT#SID", "rdf:type", "owl:DatatypeProperty")

Triple("http://example.edu/db/STUDENT#SID", "rdfs:domain",

"http://example.edu/db/STUDENT")

Triple("http://example.edu/db/STUDENT#SID=1",

"http://example.edu/db/STUDENT#NAME", "John")

Triple("http://example.edu/db/STUDENT#SID=1",

"http://example.edu/db/STUDENT#NAME", "Peter")

Triple("http://example.edu/db/STUDENT#SID=1",

"http://example.edu/db/STUDENT#SID", "1")

Therefore, DM is not semantics preserving.

7.3.4 Proof of Proposition 2

It is straightforward to see that given a relational schema R, set Σ of (only) PKs over

R and instance I of R such that I |= Σ, it holds that DMpk(R,Σ, I) is consistent un-

der the OWL semantics. Likewise, if I 6|= Σ, then by definition of DMpk, the result-

ing RDF graph will have an inconsistent triple Triple(a, "owl:differentFrom",

a), which would generate an inconsistency under the OWL semantics.

7.3.5 Proof of Theorem 4

For the sake of contradiction, assume that M is a monotone and semantics pre-

serving direct mapping. Then consider a schema R containing at least two distinct
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relation names R1, R2, and consider a set Σ of PKs and FKs over R containing at

least one foreign key from R1 to R2. Then we have that there exist instances I1,

I2 of R such that I1 ⊆ I2, I1 does not satisfy Σ and I2 does satisfy Σ. Given

that M is semantics preserving, we know that M(R,Σ, I2) is consistent under

the OWL semantics, while M(R,Σ, I1) is not. Given that M is monotone, we

have that M(R,Σ, I1) ⊆ M(R,Σ, I2). But then we conclude that M(R,Σ, I1) is

also consistent under the OWL semantics, given thatM(R,Σ, I2) is consistent and

M(R,Σ, I1) ⊆M(R,Σ, I2), which leads to a contradiction.

7.3.6 Proof of Theorem 5

It is straightforward to see that given a relational schema R, set Σ of PKs and

FKs over R and instance I of R such that I |= Σ, it holds that DMpk+fk(R,Σ, I)

is consistent under the OWL semantics. Likewise, if I 6|= Σ, then by definition of

DMpk+fk, the resulting RDF graph will contain an inconsistent triple Triple(a,

"owl:differentFrom", a), which would generate an inconsistency under the OWL

semantics.

7.4 Benchmark for Ultrawrap

Details of the BSBM and DBLP benchmark used to evaluate Ultrawrap can be

found http://ribs.csres.utexas.edu/ultrawrap/benchmark.

7.5 Benchmark for UltrawrapOBDA

Details of the Texas Benchmark and the extension to the BSBM benchmark used

to evaluate UltrawrapOBDAcan be found http://www.obda-benchmark.org/.
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