Integrating hydrodynamic and oil spill trajectory models for nowcasts/forecasts of Texas bays

dc.contributor.advisorHodges, Ben R.en
dc.contributor.committeeMemberPassalacqua, Paolaen
dc.creatorRosenzweig, Itayen
dc.date.accessioned2011-10-03T19:35:44Zen
dc.date.available2011-10-03T19:35:44Zen
dc.date.issued2011-08en
dc.date.submittedAugust 2011en
dc.date.updated2011-10-03T19:36:19Zen
dc.descriptiontexten
dc.description.abstractA new method for automatically integrating the results of hydrodynamic models of currents in Texas bays with the National Oceanic and Atmospheric Administration’s (NOAA) in house oil spill trajectory model, the General NOAA Operational Modeling Environment (GNOME), is presented. Oil spill trajectories are predicted by inputting wind and water current forces on an initial spill in a dedicated spill trajectory model. These currents can be field measured, but in most real and meaningful cases, the current field is too spatially complex to measure with any accuracy. Instead, current fields are simulated by hydrodynamic models, whose results must then be coupled with a dedicated spill trajectory model. The newly developed automated approach based on Python scripting eliminates the present labor-intensive practice of manually coupling outputs and inputs of the separate models, which requires expert interpretation and modification of data formats and setup conditions for different models. The integrated system is demonstrated by coupling GNOME independently with TXBLEND – a 2D depth-averaged model which is currently used by the Texas Water Development Board, and SELFE – a newer 3D hydrodynamic model with turbulent wind mixing. A hypothetical spill in Galveston Bay is simulated under different conditions using both models, and a brief qualitative comparison of the results is used to raise questions that may be addressed in future work using the automated coupling system to determine the minimum modeling requirements for an advanced oil spill nowcast/forecast platform in Texas bays.en
dc.description.departmentEnvironmental and Water Resources Engineeringen
dc.format.mimetypeapplication/pdfen
dc.identifier.slug2152/ETD-UT-2011-08-4102en
dc.identifier.urihttp://hdl.handle.net/2152/ETD-UT-2011-08-4102en
dc.language.isoengen
dc.subjectCoupled modelsen
dc.subjectOil spill modelingen
dc.subjectTexas baysen
dc.titleIntegrating hydrodynamic and oil spill trajectory models for nowcasts/forecasts of Texas baysen
dc.type.genrethesisen
thesis.degree.departmentEnvironmental and Water Resources Engineeringen
thesis.degree.disciplineEnvironmental and Water Resources Engineeringen
thesis.degree.grantorUniversity of Texas at Austinen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Science in Engineeringen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ROSENZWEIG-THESIS.pdf
Size:
9.17 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.13 KB
Format:
Plain Text
Description: