DNA target site recognition and toward gene targeting in mammalian cells by the Ll.LtrB group II intron RNP

dc.contributor.advisorLambowitz, Alan
dc.creatorHanson, Joseph Haskellen
dc.date.accessioned2013-11-06T21:05:30Zen
dc.date.issued2013-05en
dc.date.submittedMay 2013en
dc.date.updated2013-11-06T21:05:30Zen
dc.descriptiontexten
dc.description.abstractMobile group II introns insert site-specifically into DNA target sites through a mechanism ("retrohoming") that involves reverse splicing of the intron RNA into the DNA and its subsequent reverse transcription by an intron-encoded protein (IEP) that is associated with the RNA in a ribonucleoprotein (RNP) complex. Characterization of this RNP complex and its retrohoming activities have enabled the development of programmable mobile group II intron gene targeting vectors routinely used in prokaryotic organisms. Building upon recent research by our lab to develop gene targeting in Xenopus laevis and Drosophila melanogaster using the group II intron Ll.LtrB from Lactococcus lactis, I describe work to extend this system to mammalian cells. I demonstrate that group II intron RNPs can be delivered to mammalian cells efficiently and produced in vivo via a CMV/T7 hybrid expression system. Using a robust single-strand annealing assay to detect homologous recombination induced by double-strand breaks (DSBs), I found that group II intron-mediated DSBs are efficiently repaired by mammalian cells. Despite varied approaches, I failed to detect endogenous group II intron-mediated gene targeting in human and mouse cells in culture. Gene expression microarray analysis and in vivo imaging of RNP molecules indicated that group II intron RNPs are sequestered away from the genome and induce host innate immune responses. I also investigated how the C-terminal DNA-binding domain of the Ll.LtrB IEP contributes to DNA target site recognition. Building upon previous mass spectrophotometric analysis of site-specific UV-crosslinking, I used genetic and biochemical analyses to identify potential protein contacts for key target site residues T-23 and T+5. Genetic selection of mutants in a region contacting T+5 led to identification of LtrA variants with increased retrohoming efficiency. My results provide evidence that the DNA-binding domain of a group II intron reverse transcriptase functions in DNA target site recognition and suggest new methods for changing its DNA target specificity and targeting efficiency.en
dc.description.departmentCellular and Molecular Biologyen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/21983en
dc.language.isoen_USen
dc.subjectGeneticsen
dc.subjectBiochemistryen
dc.subjectGroup II intronsen
dc.subjectGene targetingen
dc.subjectRNA biologyen
dc.titleDNA target site recognition and toward gene targeting in mammalian cells by the Ll.LtrB group II intron RNPen
thesis.degree.departmentCellular and Molecular Biologyen
thesis.degree.disciplineCell and Molecular Biologyen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HANSON-DISSERTATION-2013.pdf
Size:
25.45 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: