Quantum Field Theory for Homological Algebraists

dc.contributor.advisorBen-Zvi, Daviden
dc.creatorRaghavendran, Suryaen
dc.date.accessioned2016-06-24T16:02:57Z
dc.date.available2016-06-24T16:02:57Z
dc.date.issued2016en
dc.description.abstractThe BV formalism in quantum field theory provides a homological theory of integration that can be used to compute path integrals. The present note is an overview of such ideas. Starting with a discussion of the combinatorial algorithms used by physicists to compute correlators, we motivate the structures involved in studying observables in BV theories via the finite dimensional case. In particular, we show that the quantum BV formalism recovers the same algorithms from structures manifestly arising from integration. We then discuss the infinite dimensional case.en
dc.description.departmentMathematicsen
dc.identifierdoi:10.15781/T2TD9N78Xen
dc.identifier.urihttp://hdl.handle.net/2152/38659en
dc.language.isoengen
dc.relation.ispartofHonors Thesesen
dc.rights.restrictionOpenen
dc.subjectBV formalismen
dc.subjectperturbative field theoryen
dc.subjectFeynman diagramsen
dc.subjectfactorization algebrasen
dc.titleQuantum Field Theory for Homological Algebraistsen
dc.typeThesisen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Raghavendran_thesis.pdf
Size:
372.99 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.66 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections