uPredict: A User-Level Profiler-Based Predictive Framework in Multi-Tenant Clouds
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Clouds have been adopted widely by many organizations for their supports of flexible resource demands and low cost, which is normally achieved through sharing the underlying hardware among multiple cloud tenants. However, such sharing with the changes in resource contentions in virtual machines (VMs) can result in large variations for the performance of cloud applications, which makes it difficult for ordinary cloud users to estimate the run-time performance of their applications. We propose online learning methodologies for performance modeling and prediction of applications that run repetitively on multi-tenant clouds (such as on-line data analytic tasks). Here, a few micro-benchmarks are utilized to probe the in-situ perceivable performance of CPU, memory and I/O components of the target VM. Then, based on such profiling information and in-place measured application's performance, the predictive models can be derived with either Regression or Neural-Network techniques. In particular, to address the changes in the intensity of resource contentions of a VM over time and its effects on the target application, we proposed periodic model retraining where the sliding-window technique was exploited to control the frequency and historical data used for model retraining. Moreover, a progressive modeling approach has been devised where the Regression and Neural-Network models are gradually updated for better adaptation to recent changes in resource contention. With 17 representative applications from PARSEC, Nas Parallel and CloudSuite benchmarks being considered, we have extensively evaluated the proposed online schemes for the prediction accuracy of the resulting models and associated overheads on both a private and public clouds. The evaluation results show that, with the neural-network progressive models, the average prediction error for public clouds is less than 4% for the considered models with our proposed online schemes.