Experimental study of void formation in solder joints of flip-chip assemblies

dc.contributor.advisorPanton, Ronald L. (Ronald Lee), 1933-en
dc.creatorWang, Daijiao, 1970-en
dc.date.accessioned2008-08-28T22:15:50Zen
dc.date.available2008-08-28T22:15:50Zen
dc.date.issued2005en
dc.descriptiontexten
dc.description.abstractVoids in solder bumps have been a critical reliability issue as electronic components continue to shrink in size. This dissertation addresses the formation of voids in solder joints of flip-chip assemblies. Specifically, experimental techniques have been developed to study how the heat flux direction affects the occurrence of void formation. Three types of solder pastes including high-lead solder (90Pb/8Sn/2Ag), eutectic solder (63Sn/37Pb), and lead-free solder (95.75Sn/3.5Ag/0.75Cu) have been studied in the present experiments. For high-lead solder, the tests were performed on flip-chip connections to ceramic substrates. As predicted by studies from thermocapillary driven flow theory, the melting direction was found to have significant effect on the formation of voids and their final distribution. Solder bumps that were heated and cooled from top have the smallest void volume and the least probability for finding a defective bump. This represents the best reflow methodology to minimize voids for high-lead solder. Reversing the flow direction during cooling, the bumps show highest percentage of defective bumps and the highest void volume. This demonstrates that for high-lead solder, the effect of cooling process on the formation of voids is very significant. These results are of major significance to manufacturing process. Experiments on lead-free and eutectic solder were carried out on flip-chip connections to FR4 substrates. Both solders show much smaller void volume than high-lead solder. Compared with eutectic solder, lead-free solder has a slightly higher void volume and a higher percentage of defective bumps. For lead-free and eutectic solders, the two cases with heating solder samples from top to bottom show less defective bumps and smaller void volumes. Experimental results were compared with the numerical simulation based on thermocapillary theory. The case of heating from bottom and cooling from top agrees well with the computational results. The agreement of final void distribution inside the solder joints with reference to thermocapillary theory is encouraging. These findings will lead to better void management in solder joints of flip-chip connections.
dc.description.departmentMechanical Engineeringen
dc.format.mediumelectronicen
dc.identifierb60093869en
dc.identifier.oclc62110547en
dc.identifier.proqst3184813en
dc.identifier.urihttp://hdl.handle.net/2152/1754en
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshWelded jointsen
dc.subject.lcshSolder and solderingen
dc.subject.lcshMultichip modules (Microelectronics)en
dc.titleExperimental study of void formation in solder joints of flip-chip assembliesen
dc.type.genreThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineering.en
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wangd48141.pdf
Size:
20.44 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.65 KB
Format:
Plain Text
Description: