Repair of High-Value Plastic Components Using Fused Deposition Modeling
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Recent focus on light-weight design and fuel efficiency in several sectors (such as aerospace and automotive), as well as advances in polymer technologies, have made plastic parts more viable for high-value systems. These are often low-production, high-precise parts which require expensive tooling for traditional manufacture, making them difficult to reproduce later; this is especially true when the original tooling is no longer available, and full additive manufacturing (AM) is infeasible. This study explores the application of fused deposition modeling (FDM - extrusion-based AM) in the repair of cracks, chips, and broken features in such plastic parts. A framework for repairing various kinds of plastic parts using FDM is presented, including establishment of repair candidacy, selection of repair material and parameters, post-processing, and repair evaluation. Three case studies, one repairing an optimized truss, one exploring the use of sewing-stitch patch patterns, and one replacing a broken part feature, were developed to demonstrate the presented concepts.