Shale fracturing enhancement by using polymer-free foams and ultra-light weight proppants




Gu, Ming, active 21st century

Journal Title

Journal ISSN

Volume Title



Slickwater with sand is the most commonly used hydraulic fracturing treatment for shale reservoirs. The slickwater treatment produces long skinny fractures, but only the near wellbore region is propped due to fast settling of sand. Adding gel into water can prevent the fast settling of sand, but gel may damage the fracture surface and proppant pack. Moreover, current water-based fracturing consumes a large amount of water, has high water leakage, and imposes high water disposal costs. The goal of this project is to develop non-damaging, less water-intensive fracturing treatments for shale gas reservoirs with improved proppant placement efficiency. Earlier studies have proposed to replace sand with ultra-light weight proppants (ULWP) to enhance proppant transport, but it is not used commonly in field. This study evaluates the performance of three kinds of ULWPs covering a wide range of specific gravity and representing the three typical manufacturing methods. In addition to replacing sand with ULWPs, replacing water with foams can be an alternative treatment that reduces water usage and decreases proppant settling. Polymer-added foams have been used in conventional reservoirs to improve proppant placement efficiency. However, polymers can damage shale permeability in unconventional reservoirs. This dissertation studies polymer-free foams (PFF) and evaluates their performance. This study uses both experiments and simulations to assess the productivity and profitability of the ULWP treatment and PFF treatment. First, a reservoir simulation model is built in CMG to study the impact of fracture conductivity and propped length on fracture productivity. This model assumes a single fracture intersecting a few reactivated natural fractures. Second, a 2D fracturing model is used to simulate the fracture propagation and proppant transport. Third, strength, API conductivity and gravity settling rates are measured for three ULWPs. Fourth, foam stability tests are conducted to screen the best PFF agents and the selected foams are put into a circulating loop to study their rheology. Finally, empirical correlations from the experiments are applied in the fracturing model and reservoir model to predict productivity by using the ULWPs with slickwater or using the PFFs with sand. Experimental results suggest that, at 4000 psi with concentrations varying from partial monolayer (0.05 lb/ft²) to multilayer (1 lb/ft²), ULW-1 (polymeric) is the most deformable with conductivity of 1-10 md-ft. ULW-2 (resin coated and impregnated ground walnut hull) is the second most deformable with similar conductivity. ULW-3 (resin coated porous ceramic) is the least deformable with conductivity of 20-1000 md-ft, which is comparable to sand. Three foam formulations (A, B: regular surfactant foam, C: viscoelastic surfactant foam) are selected based on the stability results of fourteen surfactants. All PFFs exhibit power-law rheological behavior in a laminar flow regime. The power law parameters of the regular surfactant PFF depend on both quality and pressure when quality is higher than 60% but depend on quality only when quality is lower than 60%. Simulation results suggest that under the optimal concentration of 0.04-0.06 v/v (0.37-0.55 lb/gal) for both ULW-1 and ULW-2, and 0.1 v/v (1.46 lb/gal) for ULW-3, 1-year cumulative production for 0.1 µD shale reservoir is higher than sand by 127% for ULW-1, 28% for ULW-2, and 38% for ULW-3. The productivity benefits decrease as shale permeability increases for all three ULWPs. ULW-1 and ULW-2 have higher productivity benefits for longer production time, while ULW-3 has relatively constant productivity benefits over time. The economic profit of ULW-1 when priced at $5/lb is 2.2 times larger than that of sand for 1-year production in 0.1 µD shale reservoirs; the acceptable maximum price is $10/lb for ULW-1, $6/lb for ULW-2, and $2.5/lb for ULW-3. The maximum price increases as production time increases. The PFFs with a quality of 60% carrying mesh 40 sand at a partial monolayer concentration of 0.04 v/v (0.88 lb/gal) can generate 50% higher productivity, 74% higher economic profit, and over 300% higher water efficiency than the best slickwater-sand case (mesh 40 sand at 0.1 v/v) for 1-year production in 0.1µD shale reservoirs. The benefits of using the PFFs decrease with increasing shale permeability, increasing production time, or decreasing pumping time. This dissertation gives a range of field conditions where the ULWP and PFF may be more effective than slickwater-sand fracturing.



LCSH Subject Headings