Evolutionary bilevel optimization for complex control problems and blackbox function optimization

dc.contributor.advisorMiikkulainen, Ristoen
dc.contributor.committeeMemberStone, Peteren
dc.creatorLiang, Jason Zhien
dc.creator.orcid0000-0002-7041-9136en
dc.date.accessioned2015-10-22T15:32:49Zen
dc.date.available2015-10-22T15:32:49Zen
dc.date.issued2015-05en
dc.date.submittedMay 2015en
dc.date.updated2015-10-22T15:32:49Zen
dc.descriptiontexten
dc.description.abstractMost optimization algorithms must undergo time consuming parameter tuning in order to solve complex, real-world control tasks. Parameter tuning is inherently a bilevel optimization problem: The lower level objective function is the performance of the control parameters discovered by an optimization algorithm and the upper level objective function is the performance of the algorithm given its parameterization. In the first part of this thesis, a new bilevel optimization method called MetaEvolutionary Algorithm (MEA) is developed to discover optimal parameters for neuroevolution to solve control problems. In two challenging benchmarks, double pole balancing and helicopter hovering, MEA discovers parameters that result in better performance than hand tuning and other automatic methods. In the second part, MEA tunes an adaptive genetic algorithm (AGA) that uses the state of the population every generation to adjust parameters on the fly. Promising experimental results are shown for standard blackbox benchmark functions. Thus, bilevel optimization in general and MEA in particular are promising approaches for solving difficult optimization tasks.en
dc.description.departmentComputer Science
dc.format.mimetypeapplication/pdfen
dc.identifierdoi:10.15781/T2ZS46en
dc.identifier.urihttp://hdl.handle.net/2152/31848en
dc.language.isoenen
dc.subjectGenetic algorithmsen
dc.subjectMetaheuristicsen
dc.subjectNeural networksen
dc.subjectFitness approximationen
dc.subjectParameter tuningen
dc.titleEvolutionary bilevel optimization for complex control problems and blackbox function optimizationen
dc.typeThesisen
thesis.degree.departmentComputer Sciencesen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Science in Computer Sciencesen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LIANG-THESIS-2015.pdf
Size:
3.35 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: