The Hot-Jupiter Kepler-17b: Discovery, Obliquity from Stroboscopic Starspots, and Atmospheric Characterization
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper reports the discovery and characterization of the transiting hot giant exoplanet Kepler-17b. The planet has an orbital period of 1.486 days, and radial velocity measurements from the Hobby-Eberly Telescope show a Doppler signal of 419.5(-15.6)(+13.3) m s(-1). From a transit-based estimate of the host star's mean density, combined with an estimate of the stellar effective temperature T-eff = 5630 +/- 100 from high-resolution spectra, we infer a stellar host mass of 1.06 +/- 0.07 M-circle dot and a stellar radius of 1.02 +/- 0.03 R-circle dot. We estimate the planet mass and radius to be M-P = 2.45 +/- 0.11 M-J and R-P = 1.31 +/- 0.02 R-J. The host star is active, with dark spots that are frequently occulted by the planet. The continuous monitoring of the star reveals a stellar rotation period of 11.89 days, eight times the planet's orbital period; this period ratio produces stroboscopic effects on the occulted starspots. The temporal pattern of these spot-crossing events shows that the planet's orbit is prograde and the star's obliquity is smaller than 15 degrees. We detected planetary occultations of Kepler-17b with both the Kepler and Spitzer Space Telescopes. We use these observations to constrain the eccentricity, e, and find that it is consistent with a circular orbit (e < 0.011). The brightness temperatures of the planet's infrared bandpasses are T-3.6 mu m = 1880 +/- 100 K and T-4.5 mu m = 1770 +/- 150 K. We measure the optical geometric albedo A(g) in the Kepler bandpass and find A(g) = 0.10 +/- 0.02. The observations are best described by atmospheric models for which most of the incident energy is re-radiated away from the day side.