The projective envelope of a cuspidal representation of a GL[subscript n](F[subscript q])
dc.contributor.advisor | Helm, David, doctor of mathematics | en |
dc.contributor.committeeMember | Ciperiani, Mirelia | en |
dc.contributor.committeeMember | Rodriquez-Villegas, Fernando | en |
dc.contributor.committeeMember | Vaaler, Jeffrey | en |
dc.contributor.committeeMember | Weinstein, Jared | en |
dc.creator | Paige, David Lee | en |
dc.date.accessioned | 2012-10-26T13:52:48Z | en |
dc.date.available | 2012-10-26T13:52:48Z | en |
dc.date.issued | 2012-08 | en |
dc.date.submitted | August 2012 | en |
dc.date.updated | 2012-10-26T13:52:57Z | en |
dc.description | text | en |
dc.description.abstract | Let l be a prime and let q be a prime power not divisible by l. Put G=GI[subscript n](F[subscript q])and fix a representation pi of G over a sufficiently large finite field, k, of characteristic l, so that pi is cuspidal but not supercuspidal. We compute the W(k)[G]-endomorphism ring of the projective envelope of pi under the assumption that l>n. | en |
dc.description.department | Mathematics | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.slug | 2152/ETD-UT-2012-08-5911 | en |
dc.identifier.uri | http://hdl.handle.net/2152/ETD-UT-2012-08-5911 | en |
dc.language.iso | eng | en |
dc.subject | Local Langlands correspondence | en |
dc.subject | Cuspidal representations | en |
dc.title | The projective envelope of a cuspidal representation of a GL[subscript n](F[subscript q]) | en |
dc.type.genre | thesis | en |
thesis.degree.department | Mathematics | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | University of Texas at Austin | en |
thesis.degree.level | Doctoral | en |
thesis.degree.name | Doctor of Philosophy | en |